Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Standard Procedure for Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles
2.3. Addition of Polystyrene Particles after Emulsion Formation
2.4. Characterization and Measurement Methods
2.4.1. Scanning Electron Microscopy
2.4.2. Transmission Electron Microscopy
2.4.3. 29Si NMR Spectroscopy
3. Results and Discussion
3.1. Suggested Mechanism for Janus Particle Formation
3.2. Growth of the Polyphenylsiloxane Patch and Formation of Janus Particles
3.3. Formation of Polystyrene Particles with Multiple Polyphenylsiloxane Patches
3.4. Selective Assembly of Ph-TMS Emulsion Droplet and Polystyrene Particle
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Hu, J.; Zhou, S.; Sun, Y.; Fanga, X.; Wu, L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41, 4356–4378. [Google Scholar] [CrossRef] [PubMed]
- Walther, A.; Müller, A.H.E. Janus Particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113, 5194–5261. [Google Scholar] [CrossRef] [PubMed]
- Duguet, E.; Desert, A.; Perroz, A.; Ravain, S. Design and elaboration of colloidal molecules: An overview. Chem. Soc. Rev. 2011, 40, 941–960. [Google Scholar] [CrossRef] [PubMed]
- Lattuada, M.; Hatton, T.A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6, 286–308. [Google Scholar] [CrossRef]
- Walther, A.; Müller, A.H.E. Janus particles. Soft Matter 2008, 4, 663–668. [Google Scholar] [CrossRef]
- Yang, Q.; Loos, K. Janus nanoparticles inside polymeric materials: Interfacial arrangement toward functional hybrid materials. Polym. Chem. 2017, 8, 641–654. [Google Scholar] [CrossRef]
- Lee, K.J.; Yoon, J.; Lahann, J. Recent advances with anisotropic particles. Curr. Opin. Colloid Interface Sci. 2011, 16, 195–202. [Google Scholar] [CrossRef]
- Pawar, A.B.; Kretzschmar, I. Fabrication, Assembly, and Application of Patchy Particles. Macromol. Rapid Commun. 2010, 31, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; O’Reilly, R.K. Anisotropic particles with patchy, multicompartment and Janus architectures: Preparation and application. Chem. Soc. Rev. 2011, 40, 2402–2416. [Google Scholar] [CrossRef] [PubMed]
- Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E. Design and synthesis of Janus micro- and nanoparticles. J. Mater. Chem. 2005, 15, 3745–3760. [Google Scholar] [CrossRef]
- Motoyoshi, K.; Tajima, A.; Higuchi, T.; Yabu, H.; Shimomura, M. Static and Dynamic Control of Phase Separation Structures in Nanoparticles of Polymer Blends. Soft Matter 2010, 6, 1253–1257. [Google Scholar] [CrossRef]
- Hirai, Y.; Wakiya, T.; Yabu, H. Virus-like Particles Composed of Sphere-forming Polystyrene-block-poly(t-butyl acrylate) (PS-b-PtBA) and Control of Surface Morphology by Homopolymer Blending. Polym. Chem. 2017, 8, 1754–1759. [Google Scholar] [CrossRef]
- Mao, Z.; Xu, H.; Wang, D. Molecular Mimetic Self-Assembly of Colloidal Particles. Adv. Funct. Mater. 2010, 20, 1053–1074. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Breed, D.R.; Manoharan, V.N.; Feng, L.; Hollingsworth, A.D.; Weck, M.; Pine, D.J. Colloids with valence and specific directional bonding. Nature 2012, 491, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Valadares, L.F.; Tao, Y.-G.; Zacharia, N.S.; Kitaev, V.; Galembeck, F.; Kapral, R.; Ozin, G.A. Catalytic Nanomotors: Self-Propelled Sphere Dimers. Small 2010, 6, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Lahann, J. Smart Nanomaterials. ACS Nano 2008, 2, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Crowley, J.M.; Sheridon, N.K.; Romano, L. Dipole moments of gyricon balls. J. Electrostat. 2002, 55, 247–259. [Google Scholar] [CrossRef]
