Research on the Performance and Application of High-Performance PE Composite Modified Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Test Methods
2.2.1. Conventional Performance Test of Modified Asphalt
2.2.2. Storage Stability Test
2.2.3. Thin Film Oven Test (TFOT)
2.2.4. Microscopic Analysis of Modified Asphalt
- (1)
- Fluorescence microscopic test
- (2)
- Infrared spectrum test
2.3. Preparation Process of PE Composite Modifier and Modified Asphalt
3. Results and Discussion
3.1. Analysis of the Conventional Performance of Asphalt
3.1.1. Analysis of Penetration
3.1.2. Analysis of Softening Point
3.1.3. Analysis of Ductility
3.2. Analysis of Storage Stability of Asphalt
3.3. Analysis of Anti-Aging Performance of Asphalt
3.4. Analysis of the Microscopic Properties of Asphalt
3.4.1. Analysis of Fluorescence Microscopic Test
3.4.2. Analysis of Infrared Spectrum Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brovelli, C.; Crispino, M.; Pais, J.; Pereira, P. Using polymers to improve the rutting resistance of asphalt concrete. Constr. Build. Mater. 2015, 77, 117–123. [Google Scholar] [CrossRef]
- Barugahare, J.; Fang, H.; Mo, L.; Shu, B.; Wu, S. Test Evaluation of Rutting Performance Indicators of Asphalt Mixtures. Constr. Build. Mater. 2017, 155, 1215–1223. [Google Scholar]
- Daryaee, D.; Vamegh, M. Effect of Chemical Components of Asphalt Binders on Fatigue Resistance of Binder and Asphalt Mixtures in High Reclaimed Asphalt Pavement Mixtures. J. Test. Eval. 2022, 50, 340–352. [Google Scholar] [CrossRef]
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci. 2015, 224, 72–112. [Google Scholar] [CrossRef]
- Ali, B.; Modiri, M. Morphology, Rheology, and Physical Properties of Polymer-Modified Asphalt Binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar]
- Feng, Z.; Yu, J.; Han, J. Effects of Thermal Oxidative Ageing on Dynamic Viscosity, Tg/Dtg, Dta and Ftir of Sbs- and Sbs/Sulfur-Modified Asphalts. Constr. Build. Mater. 2011, 25, 129–137. [Google Scholar]
- Shivokhin, M.; García-Morales, M.; Partal, P.; Cuadri, A.; Gallegos, C. Rheological behaviour of polymer-modified bituminous mastics: A comparative analysis between physical and chemical modification. Constr. Build. Mater. 2011, 27, 234–240. [Google Scholar] [CrossRef]
- Dessouky, S.; Contreras, D.; Sanchez, J.; Papagiannakis, A.; Abbas, A. Influence of hindered phenol additives on the rheology of aged polymer-modified bitumen. Constr. Build. Mater. 2012, 38, 214–223. [Google Scholar] [CrossRef]
- Zhe, H.; Yan, K.; Ge, D.; Wang, M.; Li, G.; Li, H. Effect of Styrene-Butadiene-Styrene (Sbs) on Laboratory Properties of Low-Density Polyethylene (Ldpe)/Ethylene-Vinyl Acetate (Eva) Compound Modified Asphalt. J. Clean. Prod. 2022, 338, 130677.1–130677.11. [Google Scholar]
- Hong, Z.; Yan, K.; Wang, M.; You, L.; Ge, D. Low-density polyethylene/ethylene–vinyl acetate compound modified asphalt: Optimal preparation process and high-temperature rheological properties. Constr. Build. Mater. 2022, 314, 125688. [Google Scholar] [CrossRef]
- Nejad, F.M.; Gholami, M.; Naderi, K.; Rahi, M. Evaluation of rutting properties of high density polyethylene modified binders. Mater. Struct. 2014, 48, 3295–3305. [Google Scholar] [CrossRef]
- Swamy, A.K.; Rongali, U.D.; Jain, P.K. Effect of HDPEH polymer on viscoelastic properties of SBS modified asphalt. Constr. Build. Mater. 2017, 136, 230–236. [Google Scholar] [CrossRef]
- Yuetan, M.; Wang, S.; Zhou, H. Potential Alternative to Styrene-Butadiene-Styrene for Asphalt Modification Using Recycled Rubber-Plastic Blends. J. Mater. Civ. Eng. 2021, 33, 1–10. [Google Scholar]
- Williams, J. The New Plastic Economy. Ecogeneration 2017, 102, 58. [Google Scholar]
- Dong, R.; Gao, A.; Zhu, Y.; Xu, B.; Du, J.; Ping, S. The Development of a New Thermoplastic Elastomer (TPE)-Modified Asphalt. Buildings 2023, 13, 1451. [Google Scholar] [CrossRef]
