Highly Stretchable Conductive Hydrogel-Based Flexible Triboelectric Nanogenerators for Ultrasensitive Tactile Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PAM/Gelatin/PSS:PEDOT Hydrogel
2.3. Preparation of PGP Triboelectric Nanogenerator
2.4. Characterization and Measurement
3. Results
3.1. Design and Preparation of PGP Hydrogel
3.2. Mechanical Properties of PGP Hydrogel
3.3. PGP Hydrogel Strain Sensor
3.4. TENG Based on PGP Hydrogel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, Y.; Kim, M.; Jeong, S.; Hong, S.; Ko, S.H. Strain-insensitive outdoor wearable electronics by thermally robust nanofibrous radiative cooler. ACS Nano 2024, 18, 2312–2324. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Zambrano, B.L.; Woo, J.; Yoon, K.; Lee, T. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications. Adv. Mater. 2020, 32, 1902532. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, J.; Jing, S.; Xie, H.; Zhou, S. Biodegradable shape-memory ionogels as green and adaptive wearable electronics toward physical rehabilitation. Adv. Funct. Mater. 2023, 33, 2303292. [Google Scholar] [CrossRef]
- Qiu, Y.; Ashok, A.; Nguyen, C.C.; Yamauchi, Y.; Do, T.N.; Phan, H.-P. Integrated sensors for soft medical robotics. Small 2024, 20, 2308805. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, Y.-Z.; Yuan, M. Requirements, challenges, and novel ideas for wearables on power supply and energy harvesting. Nano Energy 2023, 115, 108715. [Google Scholar] [CrossRef]
- Huang, T.; Gao, B.; Li, M.; Zhou, X.; He, W.; Yan, J.; Luo, X.; Lai, W.; Li, J.; Luo, S.; et al. Cathode-free aqueous micro-battery for an all-in-one wearable system with ultralong stability. Adv. Energy Mater. 2024, 2402871. [Google Scholar] [CrossRef]
- Wu, S.; Dong, P.; Cui, X.; Zhang, Y. The strategy of circuit design for high performance nanogenerator based self-powered heart rate monitor system. Nano Energy 2022, 96, 107136. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Tang, M.; Zhang, H.; Chen, F.; Wang, T.; Li, Z.; Zhao, P. Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chem. Eng. J. 2022, 446, 136914. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Z.; Yang, Z.; Song, X. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251. [Google Scholar] [CrossRef]
- Shao, B.; Lu, T.-C.; Lu, M.-H.; Chen, Y.-T.; Wu, T.-C.; Peng, W.-C.; Ko, T.-Y.; Chen, J.-Y.; Sun, B.; Chen, C.-Y.; et al. Efficient permeable monolithic hybrid tribo-piezo-electromagnetic nanogenerator based on topological-insulator-composite. Adv. Mater. 2024, 36, 2408936. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Zhang, B.; Zhang, J.; Wang, Z.L.; Ren, K. Biocompatible poly(lactic acid)-based hybrid piezoelectric and electret nanogenerator for electronic skin applications. Adv. Funct. Mater. 2020, 30, 1908724. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Mao, R.; Zhou, L.; Yang, C.; Wu, Y.; Liu, Y.; Ji, Y. MoS2-based charge trapping layer enabled triboelectric nanogenerator with assistance of CNN-GRU model for intelligent perception. Nano Energy 2024, 127, 109753. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, D.; Ji, X.; Zhang, H.; Wu, Y.; Yang, C.; Xu, Z.; Mao, R. A superhydrophobic droplet triboelectric nanogenerator inspired by water strider for self-powered smart greenhouse. Nano Energy 2024, 129, 109985. [Google Scholar] [CrossRef]
- He, L.; Zhang, C.; Zhang, B.; Yang, O.; Yuan, W.; Zhou, L.; Zhao, Z.; Wu, Z.; Wang, J.; Wang, Z.L. A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 2022, 16, 6244–6254. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xu, M.; Shu, M.; An, J.; Ding, W.; Liu, X.; Wang, S.; Zhao, C.; Yu, H.; Wang, H.; et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat. Commun. 2022, 13, 3325. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, H.; Zhao, D.; Gao, Q.; Li, X.; Wang, J.; Wang, Z.L.; Cheng, T. Material’s selection rules for high performance triboelectric nanogenerators. Mater. Today 2023, 64, 61–71. [Google Scholar] [CrossRef]
