Dielectric and Carrier Transport Properties of Silicone Rubber Degraded by Gamma Irradiation
Abstract
:1. Introduction
2. Experimental Procedure
3. Analysis of Experimental Results
4. Discussion
4.1. Influence of Degradation on the Dielectric Constant at High Frequencies
4.2. Influence of Degradation on Ion Concentration
4.3. Influence of Degradation on Conductivity
4.4. Influence of Degradation on Trap Distribution and Its Relation with Conductivity
5. Conclusions
- The dielectric constant at high frequencies increases with an increase in irradiation time and ageing temperature. This indicates that oxidative products are formed during gamma irradiation.
- It is clearly shown that the thermal expansion coefficients can be calculated via the Clausius-Mossotti equation from the temperature dependence of the dielectric constant at high frequencies. The coefficient decreases with an increase in irradiation time and ageing temperature, indicating that the crosslinking reaction occurs dominantly during the ageing process, which is in good agreement with the results on the swelling ratio.
- The concentration of ions increases with the increase in irradiation time and ageing temperature. This is seemingly caused by the increase in bond break or chain scission, which is consistent with the decrease in infrared absorption intensity due to Si–C bonds.
- The diffusion coefficient and DC conductivity decrease at first and then increase with the increase in dose. From the viewpoint of the carrier hopping model, DC conductivity is determined by trap energy. It was found that trap energy calculated from the surface potential decay experiments can be used to interpret the variation of the DC conductivity of SiR with an increase in dose. This indicates that crosslinking is dominant at low doses and that chain scission becomes dominant at high doses.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gonzalez-Perez, G.; Burillo, G.; Ogawa, T.; Avalos-Borja, M. Grafting styrene and 2-vinylnaphthalene onto silicone rubber to improve radiation resistance. Polym. Degrad. Stab. 2012, 97, 1495–1503. [Google Scholar] [CrossRef]
- Shimada, A.; Sugimoto, M.; Kudoh, H.; Tamura, K.; Seguchi, T. Degradation mechanisms of silicone rubber (SiR) by accelerated ageing for cables of nuclear power plant. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 16–23. [Google Scholar] [CrossRef]
- Roggero, A.; Dantras, E.; Paulmier, T.; Tonon, C.; Balcon, N.; Rejsek-Riba, V.; Dagras, S.; Payan, D. Electrical behaviour of a silicone elastomer under simulated space environment. J. Phys. D 2015, 48, 135302–135310. [Google Scholar] [CrossRef]
- Verdu, J. Oxidative Ageing of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 277–319. [Google Scholar]
- Min, D.M.; Li, S.T.; Hirai, N.; Ohki, Y. Modeling of Oxidation Process and Property Changes of Ethylene-Propylene-Diene Copolymer. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 537–546. [Google Scholar] [CrossRef]
- Chaudhry, A.N.; Billingham, N.C. Characterisation and oxidative degradation of a room-temperature vulcanised poly(dimethylsiloxane) rubber. Polym. Degrad. Stab. 2001, 73, 505–510. [Google Scholar] [CrossRef]
- Ohki, Y.; Hanada, S.; Miyamoto, M.; Hirai, N.; Yang, L.Q. Aging mechanism of silicone rubber by heat and gamma-rays. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 869–872. [Google Scholar]
- Ikeno, R.; Hirai, N.; Ohki, Y. Chemiluminescence characteristics of FR-EPDM and SiR aged by concurrently-given heat and radiation. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 853–856. [Google Scholar]
- Hanada, S.; Odaka, D.; Yang, L.Q.; Hirai, N.; Ohki, Y. Non-destructive diagnosis of degradation of silicone rubber by indenter modulus and scanning probe microscopy. In Proceedings of the International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016; pp. 123–126. [Google Scholar]
- Hanada, S.; Miyamoto, M.; Hirai, N.; Yang, L.; Ohki, Y. Experimental investigation of the degradation mechanism of silicone rubber exposed to heat and gamma rays. High Volt. 2017, 2, 92–101. [Google Scholar] [CrossRef]
- Verardi, L.; Fabiani, D.; Montanari, G.C. Electrical aging markers for EPR-based low-voltage cable insulation wiring of nuclear power plants. Radiat. Phys. Chem. 2014, 94, 166–170. [Google Scholar] [CrossRef]
- Min, D.M.; Li, S.T.; Hirai, N.; Ohki, Y. Dielectric Spectroscopic Analysis of Degradation in Ethylene-Propylene-Diene Copolymer. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3620–3630. [Google Scholar] [CrossRef]
- Labouriau, A.; Cady, C.; Gill, J.; Stull, J.; Ortiz-Acosta, D.; Henderson, K.; Hartung, V.; Quintana, A.; Celina, M. Gamma irradiation and oxidative degradation of a silica-filled silicone elastomer. Polym. Degrad. Stab. 2015, 116, 62–74. [Google Scholar] [CrossRef]
- Seguchi, T.; Tamura, K.; Ohshima, T.; Shimada, A.; Kudoh, H. Degradation mechanisms of cable insulation materials during radiation–thermal ageing in radiation environment. Radiat. Phys. Chem. 2011, 80, 268–273. [Google Scholar] [CrossRef]
- Yamamoto, T.; Minakawa, T. Japan Nuclear Energy Safety Organization Final Report of the Project of Assessment of Cable Ageing for Nuclear Power Plants; JNES-SS-0903; Japan Nuclear Energy Safety Organization: Tokyo, Japan, 2009. [Google Scholar]
- Simmons, K.L.; Pardini, A.F.; Fifield, L.S.; Tedeschi, J.R.; Westman, M.P.; Jones, A.M.; Ramuhalli, P. Determining Remaining Useful Life of Aging Cables in Nucleat Power Plants—Interim Study FY13; PNNL-22812; Pacific Northwest National Laboratory: Richland, WA, USA, 2013.
