High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Synthesis
2.2.1. Mesoporous Manganese Dioxide Preparation
2.2.2. Polyaniline/Mesoporous Manganese Dioxide Composites Preparation
2.3. Characterization
2.4. Preparation of Electrodes and Electrochemical Characterization
3. Results and Discussion
3.1. SEM Analysis
3.2. XRD and FTIR Analysis
3.3. TG and DTG Analysis
3.4. Electrochemical Properties Analysis
Materials | Electrolytes | Test condition | Specific capacitance (F/g) | References |
---|---|---|---|---|
PANI/MnO2 | 1 M NaNO3 pH = 1 | 2.4 mA/cm2 | 532 | [34] |
GE/PANI/MnO2 | 0.5 M Na2SO4 | 0.5 A/g | 755 | [65] |
PANI/MnO2 | 0.1 M Na2SO4 | 1 A/g | 330 | [66] |
PANI-ND-MnO2 | 0.5 M H2SO4, 0.6 M (NaPO3)6 | 1.67 mA/cm2 | 415 | [35] |
PANI-PSSMA-MnO2 | 0.5 M Na2SO4 | 100 uA/cm2 | 556 | [67] |
PANI/MnOX | 1 M NaO3 pH = 1 | 1 mA/cm2 | 588 | [68] |
PANI/MnO2 | 0.1 M Na2SO4 | 5 mA/cm2 | 715 | [69] |
PANI/MnO2 | 0.1 M Na2SO4 | 50 mV/s | 500 | [70] |
PANI/MnO2/MWCNTS | 0.5 M Na2SO4–H2SO4 | 6.5 mA/cm2 | 384 | [71] |
MnO2/PANI/MWCNT | 0.5 M Na2SO4 | 20 mV/s | 330 | [38] |
MnO2/P(An-co-OAS) | 1 M Na2SO4 | 1 A/g | 127 | [51] |
PANI/MnO2/Carbon | 0.1 M Na2SO4 | 0.2 A/g | 350 | [72] |
PANI/MnO2 | 0.1 M HCLO4 | 50 mV/s | 207 | [73] |
PANI/α-MnO2 | 1 M H2SO4 | 2 A/g | 626 | [74] |
PANI/MesoporousMnO2 | 0.5 M Na2SO4 | 9 mA/cm2 | 262 | [39] |
PANI/MesoporousMnO2 | 1 M H2SO4, 0.5 MKI | 0.5 A/g | 1580 | Present work |
1 A/g | 1142 | |||
2 A/g | 857 |
KI concentration | C (F/g) | Rs (Ω cm2) | Rct (Ω cm2) |
---|---|---|---|
1 mol/L | 1374 | 2.07 | 0.7 |
0.5 mol/L | 1580 | 1.83 | 0.4 |
0.2 mol/L | 1405 | 1.91 | 0.58 |
0.1 mol/L | 1010 | 2.3 | 0.9 |
0.05 mol/L | 571 | 2.5 | 1.03 |
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, L.; Shen, X.; Zhou, H.; Ji, Z.; Chen, K.; Zhu, G. High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chem. Eng. J. 2015, 262, 980–988. [Google Scholar] [CrossRef]
- Yuan, C.; Lin, H.; Lu, H.; Xing, E.; Zhang, Y.; Xie, B. Anodic deposition and capacitive property of nano-WO3·H2O/MnO2 composite as supercapacitor electrode material. Mater. Lett. 2015, 148, 167–170. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, P. MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials. Colloid Surf. A 2014, 444, 232–239. [Google Scholar] [CrossRef]
- Raj, A.T.; Ramanujan, K.; Thangavel, S.; Gopalakrishan, S.; Raghavan, N.; Venugopal, G. Facile synthesis of vanadium-pentoxide nanoparticles and study on their electrochemical, photocatalytic properties. J. Nanosci. Nanotechnol. 2015, 15, 3802–3808. [Google Scholar] [CrossRef]
- Gu, H.; Guo, J.; Yan, X.; Wei, H.; Zhang, X.; Liu, J.; Huang, Y.; Wei, S.; Guo, Z. Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites. Polymer 2014, 55, 4405–4419. [Google Scholar] [CrossRef]
- Guo, S.; Lu, G.; Qiu, S.; Liu, J.; Wang, X.; He, C.; Wei, H.; Yan, X.; Guo, Z. Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances. Nano Energy 2014, 9, 41–49. [Google Scholar] [CrossRef]
- Lv, P.; Feng, Y.Y.; Li, Y.; Feng, W. Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. J. Power Sources 2012, 220, 160–168. [Google Scholar] [CrossRef]
- Chen, W.; Xia, C.; Alshareef, H.N. Graphene based integrated tandem supercapacitors fabricated directly on separators. Nano Energy 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Khosrozadeh, A.; Xing, M.; Wang, Q. A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Appl. Energy 2015, 153, 87–93. [Google Scholar] [CrossRef]
- Wang, J.-G.; Kang, F.; Wei, B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 2015, 74, 51–124. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, B.; Coelho, J.; Pokle, A.; Nicolosi, V. A 2D graphene-manganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications. Electrochim. Acta 2015, 174, 696–705. [Google Scholar] [CrossRef]
