Effect of Infill Density on the Mechanical Properties of Natural Peek Processed by Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Properties of Natural PEEK
2.2. Manufacturing Process
Designing of 3D-Printed Specimens
- Flexural Test Specimen (ASTM D790-10) [30]: The CAD model of the flexural test specimen was designed with a length of 127 mm, a width of 12.7 mm, and a thickness of 3.2 mm. This rectangular geometry ensures that, during the test, a homogeneous distribution of stresses is generated along the cross-section, allowing for an accurate analysis of the flexural strength of the material (Figure 1 (top)).
- Compression Test Specimen (ASTM D695-15) [29]: The compression specimen was modeled as a cylinder, with a height of 25.4 mm and a diameter of 12.7 mm. This geometry allows for adequate load stability, minimizing undesirable effects, such as buckling, during testing. The cylindrical design is ideal for ensuring that the load is distributed evenly across the cross-section (Figure 1 (middle)).
- Tensile Test Specimen (ASTM D638-14, Type V) [28]: The CAD model of the tensile specimen was based on the Type V design, which is particularly useful when the amount of material is limited. This specimen has an overall length of 63.5 mm, a width of 9.53 mm at the reduced section, and a thickness of 3.18 mm. The dimensions were carefully defined to ensure that the deformation was concentrated in the reduced section, thus ensuring an accurate characterization of the PEEK properties under tension (Figure 1 (bottom)).
2.3. Experimental Setup
Setting up the Experimental Campaign
3. Results and Discussion
3.1. Mechanical Force Behavior
3.1.1. Tensile Analysis
3.1.2. Flexural Analysis
3.1.3. Bending Stresses
3.1.4. Compression Analysis and Compressive Stresses
3.2. Statistic Analysis
3.2.1. ANOVA for the Bending Test
3.2.2. ANOVA for Compression Test
3.2.3. ANOVA for the Tensile Test
- Orthopedic Prosthetics: configurations with fill density are ideal for fixation plates requiring rigidity and dimensional stability.
- Dental implants: densities of fill are more appropriate for applications that balance strength and energy absorption, such as maxillofacial prostheses.
- Lightweight medical devices: temporary devices, such as surgical guides, can be manufactured with infill densities, optimizing weight and reducing production times.
4. Conclusions
- If a medical device needs to withstand small bending forces, it should be manufactured with an infill density ranging between and . An infill density of is recommended for devices undergoing significant bending.
- If the maximum tensile stresses are not required to exceed MPa, it would be sufficient to manufacture it with an infill density of .
- If the medical device is subjected to compression forces, the maximum load it must support should be estimated to establish an appropriate infill density.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maharana, T.; Sutar, A.K.; Nath, N.; Routaray, A.; Negi, Y.S.; Mohanty, B. Polyetheretherketone (PEEK) membrane for fuel cell applications. In Advanced Energy Materials; Scrivener Publishing LLC: Beverly, MA, USA, 2014; pp. 433–464. [Google Scholar]
- Tseng, J.W.; Liu, C.Y.; Yen, Y.K.; Belkner, J.; Bremicker, T.; Liu, B.H.; Sun, T.J.; Wang, A.B. Screw extrusion-based additive manufacturing of PEEK. Mater. Des. 2018, 140, 209–221. [Google Scholar] [CrossRef]
- Al Christopher, C.; da Silva, Í.G.; Pangilinan, K.D.; Chen, Q.; Caldona, E.B.; Advincula, R.C. High performance polymers for oil and gas applications. React. Funct. Polym. 2021, 162, 104878. [Google Scholar]
- Panayotov, I.V.; Orti, V.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 2016, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Martínez, J.; Farré-Lladós, M.; Cano-Batalla, J.; Cabratosa-Termes, J. Polyetheretherketone (PEEK) as a medical and dental material. A literature review. Med. Res. Arch. 2017, 5. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: An overview. Clin. Epidemiol. Glob. Health 2019, 7, 571–577. [Google Scholar] [CrossRef]
- Singh, S.; Prakash, C.; Ramakrishna, S. 3D printing of polyether-ether-ketone for biomedical applications. Eur. Polym. J. 2019, 114, 234–248. [Google Scholar] [CrossRef]
- Clavería Gracia, J.; Puértolas Rafales, J.A. PEEK: Implantes Biomédicos. Master’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2011. [Google Scholar]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for oral applications: Recent advances in mechanical and adhesive properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef]
- Wang, Y.; Müller, W.D.; Rumjahn, A.; Schmidt, F.; Schwitalla, A.D. Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters. J. Mech. Behav. Biomed. Mater. 2021, 115, 104250. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, K.; Li, Y.; Chen, F. Mechanical characterization of biocompatible PEEK by FDM. J. Manuf. Process. 2020, 56, 28–42. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plásticos—Determinación de las Propiedades en Tracción—Parte 1: Principios Generales. Organización Internacional de Normalización (ISO): Geneva, Switzerland, 2019; Volume 3.
