Studying the Drug Delivery Kinetics of a Nanoporous Matrix Using a MIP-Based Thermal Sensing Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Synthesis of the Silver Nanoporous Matrix
2.4. Molecular Imprinting Procedure
2.5. Chip Preparation
2.6. Loading of Nanoporous Matrixes with Aspirin
2.7. Drug Elution Analysis
3. Results and Discussion
3.1. Surface Characterization of Ag Nanosponges
3.2. Quantification of Aspirin in PBS
3.3. Selectivity Test
3.4. Thermal Analysis of Drug Elution
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mosbach, K.; Mosbach, R. Entrapment of enzymes and microorganisms in synthetic cross-linked polymers and their application in column techniques. Acta Chem. Scand. 1966, 20, 2807–2810. [Google Scholar] [CrossRef] [PubMed]
- Sellergen, B.; Ekberg, B.; Mosbach, K. Molecular imprinting of amino acid derivatives in macroporous polymers: Demonstration of substrate- and enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives. J. Chromatogr. 1985, 347, 1–10. [Google Scholar] [CrossRef]
- Schirhagl, R.; Hall, E.W.; Fuereder, I.; Zare, R.N. Separation of bacteria with imprinted polymeric films. Analyst 2012, 137, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Vlatakis, G.; Andersson, L.I.; Müller, R.; Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Andersson, L.I.; Mosbach, K. Molecular imprinting of the coenzyme-substrate analogue N-pyridoxyl-l-phenylalaninanilide. Makromol. Chem. Rapid Commun. 1989, 10, 491–495. [Google Scholar] [CrossRef]
- Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J.S.; Piletska, E.V.; De Vargas Sansalvador, I.M.P.; Whitcombe, M.J.; Piletsky, S.A. Direct Replacement of Antibodies with Molecularly Imprinted Polymer Nanoparticles in ELISA—Development of a Novel Assay for Vancomycin. Anal. Chem. 2013, 85, 8462–8468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haupt, K.; Mosbach, K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Haupt, K. Molecularly Imprinted Polymers as Antibody and Receptor mimics for Assays, Sensors and Drug Discovery. Anal. Bioanal. Chem. 2004, 378, 1887–1897. [Google Scholar] [CrossRef] [PubMed]
- Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A. Molecular Imprinting Science and Technology: A Survey of the Literature for the Years 2004–2011. J. Mol. Recogn. 2014, 27, 297–401. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; D’Agostino, G.; Pesavento, M.; Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sens. Actuators B Chem. 2014, 191, 529–536. [Google Scholar] [CrossRef]
- Altintas, Z.; Gittens, M.; Guerreiro, A.; Thompson, K.; Walker, J.; Piletsky, S.; Tothill, I.E. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers. Anal. Chem. 2015, 87, 6801–6807. [Google Scholar] [CrossRef] [PubMed]
- Ramanaviciene, A.; Ramanavicius, A. Molecularly Imprinted Polypyrrole-Based Synthetic Receptor for Direct Detection of Bovine Leukemia Virus Glycoproteins. Biosens. Bioelectron. 2004, 20, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Lakshimi, D.; Bossi, A.; Whitcombe, M.J.; Chianella, I.; Fowler, S.A.; Subrahmanyam, S.; Piletska, E.V.; Piletsky, S.A. Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element. Anal. Chem. 2009, 81, 3576–3584. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Ren, L.; Zhao, H.; Xu, C.; Zhang, L.; Ying, Y.; Wang, H.; Lan, Y.; Roberts, M.F.; Chuang, J.H.; et al. A Molecular-Imprint Nanosensor for Ultrasensitive Detection of Proteins. Nat. Nanotechnol. 2010, 5, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, S.Z.; Lieberzeit, P.A. Recognition principle of Cu2+-imprinted polymers—Assessing interactions by combined spectroscopic and mass-sensitive measurements. Sens. Actuator B Chem. 2015, 207, 976–980. [Google Scholar] [CrossRef]