- Rose, A.; Raghavan, N.; Thangavel, S.; Uma Maheswari, B.; Nair, D.P.; Venugopal, G. Investigation of cyclic voltammetry of graphene oxide/polyaniline/polyvinylidene fluoride nanofibers prepared via electrospinning. Mater. Sci. Semicond. Process. 2015, 31, 281–286. [Google Scholar] [CrossRef]
- Park, H.-S.; Lee, M.-H.; Hwang, R.Y.; Park, O.-K.; Jo, K.; Lee, T.; Kim, B.-S.; Song, H.-K. Kinetically enhanced pseudocapacitance of conducting polymer doped with reduced graphene oxide through a miscible electron transfer interface. Nano Energy 2014, 3, 1–9. [Google Scholar] [CrossRef]
- Sopčić, S.; Roković, M.K.; Mandić, Z.; Róka, A.; Inzelt, G. Mass changes accompanying the pseudocapacitance of hydrous RuO2 under different experimental conditions. Electrochim. Acta 2011, 56, 3543–3548. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, S.; Chen, Y.; Gao, P.; Zhu, C.; Yang, P.; Qi, L. Hierarchical nanosheet-based NiMoO4 nanotubes: Synthesis and high supercapacitor performance. J. Mater. Chem. A 2015, 3, 739–745. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Krishnamoorthy, K.; Radhakrishnan, S.; Kim, N.-J.; Kim, S.J. Synthesis, characterization, and electrochemical properties of CoMoO4 nanostructures. Int. J. Hydrog. Energy 2014, 39, 5186–5193. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerasubramani, G.K.; Radhakrishnan, S.; Kim, S.J. One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 2014, 251, 116–122. [Google Scholar] [CrossRef]
- Ghosh, D.; Das, C.K. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: A high-energy-density aqueous asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2015, 7, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wei, H.; Guan, L.; Guo, J.; Wang, Y.; Yan, X.; Zhang, X.; Wei, S.; Guo, Z. Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J. Mater. Chem. A 2015, 3, 14929–14941. [Google Scholar] [CrossRef]
- Wei, H.; Yan, X.; Wu, S.; Luo, Z.; Wei, S.; Guo, Z. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: Electrochromic behavior and electrochemical energy storage. J. Phys. Chem. C 2012, 116, 25052–25064. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Wang, Y.; Shi, Y.; Wong, J.I.; Yang, H.Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46–54. [Google Scholar] [CrossRef]
- Liang, J.; Tan, H.; Xiao, C.; Zhou, G.; Guo, S.; Ding, S. Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J. Power Source 2015, 285, 210–216. [Google Scholar] [CrossRef]
- Dinh, T.M.; Achour, A.; Vizireanu, S.; Dinescu, G.; Nistor, L.; Armstrong, K.; Guay, D.; Pech, D. Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 2014, 10, 288–294. [Google Scholar] [CrossRef]
- Nair, D.P.; Sakthivel, T.; Nivea, R.; Eshow, J.S.; Gunasekaran, V. Effect of surfactants on electrochemical properties of vanadium-pentoxide nanoparticles synthesized via hydrothermal method. J. Nanosci. Nanotechnol. 2015, 15, 4392–4397. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Lu, C.; Wang, X.; Tay, R.Y.; Tay, B.K. High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. ACS Nano 2015, 9, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Higgins, T.M.; McAteer, D.; Coelho, J.C.M.; Sanchez, B.M.; Gholamvand, Z.; Moriarty, G.; McEvoy, N.; Berner, N.C.; Duesberg, G.S.; Nicolosi, V.; et al. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes. ACS Nano 2014, 8, 9567–9579. [Google Scholar] [CrossRef]