- Moby, V.; Dupagne, L.; Fouquet, V.; Attal, J.P.; François, P.; Dursun, E. Mechanical properties of fused deposition modeling of polyetheretherketone (PEEK) and interest for dental restorations: A systematic review. Materials 2022, 15, 6801. [Google Scholar] [CrossRef]
- Li, Y.; Lou, Y. Tensile and bending strength improvements in PEEK parts using fused deposition modelling 3D printing considering multi-factor coupling. Polymers 2020, 12, 2497. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zou, B.; Xiao, H.; Ding, S.; Huang, C. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J. Mater. Process. Technol. 2019, 271, 62–74. [Google Scholar] [CrossRef]
- GB/T 1040-92; Plásticos—Determinación de las Propiedades en Tracción. Standardization Administration of China (SAC): Beijing, China, 1992.
- Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 2015, 8, 5834–5846. [Google Scholar] [CrossRef]
- Liu, G.; Hu, N.; Huang, J.; Tu, Q.; Xu, F. Experimental Investigation on the Mechanical and Dynamic Thermomechanical Properties of Polyether Ether Ketone Based on Fused Deposition Modeling. Polymers 2024, 16, 3007. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S. Effect of infill pattern and build orientation on mechanical properties of FDM printed parts: An experimental modal analysis approach. arXiv 2022, arXiv:2202.05692. [Google Scholar]
- Pulipaka, A.; Gide, K.M.; Beheshti, A.; Bagheri, Z.S. Effect of 3D printing process parameters on surface and mechanical properties of FFF-printed PEEK. J. Manuf. Process. 2023, 85, 368–386. [Google Scholar] [CrossRef]
- Dhanapal, R.; Alagumalai, V.; Shanmugam, V. Exploring the dynamic mechanical properties of fused filament fabrication printed polyetheretherketone with various infill patterns. Prog. Addit. Manuf. 2024, 1–16. [Google Scholar] [CrossRef]
- Kumar, P.; Ma, Q. Evaluation of energy absorption enhancement of additively manufactured polymer composite lattice structures. Funct. Compos. Struct. 2023, 5, 015005. [Google Scholar] [CrossRef]
- Ma, Q.; Rejab, M.; Kumar, A.P.; Fu, H.; Kumar, N.M.; Tang, J. Effect of infill pattern, density and material type of 3D printed cubic structure under quasi-static loading. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 4254–4272. [Google Scholar] [CrossRef]
- Ahmad, F.; Nimonkar, S.; Belkhode, V.; Nimonkar, P. Role of Polyetheretherketone in Prosthodontics: A Literature Review. Cureus 2024, 16, e60552. [Google Scholar] [CrossRef]
- Banerjee, M. Peek applications in restorative dentistry: A comprehensive review os uses, advantages and future prospects. Int. J. Appl. Dent. Sci. 2024, 10, 105–111. [Google Scholar] [CrossRef]
- Molinar-Díaz, J.; Parsons, A.J.; Ahmed, I.; Warrior, N.A.; Harper, L.T. Poly-Ether-Ether-Ketone (PEEK) Biomaterials and Composites: Challenges, Progress, and Opportunities. Polym. Rev. 2024, 1–39. [Google Scholar] [CrossRef]
- Win, P.P.; Moe, O.G.; Chen, D.D.S.; Peng, T.Y.; Cheng, J.H.C. A Comparative Analysis of Mechanical Properties of Polyetheretherketone (PEEK) vs. Standard Materials Used in Orthodontic Fixed Appliances: A Systematic Review. Polymers 2024, 16, 1271. [Google Scholar] [CrossRef] [PubMed]
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D695; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM Materials Standards; ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 1997.
