Novel Two-Dimensional Conjugated Polymer Containing Fluorinated Bithiophene as Donor and Benzoselenodiazole as Acceptor Units with Vinyl-Terthiophene Pendants for Polymer Photovoltaic Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Instruments and Characterizations
2.3. Fabrication and Measurement of Polymer Solar Cells
2.4. Synthesis of Monomers and Polymers
2.4.1. Synthesis of 3,6-Dibromo-4-methylbenzene-1,2-diamine (2)
2.4.2. Synthesis of 4,7-Dibromo-5-methyl-2,1,3-benzoselenadiazole (3)
2.4.3. Synthesis of 4,7-Dibromo-5-(bromomethyl)benzo[c][1,2,5]selenadiazole (4)
2.4.4. Synthesis of Diisopropyl(4,7-dibromobenzo[c][1,2,5]selenadiazol-6-yl) Methylphosphonate (5)
2.4.5. Synthesis of Diisopropyl (4,7-di(Thiophen-2-yl)benzo[c][1,2,5]selenadiazol-6-yl) Methylphosphonate (7)
2.4.6. Synthesis of Diisopropyl (4,7-bis(5-Bromothiophen-2-yl)benzo[c][1,2,5]selenadiazol-6-yl) Methylphosphonate (8)
2.4.7. Synthesis of 2,5-bis(4-(2-Octyldodecyl)thiophen-2-yl)thiophene-3-carbaldehyde (11)
2.4.8. 5-((E)-2-(2,5-bis(4-(2-Octyldodecyl)thiophen-2-yl)thiophen-3-yl)vinyl)-4,7-bis(5-bromo thiophen-2-yl)benzo[c][1,2,5]selenadiazole M1
2.4.9. Synthesis of Polymer PDTBSeVTT-2TF
3. Results and Discussion
3.1. Synthesis and Physical Properties of Polymer PDTBSeVTT-2TF
3.2. Photovoltaic Properties
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gunes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666–12731. [Google Scholar] [CrossRef] [PubMed]
- Hedley, G.J.; Ruseckas, A.; Samuel, I.D.W. Light harvesting for organic photovoltaics. Chem. Rev. 2017, 117, 796–837. [Google Scholar] [CrossRef] [PubMed]
- Mazzio, K.A.; Luscombe, C.K. The future of organic photovoltaics. Chem. Soc. Rev. 2015, 44, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Mo, D.; Wang, H.; Chen, H.; Qu, S.; Chao, P.; Yang, Z.; Tian, L.; Su, Y.A.; Gao, Y.; Yang, B.; et al. Chlorination of low-band-gap polymers: Toward high-performance polymer solar cells. Chem. Mater. 2017, 29, 2819–2830. [Google Scholar] [CrossRef]
- Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 2016, 116, 7397–7457. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Dai, S.; Wu, Y.; Zhang, Q.; Wang, J.; Jiang, L.; Ling, Q.; Wei, Z.; Ma, W.; You, W.; et al. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv. Mater. 2017, 29, 1700144. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Subbiah, J.; Geraghty, P.B.; Chen, M.; Purushothaman, B.; Chen, X.; Qin, T.; Vak, D.; Scholes, F.H.; Watkins, S.E.; et al. Development of a high-performance donor-acceptor conjugated polymer: Synergy in materials and device optimization. Chem. Mater. 2016, 28, 3481–3487. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Zheng, D.; Yan, K.; Li, C.; Yu, J. Boosting organic photovoltaic performance over 11% efficiency with photoconductive fullerene interfacial modifier. Sol. RRL 2017, 1, 1–8. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J. Realizing over 10% efficiency in polymer solar cell by device optimization. Sci. China Chem. 2015, 58, 248–256. [Google Scholar] [CrossRef]
- Marrocchi, A.; Facchetti, A.; Lanari, D.; Petrucci, C.; Vaccaro, L. Environmental science to π-conjugated organic semiconductors. Energy Environ. Sci. 2016, 9, 763–786. [Google Scholar] [CrossRef]
- Keshtov, M.L.; Kuklin, S.A.; Radychev, N.A.; Nikolaev, A.Y.; Ostapov, I.E.; Krayushkin, M.M.; Konstantinov, I.O.; Koukaras, E.N.; Sharma, A.; Sharma, G.D. New low bandgap near-IR conjugated D–A copolymers for BHJ polymer solar cell applications. Phys. Chem. Chem. Phys. 2016, 18, 8389–8400. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, H.; Ye, L.; Zhao, W.; Zhang, S.; Hou, J. Dialkylthio substitution: An effective method to modulate the molecular energy levels of 2D-BDT photovoltaic polymers. ACS Appl. Mater. Interfaces 2016, 8, 3575–3583. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, M.; Zhang, Y.; Liu, Z.; Yang, Y.; Zhao, L. Recent development on narrow bandgap conjugated polymers for polymer solar cells. Polymers 2017, 9, 39. [Google Scholar] [CrossRef]