- Wei, H.; He, C.; Liu, J.; Gu, H.; Wang, Y.; Yan, X.; Guo, J.; Ding, D.; Shen, N.Z.; Wang, X.; et al. Electropolymerized polypyrrole nanocomposites with cobalt oxide coated on carbon paper for electrochemical energy storage. Polymer 2015, 67, 192–199. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, H.; Arowo, M.; Yan, X.; Wu, W.; Chen, J.; Wang, Y.; Guo, Z. Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization. Phys. Chem. Chem. Phys. 2015, 17, 1498–1502. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, Y.; Guo, J.; Yan, X.; O’Connor, R.; Zhang, X.; Shen, N.Z.; Weeks, B.L.; Huang, X.; Wei, S.; et al. Electropolymerized polypyrrole nanocoatings on carbon paper for electrochemical energy storage. ChemElectroChem 2015, 2, 119–126. [Google Scholar] [CrossRef]
- Grover, S.; Goel, S.; Sahu, V.; Singh, G.; Sharma, R.K. Asymmetric supercapacitive characteristics of pani embedded holey graphene nanoribbons. ACS Sustain. Chem. Eng. 2015, 3, 1460–1469. [Google Scholar] [CrossRef]
- Lu, X.-F.; Chen, X.-Y.; Zhou, W.; Tong, Y.-X.; Li, G.-R. α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interface 2015, 7, 14843–14850. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Gu, H.; Guo, J.; Wei, S.; Guo, Z. Electropolymerized polyaniline nanocomposites from multi-walled carbon nanotubes with tuned surface functionalities for electrochemical energy storage. J. Electrochem. Soc. 2013, 160, G3038–G3045. [Google Scholar] [CrossRef]
- Zhao, Y.; Ran, W.; He, J.; Huang, Y.; Liu, Z.; Liu, W.; Tang, Y.; Zhang, L.; Gao, D.; Gao, F. High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Small 2015, 11, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.-J.; Liu, X.-X. Electrodepositions and capacitive properties of hybrid films of polyaniline and manganese dioxide with fibrous morphologies. Eur. Polym. J. 2008, 44, 219–224. [Google Scholar] [CrossRef]
- Chen, L.; Sun, L.-J.; Luan, F.; Liang, Y.; Li, Y.; Liu, X.-X. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Source 2010, 195, 3742–3747. [Google Scholar] [CrossRef]
- Kim, J.; Ju, H.; Inamdar, A.I.; Jo, Y.; Han, J.; Kim, H.; Im, H. Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes. Energy 2014, 70, 473–477. [Google Scholar] [CrossRef]
- Chen, L.; Song, Z.; Liu, G.; Qiu, J.; Yu, C.; Qin, J.; Ma, L.; Tian, F.; Liu, W. Synthesis and electrochemical performance of polyaniline–MnO2 nanowire composites for supercapacitors. J. Phys. Chem. Solids 2013, 74, 360–365. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Zou, J.; Chunder, A.; Chen, Y.; Zhai, L. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. J. Power Source 2011, 196, 565–572. [Google Scholar] [CrossRef]
- Wang, J.-G.; Yang, Y.; Huang, Z.-H.; Kang, F. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J. Power Sources 2012, 204, 236–243. [Google Scholar] [CrossRef]
- Su, L.-H.; Zhang, X.-G.; Mi, C.-H.; Gao, B.; Liu, Y. Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Phys. Chem. Chem. Phys. 2009, 11, 2195–2202. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, K.; Sun, C.; Li, Y. An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. J. Electroanal. Chem. 2007, 611, 43–50. [Google Scholar] [CrossRef]
- Lota, G.; Frackowiak, E. Striking capacitance of carbon/iodide interface. Electrochem. Commun. 2009, 11, 87–90. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Selvan, R.K.; Ponpandian, N.; Melo, J.S.; Lee, Y.S. Improved performance of electric double layer capacitor using redox additive (VO2+/VO2+) aqueous electrolyte. J. Mater. Chem. A 2013, 1, 7913–7919. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Selvan, R.K.; Melo, J.S. Redox additive/active electrolytes: A novel approach to enhance the performance of supercapacitors. J. Mater. Chem. A 2013, 1, 12386–12394. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M.; Blinova, N.V.; Konyushenko, E.N.; Reynaud, S.; Prokeš, J. The reaction of polyaniline with iodine. Polymer 2008, 49, 180–185. [Google Scholar] [CrossRef]