- Ratautaite, V.; Plausinaitis, D.; Baleviciute, I.; Mikoliunaite, L.; Ramanaviciene, A.; Ramanavicius, A. Characterization of Caffeine-Imprinted Polypyrrole by a Quartz Crystal Microbalance and Electrochemical Impedance Spectroscopy. Sens. Actuator B Chem. 2015, 212, 63–71. [Google Scholar] [CrossRef]
- Hayden, O.; Dickert, F.L. Selective Microorganism Detection with Cell Surface Imprinted Polymers. Adv. Mater. 2001, 13, 1480–1483. [Google Scholar] [CrossRef]
- Wackers, G.; Vandenryt, T.; Cornelis, P.; Kellens, E.; Thoelen, R.; De Ceuninck, W.; Losada Pérez, P.; van Grinsven, B.; Peeters, M.; Wagner, P. Array Formatting of the Heat-Transfer Method (HTM) for the Detection of Small Organic Molecules by Molecularly Imprinted Polymers. Sensors 2014, 14, 11016–11030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eersels, K.; van Grinsven, B.; Khorshid, M.; Somers, V.; Püttmann, C.; Stein, C.; Barth, S.; Diliën, H.; Bos, G.M.J.; Germeraad, W.T.V.; et al. Heat-Transfer-Method-Based Cell Culture Quality Assay through Cell Detection by Surface Imprinted Polymers. Langmuir 2015, 31, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Van Grinsven, B.; Eersels, K.; Akkermans, O.; Ellermann, S.; Kordek, A.; Peeters, M.; Deschaume, O.; Bartic, C.; Diliën, H.; Steen Redeker, E.; et al. Label-Free Detection of Escherichia Coli Based on Thermal Transport Through Surface Imprinted Polymers. ACS Sens. 2016, 1, 1140–1147. [Google Scholar] [CrossRef]
- Peeters, M.M.; van Grinsven, B.; Foster, C.W.; Cleij, T.J.; Banks, C.E. Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles. Molecules 2016, 21, 552. [Google Scholar] [CrossRef] [PubMed]
- Steen Redeker, E.; Eersels, K.; Akkermans, O.; Royakkers, J.; Dyson, D.; Nurekeyeva, K.; Ferrando, B.; Cornelis, P.; Peeters, M.; Wagner, P.; et al. Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers. ACS Inf. Dis. 2017, 3, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Selvolini, G.; Marrazza, G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors 2017, 17, 718. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.Q.; Zhao, X.S. Nanoporous Materials—An Overview. In Nanoporous Materials Science and Engineering; Lu, G.Q., Zhao, X.S., Eds.; Imperial College Press: London, UK, 2004; pp. 1–14. [Google Scholar]
- Fukumori, Y.; Takada, K.; Takeuchi, H. Nanoporous and Nanosize Materials for Drug Delivery Systems. In Nanomaterials for Medical Diagnosis and Therapy; Kumar, C.S.S.R., Ed.; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2007; pp. 255–306. [Google Scholar]
- Subramanian, S.; Singireddy, A.; Krishnamoorthy, K.; Rajappan, M. Nanosponges: A Novel Class of Drug Delivery System—Review. J. Pharm. Pharm. Sci. 2012, 15, 103–111. [Google Scholar]
- Cavalli, R.; Trotta, F.; Tumiatti, W. Cyclodextrin-based Nanosponges for Drug Delivery. J. Incl. Phenom. Macrocycl. Chem. 2007, 56, 209–213. [Google Scholar] [CrossRef]
- Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. Int. Ed. 2006, 45, 5974–5978. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Hertaux, D.; Kreuz, C.; Chang, J.S.; et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P.W.; Langer, R.; Farokhzad, O.C. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett. 2007, 7, 3065–3070. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ma, D.; Higgins, P.J. Analytical method selection for drug product dissolution testing. Dissolut. Technol. 2006, 13, 6–13. [Google Scholar] [CrossRef]
