Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Treatment of CF with Silane Coupling Agents
2.3. Preparation of PBS/CF Composites
2.4. Mechanical Property Test
2.5. Differential Scanning Calorimetry and Thermogravimetric Analysis
2.6. Scanning Electron Microscopy
2.7. Measurement of Biobased Carbon Content
2.8. Biodegradation Measurement Based on ISO 14855-2
3. Results and Discussion
3.1. Mechanical Properties of Composites
3.2. DSC Analysis
Tm(°C) | ∆Hm (J/g PBS) | Xc (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
First heating | Second heating | First heating | Second heating | First heating | Second heating | |||||||
CF | Without | With | Without | With | Without | With | Without | With | Without | With | Without | With |
content | treatment | 3% | treatment | 3% | Treatment | 3% | treatment | 3% | treatment | 3% | treatment | 3% |
Wt% | APTMS | APTMS | APTMS | APTMS | APTMS | APTMS | ||||||
0 | 114.2 | - | 112.6 | - | 65.38 | - | 64.55 | - | 59.27 | - | 58.52 | - |
10 | 112.8 | 113.4 | 112.6 | 112. 9 | 65.20 | 67.51 | 64.10 | 66.01 | 59.11 | 61.21 | 58.11 | 59.85 |
20 | 112.7 | 113.3 | 112.5 | 112.7 | 67.18 | 71.06 | 65.65 | 68.84 | 60.91 | 64.42 | 59.52 | 62.41 |
30 | 112.5 | 112.9 | 112.3 | 112.5 | 73.07 | 76.80 | 69.37 | 72.48 | 66.25 | 69.63 | 62.89 | 65.71 |
40 | 112.3 | 112.7 | 112.2 | 112.4 | 75.85 | 78.65 | 73.96 | 75.51 | 68.77 | 71.31 | 67.05 | 68.46 |
3.3. Thermogravimetry (TG) Analysis
3.4. Fracture Morphologies of PBS/CF Composites
3.5. Biobased Carbon Content of PBS/CF Composites
3.6. Biodegradability of PBS/CF Composites in Accordance with ISO 14855-2
4. Conclusions
Acknowledgements
References
- Tachibana, Y.; Giang, N.T.G.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate) by melt blending: Mechanical properties, biomass carbon ratio, and control of biodegradability. Polym. Degrad. Stab. 2010, 95, 1406–1413. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos.Part B 2009, 42, 856–873. [Google Scholar]
- Zhao, Y.; Qui, J.; Feng, H.; Zhang, M. The interfacial modification of rice straw fiber reinforced poly(butylene succinate) composites: Effect of aminosilane with different alkoxy groups. J. Appl. Polym. Sci. 2012, 125, 3211–3220. [Google Scholar] [CrossRef]
- Teramoto, N.; Urata, K.; Ozawa, K.; Shibata, M. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym. Degrad. Stab. 2004, 86, 401–409. [Google Scholar] [CrossRef]
- Liang, Z.; Pan, P.; Zhu, B.; Dong, T.; Inoue, Y. Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J. Appl. Polym. Sci. 2010, 115, 3559–3567. [Google Scholar] [CrossRef]
- Liu, L.; Yu, J.; Cheng, L.; Yang, X. Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym. Degrad. Stab. 2009, 94, 90–94. [Google Scholar] [CrossRef]
- Fan, D.; Chang, P.R.; Lin, N.; Yu, J.; Huang, J. Structure and properties of alkaline lignin-filled poly(butylene succinate) plastics. Iran. Polym. J. 2011, 20, 3–14. [Google Scholar]
- Lee, S.H.; Wang, S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos. Part A 2006, 37, 80–91. [Google Scholar] [CrossRef]
- Shih, Y.F.; Lee, W.C.; Jeng, R.J.; Huang, C.M. Water bamboo husk-reinforced poly(butylene succinate) biodegradable composites. J. Appl. Polym. Sci. 2006, 99, 188–199. [Google Scholar] [CrossRef]
- Kim, H.S.; Yang, H.S.; Kim, H.J. Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. J. Appl. Polym. Sci. 2005, 97, 1513–1521. [Google Scholar] [CrossRef]
- Flores, E.D.; Funabashi, M.; Kunioka, M. Mechanical properties and biomass carbon ratios of poly(butylene succinate) composites filled with starch and cellulose filler using furfural as plasticizer. J. Appl. Polym. Sci. 2009, 112, 3410–3417. [Google Scholar] [CrossRef]
- Ohkita, T.; Lee, S.H. Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite. J. Appl. Polym. Sci. 2005, 97, 1107–1114. [Google Scholar] [CrossRef]
- Silva, C.G.; Benaducci, D.B.; Frollini, E. Lyocell and cotton fibers as reinforcements for a thermoset polymer. Bioresources 2011, 7, 78–98. [Google Scholar]
- Raftoyiannis, I.G. Experimental testing of composite panels reinforced with cotton fibers. Open J. Compos. Mater. 2012, 2, 31–39. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 2002, 10, 19–26. [Google Scholar] [CrossRef]
- Rozman, H.D..; Tan, K.W.; Kumar, R.N.; Abubakar, A.; Mohd Ishak, Z.A.; Ismail, H. Effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites. Eur. Polym. J. 2000, 36, 1483–1494. [Google Scholar] [CrossRef]
- Peltola, H.; Laatkainen, E.; Jetsu, P. Effects of physical treatment of wood fibres on fibre morphology and biocomposite properties. Plast. Rubber Compos. 2011, 40, 86–92. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B. 2012. Available online: http://dx.doi.org/10.1016/j.compositesb.2012.04.053.
- Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Duarte, A.P.; Salah, A.B.; Gandini, A. Modification of cellulosic fibres with functionalized silanes: Development of surface properties. Int. J. Adhes. Adhes. 2004, 24, 43–54. [Google Scholar] [CrossRef]
- Castellano, M.; Gandini, A.; Fabbri, P.; Belgacem, M.N. Modification of cellulose fibres with organosilanes: Under what conditions does coupling occur? J. Colloid. Interface Sci. 2004, 273, 505–511. [Google Scholar] [CrossRef]
- Funabashi, M.; Ninomiya, F.; Flores, E.D.; Kunioka, M. Biomass carbon ratio of polymer composites measured by accelerator mass spectrometry. J. Polym. Environ. 2010, 18, 85–93. [Google Scholar] [CrossRef]
- Funabashi, M.; Ninomiya, F.; Ohara, K.; Kunioka, M. Biomass carbon ratio of biomass chemicals measured by accelerator mass spectrometry. Bull. Chem. Soc. Jpn. 2009, 82, 1538–1547. [Google Scholar] [CrossRef]
- Funabashi, M.; Kunioka, M.; Listyarini, A. Biomass carbon ratio of biobased polymer composites filled with cellulose fillers measured by accelerator mass spectrometry. WIT Trans. Built. Environ. 2008, 97, 221–230. [Google Scholar]
- Listyarini, A.; Kunioka, M.; Funabashi, M. Biodegradable poly(butylene succinate) blended with biorenewable derivatives from polysaccharides. Trans. Mater. Res. Soc. Jpn. 2008, 33, 1159–1164. [Google Scholar]
- Kunioka, M.; Ninomiya, F.; Funabashi, M. Biobased contents of organic fillers and polycaprolactone composites with cellulose fillers measured by accelerator mass spectrometry based on ASTM D6866. J. Polym. Environ. 2007, 15, 281–287. [Google Scholar] [CrossRef]
- Kunioka, M.; Ninomiya, F.; Funabashi, M. Novel evaluation method of biodegradabilities for oil-based polycaprolactone by naturally occurring radiocarbon-14 concentration using accelerator mass spectrometry based on ISO 14855–2 in controlled compost. Polym. Degrad. Stab. 2007, 92, 1279–1288. [Google Scholar] [CrossRef]
- Kunioka, M.; Inuzuka, Y.; Ninomiya, F.; Funabashi, M. Biobased contents of biodegradable poly(ε-caprolactone) composites polymerized and directly molded using aluminum triflate from caprolactone with cellulose and inorganic filler. Macromol. Biosci. 2006, 6, 517–523. [Google Scholar] [CrossRef]
- 29. Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 2: Gravimetric Measurement of Carbon Dioxide Evolved In a Laboratory-Scale Test; ISO 14855–2; ISO: Geneva, Switzerland, 2007.
- Kunioka, M.; Ninomiya, F.; Funabashi, M. Biodegradation of poly(butylene succinate) powder in a controlled compost at 58 °C evaluated by naturally-occurring Carbon 14 amounts in evolved CO2 based on the ISO 14855–2 method. Int. J. Mol. Sci. 2009, 10, 4267–4283. [Google Scholar] [CrossRef]
- Funabashi, M.; Ninomiya, F.; Kunioka, M. Biodegradability evaluation of polymers by ISO 14855–2. Int. J. Mol. Sci. 2009, 10, 3635–3654. [Google Scholar] [CrossRef]
- Standard test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples using Radiocarbon Analysis. In ASTM D6866–12; ASTM: West Conshohocken, PA, USA, 2012.
- Nakatani, H.; Iwakura, K.; Miyazaki, K.; Okazaki, N.; Terrano, M. Effect of chemical structure of silane coupling agent on interface adhesion properties of syndiotactic polypropylene/cellulose composite. J. Appl. Polym. Sci. 2011, 119, 1732–1741. [Google Scholar] [CrossRef]
- Sombatsompop, N.; Chaochanchaikul, K. Average mixing torque, tensile and impact properties, and thermal stability of poly(vinyl chloride)/sawdust composites with different silane coupling agents. J. Appl. Polym. Sci. 2005, 96, 213–221. [Google Scholar] [CrossRef]
- Correlo, V.M.; Boesel, L.F.; Pinho, E.; Costa-Pintp, A.R.; Alves da Silva, M.L.; Bhattacharya, M.; Mano, J.F.; Neves, N.M.; Reis, R.L. Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties. J. Biomed. Mater. Res. 2009, 91A, 489–504. [Google Scholar] [CrossRef] [Green Version]
- Kokta, B.V.; Dembele, F.; Daneult, C.B. Polymer Science and Technology; Carraher, J.R., Sperling, L.H., Eds.; Plenum: New York, NY, USA, 1985; Volume 33. [Google Scholar]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. The effect of silane treated-and untreated-talc on the mechanical and physic-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos. Part B 2007, 38, 367–379. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Calabia, B.P.; Ninomiya, F.; Yagi, H.; Oishi, A.; Taguchi, K.; Kunioka, M.; Funabashi, M. Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers 2013, 5, 128-141. https://doi.org/10.3390/polym5010128
Calabia BP, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, Funabashi M. Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers. 2013; 5(1):128-141. https://doi.org/10.3390/polym5010128
Chicago/Turabian StyleCalabia, Buenaventurada P., Fumi Ninomiya, Hisaaki Yagi, Akihiro Oishi, Kazuhiro Taguchi, Masao Kunioka, and Masahiro Funabashi. 2013. "Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent" Polymers 5, no. 1: 128-141. https://doi.org/10.3390/polym5010128
APA StyleCalabia, B. P., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., & Funabashi, M. (2013). Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers, 5(1), 128-141. https://doi.org/10.3390/polym5010128