- Walker, T.R.; Fequet, L. Current trends of unsustainable plastic production and micro(nano)plastic pollution. TrAC Trends Anal. Chem. 2023, 160, 116984. [Google Scholar] [CrossRef]
- Kumar, P.R.; Sreeram, A. Enhancement of Storage Stability and Theological Properties of Polyethylene (Pe) Modified Asphalt Using Cross Linking and Reactive Polymer Based Additives. Constr. Build. Mater. 2018, 188, 772–780. [Google Scholar]
- Jin, Y.; Li, H.; Chen, J.; Wang, Q.; Bao, Y.; Hou, S. Microscopic Properties of Asphalt and Polyethylene at an Extraordinary High Dosage through Molecular Dynamics Simulation. Buildings 2024, 14, 164. [Google Scholar] [CrossRef]
- Xin, X.; Yao, Z.; Shi, J.; Liang, M.; Jiang, H.; Zhang, J.; Zhang, X.; Yao, K. Rheological properties, microstructure and aging resistance of asphalt modified with CNTs/PE composites. Constr. Build. Mater. 2020, 262, 120100. [Google Scholar] [CrossRef]
- Wang, T. Study and Application of Compatibility of Waste Polyethylene-Modified Asphalt. J. Mater. Civ. Eng. 2022, 34, 04022203. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, Y.; Li, K. Using Waste Plastics as Asphalt Modifier: A Review. Materials 2021, 15, 110. [Google Scholar] [CrossRef]
- Ali, B.; Olek, J. Rheological Properties of Asphalt Binders Modified with Styrene-Butadiene-Styrene (Sbs), Ground Tire Rubber (Gtr), or Polyphosphoric Acid (Ppa). Constr. Build. Mater. 2017, 151, 464–478. [Google Scholar]
- Liang, M.; Ren, S.; Fan, W.; Xin, X.; Shi, J.; Luo, H. Rheological property and stability of polymer modified asphalt: Effect of various vinyl-acetate structures in EVA copolymers. Constr. Build. Mater. 2017, 137, 367–380. [Google Scholar] [CrossRef]
- Wei, J.; Shi, S.; Zhou, Y.; Chen, Z. Research on Performance of Sbs-Ppa and Sbr-Ppa Compound Modified Asphalts. Materials 2022, 15, 2112. [Google Scholar] [CrossRef]
- Babagoli, R.; Jalali, F.; Khabooshani, M. Performance properties of WMA modified binders and asphalt mixtures containing PPA/SBR polymer blends. J. Thermoplast. Compos. Mater. 2021, 36, 274–306. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Xin, X.; Fan, W.; Wang, H.; Jiang, H.; Zhang, J.; Yao, Z. Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: Experimental and numerical characterizations. Constr. Build. Mater. 2019, 203, 608–620. [Google Scholar] [CrossRef]
- Dalhat, M.A.; Wahhab, H.I.A.-A.; Al-Adham, K. Recycled Plastic Waste Asphalt Concrete via Mineral Aggregate Substitution and Binder Modification. J. Mater. Civ. Eng. 2019, 31, 2744. [Google Scholar] [CrossRef]
- Musab, A.; Taamneh, M.M.; Rabab, S.R. The Potential Use of Recycled Polyethylene Terephthalate (Rpet) Plastic Waste in Asphalt Binder. Int. J. Pavement Res. Technol. 2020, 14, 1–3. [Google Scholar]
- Fang, C.; Hu, J.; Zhou, S.; Wang, H.; Zhang, M.; Zhang, Y. Comparative Study of Asphalts Modified by Packaging Waste EPS and Waste PE. Polym. Technol. Eng. 2011, 50, 220–224. [Google Scholar] [CrossRef]
- Shenghua, W.; Montalvo, L. Repurposing Waste Plastics into Cleaner Asphalt Pavement Materials: A Critical Literature Review. J. Clean. Prod. 2021, 280, 124355.1–124355.26. [Google Scholar]
- Dalhat, M.A.; Al-Abdul Wahhab, H.I. Performance of Recycled Plastic Waste Modified Asphalt Binder in Saudi Arabia. Int. J. Pavement Eng. 2017, 18, 349–357. [Google Scholar] [CrossRef]
- Habib, N.Z.; Kamaruddin, I.; Napiah, M.; Tan, I.M. Rheological Properties of Polyethylene and Polypropylene Modified Bitumen. World Acad. Sci. Eng. Technol. 2011, 3, 96–100. [Google Scholar]
- Yu, R.; Fang, C.; Liu, P.; Liu, X.; Li, Y. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite. Appl. Clay Sci. 2015, 104, 1–7. [Google Scholar] [CrossRef]