- Kamberi, M.; Tran, T.N. UV-visible spectroscopy as an alternative to liquid chromatography for determination of everolimus in surfactant-containing dissolution media: a useful approach based on solid-phase extraction. J. Pharm. Biomed. Anal. 2012, 70, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Jo, D.H.; Chung, S.J.; Na, H.K.; Kim, J.H.; Lee, T.G. Real-time and label-free monitoring of nanoparticle cellular uptake using capacitance-based assays. Sci. Rep. 2016, 6, 33668. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.; Atefyekta, S.; Andersson, M. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy. Int. J. Nanomed. 2015, 10, 4425–4436. [Google Scholar] [CrossRef] [PubMed]
- Miner, J.; Hoffhines, A. The Discovery of Aspirin’s Antithrombotic Effects. Tex. Heart Inst. J. 2007, 34, 179–186. [Google Scholar] [PubMed]
- Meischl, F.; Schemeth, D.; Harder, M.; Köpfle, N.; Tessadri, R.; Rainer, M. Synthesis and evaluation of a novel molecularly imprinted polymer for the selective isolation of acetylsalicylic acid from aqueous solutions. J. Enivorn. Chem. 2016, 4, 4083–4090. [Google Scholar] [CrossRef]
- Narayanan, S.; Orton, S.; Leparc, G.F.; Garcia-Rubio, L.H. Ultraviolet and visible light spectrophotometric approach to blood typing: Objective analysis by agglutination index. Transfusion 1999, 39, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.; Troost, F.J.; van Grinsven, B.; Horemans, F.; Alenus, J.; Murib, M.S.; Keszthelyi, D.; Ethirajan, A.; Thoelen, R.; Cleij, T.J.; et al. MIP-based biomimetic sensor for the electronic detection of serotonin in human blood plasma. Sens. Actuator B Chem. 2012, 171–172, 602–610. [Google Scholar] [CrossRef]
- Diliën, H.; Peeters, M.; Royakkers, J.; Harings, J.; Cornelis, P.; Wagner, P.; Steen Redeker, E.; Banks, C.E.; Eersels, K.; van Grinsven, B.; et al. Label-Free Detection of Small Organic Molecules by Molecularly Imprinted Polymer Functionalized Thermocouples: Toward In Vivo Applications. ACS Sens. 2017, 2, 583–589. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawley, C.J.; Perez-Gavilan, A.; Foley, K.S.; Lentink, S.; Welsh, H.N.; Tuijthof, G.; Steen Redeker, E.; Diliën, H.; Eersels, K.; Van Grinsven, B.; et al. Studying the Drug Delivery Kinetics of a Nanoporous Matrix Using a MIP-Based Thermal Sensing Platform. Polymers 2017, 9, 560. https://doi.org/10.3390/polym9110560
Pawley CJ, Perez-Gavilan A, Foley KS, Lentink S, Welsh HN, Tuijthof G, Steen Redeker E, Diliën H, Eersels K, Van Grinsven B, et al. Studying the Drug Delivery Kinetics of a Nanoporous Matrix Using a MIP-Based Thermal Sensing Platform. Polymers. 2017; 9(11):560. https://doi.org/10.3390/polym9110560
Chicago/Turabian StylePawley, Christopher J., Ariane Perez-Gavilan, Kaelin S. Foley, Sarah Lentink, Hannah N. Welsh, Gabrielle Tuijthof, Erik Steen Redeker, Hanne Diliën, Kasper Eersels, Bart Van Grinsven, and et al. 2017. "Studying the Drug Delivery Kinetics of a Nanoporous Matrix Using a MIP-Based Thermal Sensing Platform" Polymers 9, no. 11: 560. https://doi.org/10.3390/polym9110560
APA StylePawley, C. J., Perez-Gavilan, A., Foley, K. S., Lentink, S., Welsh, H. N., Tuijthof, G., Steen Redeker, E., Diliën, H., Eersels, K., Van Grinsven, B., & Cleij, T. J. (2017). Studying the Drug Delivery Kinetics of a Nanoporous Matrix Using a MIP-Based Thermal Sensing Platform. Polymers, 9(11), 560. https://doi.org/10.3390/polym9110560