- Adhikari, S.; Banerji, P. Enhanced conductivity in iodine doped polyaniline thin film formed by thermal evaporation. Thin Solid Films 2010, 518, 5421–5425. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I.; Trchová, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420–1481. [Google Scholar] [CrossRef]
- Wang, S.-G.; Gong, W.-X.; Liu, X.-W.; Yao, Y.-W.; Gao, B.-Y.; Yue, Q.-Y. Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep. Purif. Technol. 2007, 58, 17–23. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, M.; Wang, H.-J.; Lei, D.; Qu, D.; Zhai, Y.-J. Adsorption of copper by aminopropyl functionalized mesoporous delta manganese dioxide from aqueous solution. Colloid Surf. A 2013, 435, 78–84. [Google Scholar] [CrossRef]
- Bian, C.; Yu, A. De-doped polyaniline nanofibres with micropores for high-rate aqueous electrochemical capacitor. Synth. Metal 2010, 160, 1579–1583. [Google Scholar] [CrossRef]
- Yang, X.-F.; Wang, G.-C.; Wang, R.-Y.; Li, X.-W. A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim. Acta 2010, 55, 5414–5419. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, D.; Wan, M.X.; Jiang, L.; Wei, Y. Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline. Adv. Mater. 2007, 19, 2092–2096. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Lu, A.-H.; Li, W.-C. Mesoporous manganese dioxide prepared under acidic conditions as high performance electrode material for hybrid supercapacitors. Microporous Mesoporous Mater. 2012, 153, 247–253. [Google Scholar] [CrossRef]
- Zhang, J.; Shu, D.; Zhang, T.; Chen, H.; Zhao, H.; Wang, Y.; Sun, Z.; Tang, S.; Fang, X.; Cao, X. Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route. J. Alloys Compd. 2012, 532, 1–9. [Google Scholar] [CrossRef]
- Gu, H.; Huang, Y.; Zhang, X.; Wang, Q.; Zhu, J.; Shao, L.; Haldolaarachchige, N.; Young, D.P.; Wei, S.; Guo, Z. Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 2012, 53, 801–809. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Haldolaarachchige, N.; Ryu, J.; Young, D.P.; Wei, S.; Guo, Z. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer 2012, 53, 2109–2120. [Google Scholar] [CrossRef]
- Vahlman, H.; Halme, J.; Korhonen, J.; Aitola, K.; Patakangas, J. On the mass transport in apparently iodine-free ionic liquid polyaniline-coated carbon black composite electrolytes in dye-sensitized solar cells. J. Phys. Chem. C 2013, 117, 11920–11929. [Google Scholar] [CrossRef]
- Lee, Y.W.; Do, K.; Lee, T.H.; Jeon, S.S.; Yoon, W.J.; Kim, C.; Ko, J.; Im, S.S. Iodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells. Synth. Metals 2013, 174, 6–13. [Google Scholar] [CrossRef]
- Ayad, M.M.; Amer, W.A.; Stejskal, J. Effect of iodine solutions on polyaniline films. Thin Solid Films 2009, 517, 5969–5973. [Google Scholar] [CrossRef]
- Barman, T.; Pal, A.R. Contradictory ageing behaviour and optical property of iodine doped and H2SO4 doped pulsed DC plasma polymerized aniline thin films. Solid State Sci. 2013, 24, 71–78. [Google Scholar] [CrossRef]
- Yelil Arasi, A.; Juliet Latha Jeyakumari, J.; Sundaresan, B.; Dhanalakshmi, V.; Anbarasan, R. The structural properties of Poly(aniline)—Analysis via FTIR spectroscopy. Spectrochim. Acta Part A 2009, 74, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Gu, H.; Guo, J.; Wei, S.; Liu, J.; Guo, Z. Silica doped nanopolyaniline with endured electrochemical energy storage and the magnetic field effects. J. Phys. Chem. C 2013, 117, 13000–13010. [Google Scholar]
- Zhang, Y.; Mo, Y. Preparation of MnO2 electrodes coated by Sb-doped SnO2 and their effect on electrochemical performance for supercapacitor. Electrochim. Acta 2014, 142, 76–83. [Google Scholar] [CrossRef]
- Zeng, X.-R.; Ko, T.-M. Structures and properties of chemically reduced polyanilines. Polymer 1998, 39, 1187–1195. [Google Scholar] [CrossRef]