- Du, Z.; Jiang, C.; Yuan, J.; Xiao, F.; Wang, J. Low temperature performance characteristics of polyethylene modified asphalts—A review. Constr. Build. Mater. 2020, 264, 120704. [Google Scholar] [CrossRef]
- Hassan, F.S.; Alamdary, Y.A.; Orang, F. Investigation of Novel Methods to Improve the Storage Stability and Low Temperature Susceptivity of Polyethylene Modified Bitumens. Pet. Coal 2010, 52. [Google Scholar]
- Guoyu, L.; Wang, F.; Ma, W.; Fortier, R.; Mu, Y.; Mao, Y.; Hou, X. Variations in Strength and Deformation of Compacted Loess Exposed to Wetting-Drying and Freeze-Thaw Cycles. Cold Reg. Sci. Technol. 2018, 151, 159–167. [Google Scholar]
- Ming, L.; Xin, X.; Fan, W.; Zhang, J.; Jiang, H.; Yao, Z. Comparison of Rheological Properties and Compatibility of Asphalt Modified with Various Polyethylene. Int. J. Pavement Eng. 2021, 22, 11–20. [Google Scholar]
- Caihua, Y.; Hu, K.; Yang, Q.; Wang, D.; Zhang, W.; Chen, G.; Kapyelata, C. Analysis of the Storage Stability Property of Carbon Nanotube/Recycled Polyethylene-Modified Asphalt Using Molecular Dynamics Simulations. Polymers 2021, 13, 1658. [Google Scholar] [CrossRef]
- Ministry of Transport of the Peoples Republic of China. Tehnical Specifications for Construction of Highway Asphalt Pavements; 196P. A4; China Communications Press: Beijing, China, 2004. [Google Scholar]
- Lu, Y.; Babak, A.; Ramez, H. Rheological, Mechanical, Microscopic, and Chemical Characterization of Asphalt Binders at Extended Aging Levels. J. Mater. Civ. Eng. 2023, 35, 04023256. [Google Scholar] [CrossRef]
- Jing, L.; Hou, D.; Shiying, D.; Guo, X.; Liu, Y.; Wu, C. An Ir and Pyrolysis-Gas Chromatography/Mass Spectrometry Microscopic Analysis on the Asphalt Aging Mechanism. J. Comput. Theor. Nanosci. 2017, 14, 859–864. [Google Scholar]
- Lv, S.; Liu, J.; Peng, X.; Jiang, M. Laboratory experiments of various bioasphalt on rheological and microscopic properties. J. Clean. Prod. 2021, 320, 128770. [Google Scholar] [CrossRef]
- Ministry of Transport of the Peoples Republic of China. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering: Jtg E20-2011; 373P. A4; China Communications Press: Beijing, China, 2011. [Google Scholar]
Project | Index | Test Result | |
---|---|---|---|
135 °C Brinell viscosity (Pa·s) | / | 0.56 | |
Penetration (0.1 mm) (25 °C, 100 g, 5 s) | 60~80 | 68.7 | |
Softening point (℃) | ≥46 | 50.0 | |
Ductility (5 cm/min,15 °C) | ≥100 | >100 | |
Ductility (5 cm/min,10 °C) | ≥20 | 80.7 | |
After TFOT | Mass loss (%) | ≤±0.8 | 0.49 |
25 °C, penetration ratio (%) | ≥61 | 65.7 | |
Flash point (°C) | ≥260 | 315 | |
Bitumen relative density (g/cm3) | Field record | 1.029 |
Properties | Unit | Value |
---|---|---|
S/B ratio | / | 30/70 |
Extender oil content | / | 0 |
Modulus at 300% | MPa | ≥2.2 |
Tensile strength | MPa | ≥16.0 |
Elongation at break | % | ≥700 |
Tensile set at break | % | ≤40 |
Melt flow rate | g/10 min | 0.5~2.5 |
Molecular weight | / | 100,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, L.; Su, Q.; Yang, X.; Lin, S.; Wang, H.; Hou, R.; Cao, D. Research on the Performance and Application of High-Performance PE Composite Modified Asphalt. Polymers 2025, 17, 346. https://doi.org/10.3390/polym17030346
Xia L, Su Q, Yang X, Lin S, Wang H, Hou R, Cao D. Research on the Performance and Application of High-Performance PE Composite Modified Asphalt. Polymers. 2025; 17(3):346. https://doi.org/10.3390/polym17030346
Chicago/Turabian StyleXia, Lei, Qidong Su, Xiaolong Yang, Shixi Lin, Haoran Wang, Rongguo Hou, and Dongwei Cao. 2025. "Research on the Performance and Application of High-Performance PE Composite Modified Asphalt" Polymers 17, no. 3: 346. https://doi.org/10.3390/polym17030346
APA StyleXia, L., Su, Q., Yang, X., Lin, S., Wang, H., Hou, R., & Cao, D. (2025). Research on the Performance and Application of High-Performance PE Composite Modified Asphalt. Polymers, 17(3), 346. https://doi.org/10.3390/polym17030346