- Dudescu, C.; Racz, L. Effects of raster orientation, infill rate and infill pattern on the mechanical properties of 3D printed materials. Acta Univ. Cibiniensis. Tech. Ser. 2017, 69, 23–30. [Google Scholar] [CrossRef]
- Akhoundi, B.; Behravesh, A.H. Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Exp. Mech. 2019, 59, 883–897. [Google Scholar] [CrossRef]
- Tanveer, M.Q.; Mishra, G.; Mishra, S.; Sharma, R. Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts-a current review. Mater. Today Proc. 2022, 62, 100–108. [Google Scholar] [CrossRef]
- ISO 179-1eU:2010; Plásticos—Determinación de las Propiedades en Impacto Charpy—Parte 1: Principios Generales. Organización Internacional de Normalización (ISO): Geneva, Switzerland, 2010.
- DIN 53765; Thermal Analysis of Plastics. Deutsches Institut für Normung (DIN): Berlin, Germany, 1994.
- Wang, Z.; Chen, X.; Chen, X.; Liang, J.; Zeng, D.; Gan, Y. Effect of moisture content in polyether-ether-ketone (PEEK) filament on 3D printed parts. Discov. Appl. Sci. 2024, 6, 394. [Google Scholar] [CrossRef]
- Herrero, T.V.V. Caracterización de Probetas de Termoplástico Fabricadas Mediante Impresión 3D. Ph.D. Thesis, Pontificia Universidad Católica de Chile, Villarrica, Chile, 2018. [Google Scholar]
- Urresta, C. Caracterización De Las Propiedades Mecánicas De Materiales Impresos Mediante La Técnica De Impresión 3d Fused Deposition Modeling (Fdm). In Trabajo de Grado Previo a la Obtención del Título de Ingeniero en Mecatrónica; Universidad Tecnica del Norte: Ibarra, Ecuador, 2020. [Google Scholar]
- Andrew, J.J.; Alhashmi, H.; Schiffer, A.; Kumar, S.; Deshpande, V.S. Energy absorption and self-sensing performance of 3D printed CF/PEEK cellular composites. Mater. Des. 2021, 208, 109863. [Google Scholar] [CrossRef]
- Duan, Y.; Du, B.; Shi, X.; Hou, B.; Li, Y. Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells. Int. J. Impact Eng. 2019, 132, 103303. [Google Scholar] [CrossRef]
- Rajendra Boopathy, V.; Sriraman, A. Energy absorbing capability of additive manufactured multi-material honeycomb structure. Rapid Prototyp. J. 2019, 25, 623–629. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Yahya, A. Effects of 3D printing parameters on mechanical properties of ABS samples. Designs 2023, 7, 136. [Google Scholar] [CrossRef]
- Samykano, M.; Selvamani, S.; Kadirgama, K.; Ngui, W.; Kanagaraj, G.; Sudhakar, K. Mechanical property of FDM printed ABS: Influence of printing parameters. Int. J. Adv. Manuf. Technol. 2019, 102, 2779–2796. [Google Scholar] [CrossRef]
- Kewalramani, N. Análisis In Vitro de la Elasticidad y la Flexión del Peek. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2018. [Google Scholar]
- Ortega Martínez, J. Aplicación de las Estructuras de PEEK Para la Confección de Prótesis CAD-CAM Implanto-Soportadas. Estudio In-Vitro. Ph.D. Thesis, Universitat Internacional de Catalunya, Barcelona, Spain, 2018. [Google Scholar]
- Hernández Bernal, E. Análisis de Prótesis Dentales de Peek Fabricadas por Inyección. Master’s Thesis, Universitat Politècnica de València (UPV), Valencia, Spain, 2021. [Google Scholar]