- Hwang, S.; Lahann, J. Differentially Degradable Janus Particles for Controlled Release Applications. Macromol. Rapid Commun. 2012, 33, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Hosein, I.D.; Ghebrebrhan, M.; Joannopoulos, J.D.; Liddell, C.M. Dimer Shape Anisotropy: A Nonspherical Colloidal Approach to Omnidirectonal Photonic Band Gaps. Langmuir 2010, 26, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Van Dorpe, P.; Ye, J. Semishells: Versatile Plasmonic Nanoparticles. ACS Nano 2011, 5, 6774–6778. [Google Scholar] [CrossRef] [PubMed]
- King, N.S.; Knight, M.W.; Large, N.; Goodman, A.M.; Nordlander, P.; Halas, N.J. Orienting Nanoantennas in Three Dimensions To Control Light Scattering Across a Dielectric Interface. Nano Lett. 2013, 13, 5997–6001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Grady, N.K.; Ayala-Orozco, C.; Halas, N.J. Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Lett. 2011, 11, 5519–5523. [Google Scholar] [CrossRef] [PubMed]
- King, N.S.; Li, Y.; Ayala-Orozco, C.; Brannan, T.; Nordlander, P.; Halas, N.J. Angle- and Spectral-Dependent Light Scattering from Plasmonic Nanocups. ACS Nano 2011, 5, 7254–7262. [Google Scholar] [CrossRef] [PubMed]
- Mirin, N.A.; Halas, N.J. Light-Bending Nanoparticles. Nano Lett. 2009, 9, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, V.N.; Elsesser, M.T.; Pine, D.J. Dense Packing and Symmetry in Small Clusters of Microspheres. Science 2003, 301, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-S.; Yi, G.-R.; Lim, J.-M.; Kim, S.-H.; Manoharan, V.N.; Pine, D.J.; Yang, S.-M. Self-Organization of Bidisperse Colloids in Water Droplets. J. Am. Chem. Soc. 2005, 127, 15968–15975. [Google Scholar] [CrossRef] [PubMed]
- Kraft, D.J.; Vlug, W.S.; van Kats, C.M.; van Blaaderen, A.; Imhof, A.; Kegel, W.K. Self-Assembly of Colloids with Liquid Protrusions. J. Am. Chem. Soc. 2009, 131, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Serra, C.A.; Chang, Z. Microfluidic-Assisted Synthesis of Polymer Particles. Chem. Eng. Technol. 2008, 31, 1099–1115. [Google Scholar] [CrossRef]
- Takei, H.; Shimizu, N. Gradient Sensitive Microscopic Probes Prepared by Gold Evaporation and Chemisorption on Latex Spheres. Langmuir 1997, 13, 1865–1868. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Ye, D.X.; Wang, G.C.; Lu, T.M. Fabrication of Si Nanocolumns and Si Square Spirals on Self-Assembled Monolayer Colloid Substrates. Int. J. Nanosci. 2002, 1, 87–97. [Google Scholar] [CrossRef]
- Snyder, C.E.; Yake, A.M.; Feick, J.D.; Velegol, D. Nanoscale Functionalization and Site-Specific Assembly of Colloids by Particle Lithography. Langmuir 2005, 21, 4813–4815. [Google Scholar] [CrossRef] [PubMed]
- Yake, A.M.; Snyder, C.E.; Velegol, D. Site-Specific Functionalization on Individual Colloids: Size Control, Stability, and Multilayers. Langmuir 2007, 23, 9069–9075. [Google Scholar] [CrossRef] [PubMed]
- Haynes, C.L.; van Duyne, R.P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Deckman, H.W.; Dunsmuir, J.H. Natural lithography. Appl. Phys. Lett. 1982, 41, 377–379. [Google Scholar] [CrossRef]
- Mann, D.; Voogt, S.; van Zandvoort, R.; Keul, H.; Möller, M.; Verheijen, M.; Nascimento-Duplat, D.; Xu, M.; Urbach, H.P.; Adam, A.J.L.; et al. Protecting patches in colloidal synthesis of Au semishells. Chem. Commun. 2017, 53, 3898–3901. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.; Chattopadhyay, S.; Pargen, S.; Verheijen, M.; Keul, H.; Buskens, P.; Möller, M. Glucose-functionalized polystyrene particles designed for selective deposition of silver on the surface. RSC Adv. 2014, 4, 62878–62881. [Google Scholar] [CrossRef]