- Yu, L.; Gan, M.; Ma, L.; Huang, H.; Hu, H.; Li, Y.; Tu, Y.; Ge, C.; Yang, F.; Yan, J. Facile synthesis of MnO2/polyaniline nanorod arrays based on graphene and its electrochemical performance. Synth. Metals 2014, 198, 167–174. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, L.; Zhang, S.; Yang, W. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J. Power Source 2007, 173, 1017–1023. [Google Scholar] [CrossRef]
- Liu, F.-J.; Hsu, T.-F.; Yang, C.-H. Construction of composite electrodes comprising manganese dioxide nanoparticles distributed in polyaniline–poly(4-styrene sulfonic acid-co-maleic acid) for electrochemical supercapacitor. J. Power Source 2009, 191, 678–683. [Google Scholar] [CrossRef]
- Sun, L.-J.; Liu, X.-X.; Lau, K.K.-T.; Chen, L.; Gu, W.-M. Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor. Electrochim. Acta 2008, 53, 3036–3042. [Google Scholar] [CrossRef]
- Prasad, K.R.; Miura, N. Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor. Electrochem. Solid State Lett. 2004, 7, A425–A428. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, N.; Zhou, Y. Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon. Mater. Chem. Phys. 2005, 94, 371–375. [Google Scholar] [CrossRef]
- Yuan, C.; Su, L.; Gao, B.; Zhang, X. Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes. Electrochim. Acta 2008, 53, 7039–7047. [Google Scholar] [CrossRef]
- Kim, K.-S.; Park, S.-J. Synthesis and high electrochemical performance of polyaniline/MnO2-coated multi-walled carbon nanotube-based hybrid electrodes. J. Solid State Electrochem. 2012, 16, 2751–2758. [Google Scholar] [CrossRef]
- Meng, F.; Yan, X.; Zhu, Y.; Si, P. Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property. Nanoscale Res. Lett. 2013, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jaidev; Jafri, R.I.; Mishra, A.K.; Ramaprabhu, S. Polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J. Mater. Chem. 2011, 21, 17601–17605. [Google Scholar] [CrossRef]
- Dissanayake, M.A.K.L.; Rupasinghe, W.N.S.; Seneviratne, V.A.; Thotawatthage, C.A.; Senadeera, G.K.R. Optimization of iodide ion conductivity and nano filler effect for efficiency enhancement in polyethylene oxide (PEO) based dye sensitized solar cells. Electrochim. Acta 2014, 145, 319–326. [Google Scholar] [CrossRef]
- Rawal, R.; Chawla, S.; Malik, P.; Pundir, C.S. An amperometric biosensor based on laccase immobilized onto MnO2NPs/cMWCNT/PANI modified Au electrode. Int. J. Biol. Macromol. 2012, 51, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wu, J.; Fan, L.; Xu, K.; Zhong, X.; Lin, Y.; Lin, J. Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochim. Acta 2011, 56, 6881–6886. [Google Scholar] [CrossRef]
- Wei, H.; Zhu, J.; Wu, S.; Wei, S.; Guo, Z. Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 2013, 54, 1820–1831. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Zu, L.; Jiang, Y.; Lian, H.; Liu, Y.; Li, Z.; Chen, F.; Wang, X.; Cui, X. High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte. Polymers 2015, 7, 1939-1953. https://doi.org/10.3390/polym7101491
Hu Z, Zu L, Jiang Y, Lian H, Liu Y, Li Z, Chen F, Wang X, Cui X. High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte. Polymers. 2015; 7(10):1939-1953. https://doi.org/10.3390/polym7101491
Chicago/Turabian StyleHu, Zhongkai, Lei Zu, Yanhua Jiang, Huiqin Lian, Yang Liu, Zhenzi Li, Fei Chen, Xiaodong Wang, and Xiuguo Cui. 2015. "High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte" Polymers 7, no. 10: 1939-1953. https://doi.org/10.3390/polym7101491
APA StyleHu, Z., Zu, L., Jiang, Y., Lian, H., Liu, Y., Li, Z., Chen, F., Wang, X., & Cui, X. (2015). High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte. Polymers, 7(10), 1939-1953. https://doi.org/10.3390/polym7101491