- Hassanpour, M.; Narongdej, P.; Alterman, N.; Moghtadernejad, S.; Barjasteh, E. Effects of Post-Processing Parameters on 3D-Printed Dental Appliances: A Review. Polymers 2024, 16, 2795. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, D.Y.; Dontsov, Y.V.; Panin, S.V.; Buslovich, D.G.; Alexenko, V.O.; Bochkareva, S.A.; Batranin, A.V.; Kosmachev, P.V. Optimization of 3D Printing Parameters of High Viscosity PEEK/30GF Composites. Polymers 2024, 16, 2601. [Google Scholar] [CrossRef]
- Dua, R.; Rashad, Z.; Spears, J.; Dunn, G.; Maxwell, M. Applications of 3d-printed peek via fused filament fabrication: A systematic review. Polymers 2021, 13, 4046. [Google Scholar] [CrossRef]
Parameters | Fixed Value |
---|---|
Nozzle diameter (mm) | 0.5 |
Filament diameter (mm) | 1.75 |
Extruder temperature (°C) | 445 |
Bed temperature (°C) | 70 |
Chamber temperature (°C) | 90 |
First layer height (mm) | 0.2 |
Brim size (mm) | 2.5 |
Max volumetric speed (mm s−1) | 45 |
Mechanical Properties | ||
---|---|---|
Property | Amount | Normative |
Tensile strength | MPa | ISO 527 [12] |
Elongation resistance | % | ISO 527 [12] |
Young’s modulus | MPa | ISO 527 [12] |
Impact resistance | kJ m2 | ISO 179-1eU [34] |
Thermal properties | ||
Melting temperature | °C | DIN 53765 [35] |
Glass transition temperature | °C | DIN 53765 [35] |
Decomposition temperature | °C |
Specimen | Infill Density | Maximum Stress | Elasticity Modulus | Yield Stress |
---|---|---|---|---|
(%) | (MPa) | (MPa) | (MPa) | |
1–7 | 40 | |||
8–14 | 70 | |||
15–21 | 100 |
Specimen | Infill Density | Maximum Stress | Elasticity Modulus |
---|---|---|---|
(%) | (MPa) | (MPa) | |
1–7 | 40 | ||
8–14 | 70 | ||
15–21 | 100 |
Specimen | Infill Density | Maximum Stress | Elasticity Modulus |
---|---|---|---|
(%) | (MPa) | (MPa) | |
1–7 | 40 | ||
8–14 | 70 | ||
15–21 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Silva, E.; Pintado-Pintado, J.A.; Moncayo-Matute, F.P.; Torres-Jara, P.B.; Moya-Loaiza, D.P. Effect of Infill Density on the Mechanical Properties of Natural Peek Processed by Additive Manufacturing. Polymers 2025, 17, 347. https://doi.org/10.3390/polym17030347
Vázquez-Silva E, Pintado-Pintado JA, Moncayo-Matute FP, Torres-Jara PB, Moya-Loaiza DP. Effect of Infill Density on the Mechanical Properties of Natural Peek Processed by Additive Manufacturing. Polymers. 2025; 17(3):347. https://doi.org/10.3390/polym17030347
Chicago/Turabian StyleVázquez-Silva, Efrén, Jonnathan Andrés Pintado-Pintado, Freddy Patricio Moncayo-Matute, Paúl Bolívar Torres-Jara, and Diana Patricia Moya-Loaiza. 2025. "Effect of Infill Density on the Mechanical Properties of Natural Peek Processed by Additive Manufacturing" Polymers 17, no. 3: 347. https://doi.org/10.3390/polym17030347
APA StyleVázquez-Silva, E., Pintado-Pintado, J. A., Moncayo-Matute, F. P., Torres-Jara, P. B., & Moya-Loaiza, D. P. (2025). Effect of Infill Density on the Mechanical Properties of Natural Peek Processed by Additive Manufacturing. Polymers, 17(3), 347. https://doi.org/10.3390/polym17030347