- Mann, D.; Nascimento-Duplat, D.; Keul, H.; Möller, M.; Verheijen, M.; Xu, M.; Urbach, H.P.; Adam, A.J.L.; Buskens, P. The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells. Plasmonics 2017, 12, 929–945. [Google Scholar] [CrossRef] [PubMed]
- Segers, M.; Arfsten, N.; Buskens, P.; Möller, M. A facile route for the synthesis of sub-micron sized hollow and multiporous organosilica spheres. RSC Adv. 2014, 4, 20673–20676. [Google Scholar] [CrossRef]
- Segers, M.; Sliepen, M.; Kraft, D.J.; Möller, M.; Buskens, P. Synthesis of sub-micron sized hollow, and nanoporous phenylsiloxanespheres through use of phenyltrimethoxysilane as surfmer: Insights into the surfactant and factors influencing the particle architecture. Colloids Surf. A 2016, 497, 378–384. [Google Scholar] [CrossRef]
- De Prado, L.A.S.; Radovanovic, E.; Pastore, H.O.; Yoshida, I.V.P.; Torriani, I.L. Poly(phenylsilsesquioxane)s: Structural and Morphological Characterization. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 1580–1589. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Brinker, C.J. Hydrolysis and Condensation of Silicates: Effect on Structure. J. Non-Cryst. Solids 1988, 100, 31–50. [Google Scholar] [CrossRef]
- Salon, M.-C.B.; Bayle, P.-A.; Abdelmouleh, M.; Boufic, S.; Belgacem, M.N. Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids Surf. A 2008, 312, 83–91. [Google Scholar] [CrossRef]
- Jermouni, T.; Smaihi, M.; Hovnanian, N. Hydrolysis and Initial Polycondensation of Phenyltrimethoxysilane and Diphenyldimethoxysilane. J. Mater. Chem. 1995, 5, 1203–1208. [Google Scholar] [CrossRef]
- Noorduin, W.L.; Grinthal, A.; Mahadevan, L.; Aizenberg, J. Rationally Designed Complex, Hierarchical Microarchitectures. Science 2013, 340, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Segers, M.; Van Zandvoort, R.; Sliepen, M.; Arfsten, N.; Verheijen, M.A.; Keul, H.; Buskens, P.; Moeller, M. A Facile and Versatile Platform Approach for the Synthesis of Sub-Micron Sized Hybrid Particles with Programmable Size, Composition and Architecture Comprising Organosiloxanes and/or Organosilsesquioxanes. Chem. Mater. 2014, 26, 5718–5724. [Google Scholar] [CrossRef]
Time (min) | 1 | 5 | 8 | 10 | 13 | 15 | 20 | 30 | 45 | 60 | 90 | 120 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Patch diameter (nm) | - | - | 352 | 358 | 330 | 358 | 363 | 371 | 367 | 368 | 364 | 368 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mann, D.; Voogt, S.; Keul, H.; Möller, M.; Verheijen, M.; Buskens, P. Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches. Polymers 2017, 9, 475. https://doi.org/10.3390/polym9100475
Mann D, Voogt S, Keul H, Möller M, Verheijen M, Buskens P. Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches. Polymers. 2017; 9(10):475. https://doi.org/10.3390/polym9100475
Chicago/Turabian StyleMann, Daniel, Stefanie Voogt, Helmut Keul, Martin Möller, Marcel Verheijen, and Pascal Buskens. 2017. "Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches" Polymers 9, no. 10: 475. https://doi.org/10.3390/polym9100475
APA StyleMann, D., Voogt, S., Keul, H., Möller, M., Verheijen, M., & Buskens, P. (2017). Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches. Polymers, 9(10), 475. https://doi.org/10.3390/polym9100475