- Lei, H.; Chen, Y.; Gao, Z.; Wen, Z.; Sun, X. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130. [Google Scholar] [CrossRef]
- Xu, L.; Zhong, S.; Yue, T.; Zhang, Z.; Lu, X.; Lin, Y.; Li, L.; Tian, Y.; Jin, T.; Zhang, Q.; et al. AIoT-enhanced health management system using soft and stretchable triboelectric sensors for human behavior monitoring. EcoMat 2024, 6, e12448. [Google Scholar] [CrossRef]
- Yeh, C.; Kao, F.-C.; Wei, P.-H.; Pal, A.; Kaswan, K.; Huang, Y.-T.; Parashar, P.; Yeh, H.-Y.; Wang, T.-W.; Tiwari, N.; et al. Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy 2022, 104, 107852. [Google Scholar] [CrossRef]
- Zhu, J.; Zeng, Y.; Luo, Y.; Jie, Y.; Lan, F.; Yang, J.; Wang, Z.L.; Cao, X. Triboelectric patch based on maxwell displacement current for human energy harvesting and eye movement monitoring. ACS Nano 2022, 16, 11884–11891. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, Y.; Wang, Y.; Zhao, Z.; Zhang, L.; Chen, H. Highly stretchable PTFE particle enhanced triboelectric nanogenerator for droplet energy harvestings. Nano Energy 2023, 118, 109000. [Google Scholar] [CrossRef]
- Yang, H.J.; Lee, J.-W.; Seo, S.H.; Jeong, B.; Lee, B.; Do, W.J.; Kim, J.H.; Cho, J.Y.; Jo, A.; Jeong, H.J.; et al. Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 2021, 86, 106083. [Google Scholar] [CrossRef]
- Wu, F.; Lan, B.; Cheng, Y.; Zhou, Y.; Hossain, G.; Grabher, G.; Shi, L.; Wang, R.; Sun, J. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. Nano Energy 2022, 101, 107588. [Google Scholar] [CrossRef]
- Jing, T.; Wang, S.; Yuan, H.; Yang, Y.; Xue, M.; Xu, B. Interfacial roughness enhanced gel/elastomer interfacial bonding enables robust and stretchable triboelectric nanogenerator for reliable energy harvesting. Small 2023, 19, 2206528. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.; Kang, H.; Kim, H.; Son, Y.; Lee, J.Y.; Shin, H.-J.; Kim, S.-W.; Cho, J.H. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv. Funct. Mater. 2018, 28, 1703778. [Google Scholar] [CrossRef]
- Ye, Y.; Ning, J.; Meng, Y.; Wang, Y.; Wang, P.; Luo, J.; Yin, A.; Ren, Z.; Liu, H.; Qi, X.; et al. Flexible and sensitive triboelectric nanogenerator strain sensors made of semi-embedded aligned silver nanowires. Adv. Electron. Mater. 2024, 2400426. [Google Scholar] [CrossRef]
- Matsunaga, M.; Hirotani, J.; Kishimoto, S.; Ohno, Y. High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy 2020, 67, 104297. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Ou, R.; Yi, X.; Liu, T.; Liu, Z.; Wang, Q. Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration. Chem. Eng. J. 2021, 426, 130722. [Google Scholar] [CrossRef]
- Zou, J.; Chen, Z.; Wang, S.-J.; Liu, Z.-H.; Liu, Y.-J.; Feng, P.-Y.; Jing, X. A flexible sensor with excellent environmental stability using well-designed encapsulation structure. Polymers 2023, 15, 2308. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, T.; Yang, M.; Gao, W.; Wu, S.; Wang, K.; Dong, F.; Dang, J.; Zhou, D.; Zhang, J. Hydrogel Pressure Distribution Sensors Based on an Imaging Strategy and Machine Learning. ACS Appl. Electron. Mater. 2021, 3, 3599–3609. [Google Scholar] [CrossRef]
- Ma, J.; Zhong, J.; Sun, F.; Liu, B.; Peng, Z.; Lian, J.; Wu, X.; Li, L.; Hao, M.; Zhang, T. Hydrogel sensors for biomedical electronics. Chem. Eng. J. 2024, 481, 148317. [Google Scholar] [CrossRef]
- Ren, Y.; Guo, J.; Liu, Z.; Sun, Z.; Wu, Y.; Liu, L.; Yang, F. Ionic liquid-based click-ionogels. Sci. Adv. 2019, 5, eaax0648. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, J.; Dickey, M.D. Emerging applications of tough ionogels. NPG Asia Mater. 2023, 15, 66. [Google Scholar] [CrossRef]