- Linde, E.; Verardi, L.; Fabiani, D.; Gedde, U.W. Dielectric spectroscopy as a condition monitoring technique for cable insulation based on crosslinked polyethylene. Polym. Test. 2015, 44, 135–142. [Google Scholar] [CrossRef]
- Kortschot, R.J.; Philipse, A.P.; Erné, B.H. Debye length dependence of the anomalous dynamics of ionic double layers in a parallel plate capacitor. J. Phys. Chem. C 2014, 18, 11584–11592. [Google Scholar] [CrossRef]
- Klein, R.J.; Zhang, S.H.; Dou, S.C.; Jones, B.H.; Colby, R.H.; Runt, J. Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. J. Chem. Phys. 2006, 124, 144901–144903. [Google Scholar] [CrossRef] [PubMed]
- Masuzaki, Y.; Ohki, Y.; Kozako, M. Comparison of dielectric properties among polydicyclopentadiene resin, epoxy resin and their composites with microsized SiO2 Fillers. In Proceedings of the IEEE International Symposium on Electrical Insulating Materials (ISEIM), Niigata, Japan, 1–5 June 2014; pp. 374–377. [Google Scholar]
- Li, X.T.; Masuzaki, Y.; Tian, F.Q.; Ohki, Y. Space charge formation and charge transport in epoxy resin at varied temperatures. IEEJ Trans. Fundam. Mater. 2015, 135, 88–93. [Google Scholar] [CrossRef]
- Kao, K.C. Dielectric Phenomena in Solids; Elsevier: San Diego, CA, USA, 2004; pp. 41–323. [Google Scholar]
- Hasegawa, Y.; Takihana, J.; Ohki, Y. Estimation of thermal expansion coefficients of polymeric insulating films from temperature dependence of dielectric permittivity. Jpn. J. Appl. Phys. 2014, 53, 71501–71504. [Google Scholar] [CrossRef]
- Sidebottom, D.L. Colloquium: Understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev. Mod. Phys. 2009, 81, 999–1014. [Google Scholar] [CrossRef]
- Ishai, P.B.; Talary, M.S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: A review. Meas. Sci. Technol. 2013, 24, 102001–102021. [Google Scholar] [CrossRef]
- Diaham, S.; Locatelli, M.L. Concentration and mobility of charge carriers in thin polymers at high temperature determined by electrode polarization modeling. J. Appl. Phys. 2012, 112, 13710–13717. [Google Scholar] [CrossRef]
- Tian, F.Q.; Ohki, Y. Charge transport and electrode polarization in epoxy resin at high temperatures. J. Phys. D 2014, 47, 45311–45319. [Google Scholar] [CrossRef]
- Macdonald, J.R. Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Phys. Rev. 1953, 92, 4–17. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics II. Direct current characteristics. J. Chem. Phys. 1942, 10, 98–105. [Google Scholar] [CrossRef]
- Simmons, J.G.; Tam, M.C. Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions. Phys. Rev. B 1973, 7, 3706–3713. [Google Scholar] [CrossRef]
- Simmons, J.G.; Taylor, G.W.; Tam, M.C. Thermally stimulated currents in semiconductors and insulators having arbitrary trap distributions. Phys. Rev. B 1973, 7, 3714–3719. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhou, F.S.; Min, D.M.; Li, S.T.; Xia, R. The Energy Distribution of Trapped Charges in Polymers Based on Isothermal Surface Potential Decay Model. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1723–1732. [Google Scholar] [CrossRef]
- Huang, Y.; Min, D.M.; Li, S.T.; Li, Z.; Xie, D.R.; Wang, X.; Lin, S.J. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation. Appl. Surf. Sci. 2017, 406, 39–45. [Google Scholar] [CrossRef]
- Wintle, H.J. Decay of Surface Electric Charge in Insulators. Jpn. J. Appl. Phys. 1971, 10, 659–660. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, D.; Yan, C.; Huang, Y.; Li, S.; Ohki, Y. Dielectric and Carrier Transport Properties of Silicone Rubber Degraded by Gamma Irradiation. Polymers 2017, 9, 533. https://doi.org/10.3390/polym9100533
Min D, Yan C, Huang Y, Li S, Ohki Y. Dielectric and Carrier Transport Properties of Silicone Rubber Degraded by Gamma Irradiation. Polymers. 2017; 9(10):533. https://doi.org/10.3390/polym9100533
Chicago/Turabian StyleMin, Daomin, Chenyu Yan, Yin Huang, Shengtao Li, and Yoshimichi Ohki. 2017. "Dielectric and Carrier Transport Properties of Silicone Rubber Degraded by Gamma Irradiation" Polymers 9, no. 10: 533. https://doi.org/10.3390/polym9100533
APA StyleMin, D., Yan, C., Huang, Y., Li, S., & Ohki, Y. (2017). Dielectric and Carrier Transport Properties of Silicone Rubber Degraded by Gamma Irradiation. Polymers, 9(10), 533. https://doi.org/10.3390/polym9100533