- Bansal, M.; Dravid, A.; Aqrawe, Z.; Montgomery, J.; Wu, Z.; Svirskis, D. Conducting polymer hydrogels for electrically responsive drug delivery. J. Control. Release 2020, 328, 192–209. [Google Scholar] [CrossRef]
- Wang, M.; Feng, X.; Wang, X.; Hu, S.; Zhang, C.; Qi, H. Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal nanoparticles. J. Mater. Chem. A 2021, 9, 24539–24547. [Google Scholar] [CrossRef]
- Chowdhury, I.F.; Shawon, M.T.A.; Alam, M.A.; Fatima, S.; Khan, A.A.; Yang, J.; Tang, Z.; Mondal, A.K. Ni2+-rich collagen/lignin composite hydrogel: Transforming industrial waste materials into flexible electronics. ACS Appl. Polym. Mater. 2024, 6, 15094–15104. [Google Scholar] [CrossRef]
- Han, Y.; Sun, M.; Lu, X.; Xu, K.; Yu, M.; Yang, H.; Yin, J. A 3D printable gelatin methacryloyl/chitosan hydrogel assembled with conductive PEDOT for neural tissue engineering. Compos. Part B Eng. 2024, 273, 111241. [Google Scholar] [CrossRef]
- Quan, Q.; Zhao, T.; Luo, Z.; Li, B.-X.; Sun, H.; Zhao, H.-Y.; Yu, Z.-Z.; Yang, D. Antifreezing, antidrying, and conductive hydrogels for electronic skin applications at ultralow temperatures. ACS Appl. Mater. Interfaces 2024, 16, 21133–21145. [Google Scholar] [CrossRef]
- Ji, H.; He, H.; Sun, J.; Lu, W.; Yu, H.; Zhu, J.; Liu, Y.; Chen, S.; Cao, H. Sensitive wearable strain sensor based on a self-doped conductive hydrogel. ACS Appl. Electron. Mater. 2024, 6, 4619–4629. [Google Scholar] [CrossRef]
- Peng, X.; Wang, W.; Yang, W.; Chen, J.; Peng, Q.; Wang, T.; Yang, D.; Wang, J.; Zhang, H.; Zeng, H. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. J. Colloid Interface Sci. 2022, 618, 111–120. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, Y.; Wang, C.; Zhou, K.; Yan, C.; Zheng, G.; Huang, J.; Dai, K.; Liu, C.; Shen, C. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2020, 76, 105035. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, K.; Xu, X.; Wang, X.; Wang, B.; Shao, C.; Sun, R. Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators. Small 2024, 20, 2305502. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liu, X.; Hua, W.; Wang, S.; Wang, S.; Yu, J.; Wang, J.; Yong, Q.; Chu, F.; Lu, C. Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator. Int. J. Biol. Macromol. 2023, 248, 125900. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yuan, W. Functionally integrated conductive organohydrogel sensor for wearable motion detection, triboelectric nanogenerator and non-contact sensing. Compos. Part A Appl. Sci. Manuf. 2023, 172, 107603. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Sun, W.; Bai, Y.; Li, Z.; Deng, Y. A controlled biodegradable triboelectric nanogenerator based on PEGDA/laponite hydrogels. ACS Appl. Mater. Interfaces 2023, 15, 12787–12796. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Wang, W.; Yang, C.; Liu, J.; Li, K.; Zhou, L.; Zhang, H.; Zhang, D. Highly Stretchable Conductive Hydrogel-Based Flexible Triboelectric Nanogenerators for Ultrasensitive Tactile Sensing. Polymers 2025, 17, 342. https://doi.org/10.3390/polym17030342
Huang S, Wang W, Yang C, Liu J, Li K, Zhou L, Zhang H, Zhang D. Highly Stretchable Conductive Hydrogel-Based Flexible Triboelectric Nanogenerators for Ultrasensitive Tactile Sensing. Polymers. 2025; 17(3):342. https://doi.org/10.3390/polym17030342
Chicago/Turabian StyleHuang, Shan, Weibin Wang, Chao Yang, Jianguo Liu, Kangshuai Li, Lina Zhou, Hao Zhang, and Dongzhi Zhang. 2025. "Highly Stretchable Conductive Hydrogel-Based Flexible Triboelectric Nanogenerators for Ultrasensitive Tactile Sensing" Polymers 17, no. 3: 342. https://doi.org/10.3390/polym17030342
APA StyleHuang, S., Wang, W., Yang, C., Liu, J., Li, K., Zhou, L., Zhang, H., & Zhang, D. (2025). Highly Stretchable Conductive Hydrogel-Based Flexible Triboelectric Nanogenerators for Ultrasensitive Tactile Sensing. Polymers, 17(3), 342. https://doi.org/10.3390/polym17030342