- Hwang, H.; Sin, D.H.; Kulshreshtha, C.; Moon, B.; Son, J.; Lee, J.; Kim, H.G.; Shin, J.; Joo, T.; Cho, K. Synergistic effects of an alkylthieno[3,2-b]thiophene π-bridging backbone extension on the photovoltaic performances of donor–acceptor copolymers. J. Mater. Chem. A 2017, 5, 10269–10279. [Google Scholar] [CrossRef]
- He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T.P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174–179. [Google Scholar] [CrossRef]
- Das, S.; Keum, J.K.; Browning, J.F.; Gu, G.; Yang, B.; Dyck, O.; Do, C.; Chen, W.; Chen, J.; Ivanov, L.N.; et al. Correlating high power conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures. Nanoscale 2015, 7, 15576–15583. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, N.; Chávez, P.; Ibraikulov, O.A.; Heiser, T.; Lévêque, P. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: A review. Polymers 2016, 8, 11. [Google Scholar] [CrossRef]
- Kong, R.; Xiao, Z.; Xie, F.; Jiang, J.; Ding, L. A D–A copolymer donor containing an alkylthio-substituted thieno[3,2-b]thiophene unit. New J. Chem. 2017, 41, 2895–2898. [Google Scholar] [CrossRef]
- Kawashima, K.; Fukuhara, T.; Suda, Y.; Suzuki, Y.; Koganezawa, T.; Yoshida, H.; Ohkita, H.; Osaka, I.; Takimiya, K. Implication of fluorine atom on electronic properties, ordering structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers. J. Am. Chem. Soc. 2016, 138, 10265–10275. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.W.; Jung, J.W.; Jung, E.H.; Ahn, H.; Shin, T.J.; Jo, W.H. Fluorination on both D and A units in D–A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells. Energy Environ. Sci. 2015, 8, 2427–2434. [Google Scholar] [CrossRef]
- Patra, A.; Kumar, R.; Chand, S. Selenium-containing π-conjugated polymers for organic solar cells. Isr. J. Chem. 2014, 54, 621–641. [Google Scholar] [CrossRef]
- Shaik, B.; Han, J.-H.; Song, D.J.; Kang, H.-M.; Kim, Y.B.; Park, C.E.; Lee, S.-G. Synthesis of donor–acceptor copolymer using benzoselenadiazole as acceptor for OTFT. RSC Adv. 2016, 6, 4070–4076. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, Q.; Meng, X.; Guo, X.; Su, W.; Ma, W.; Zhang, M.; Li, Y. Selenium-containing medium bandgap copolymer for bulk heterojunction polymer solar cells with high efficiency of 9.8%. Chem. Mater. 2017, 29, 4811–4818. [Google Scholar] [CrossRef]
- Zhou, E.; Cong, J.; Hashimoto, K.; Tajima, K. A benzoselenadiazole-based low band gap polymer: Synthesis and photovoltaic application. Macromolecules 2013, 46, 763–768. [Google Scholar] [CrossRef]
- Kim, J.H.; Shin, S.A.; Park, J.B.; Song, C.E.; Shin, W.S.; Yang, H.; Li, Y.; Hwang, D.H. Fluorinated benzoselenadiazole-based low-band-gap polymers for high efficiency inverted single and tandem organic photovoltaic cells. Macromolecules 2014, 47, 1613–1622. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Z.; Miao, L.; Xing, Y.; Li, C.; Chen, Y. Fluoro-benzoselenadiazole-based low band gap polymers for high efficiency organic solar cells. Polym. Chem. 2014, 5, 330–334. [Google Scholar] [CrossRef]
- Huang, Y.; Ye, L.; Wu, F.; Mei, S.; Chen, H.; Tan, S. Synthesis and photovoltaic properties of two-dimensional copolymers based on novel benzothiadiazole and quinoxaline acceptors with conjugated dithienylbenzothiadiazole pendants. J. Polym. Sci. A 2016, 54, 668–677. [Google Scholar] [CrossRef]
- Istanbulluoglu, C.; Göker, S.; Hizalan, G.; Hacioglu, S.O.; Udum, Y.A.; Yildiz, E.D.; Cirpan, A.; Toppare, L. Synthesis of a benzotriazole bearing alternating copolymer for organic photovoltaic applications. New J. Chem. 2015, 39, 6623–6630. [Google Scholar] [CrossRef]
- Wang, J.; Bao, X.; Ding, D.; Qiu, M.; Du, Z.; Wang, J.; Liu, J.; Sun, M.; Yang, R. A fluorine-induced high-performance narrow bandgap polymer based on thiadiazolo[3,4-c]pyridine for photovoltaic applications. J. Mater. Chem. A 2016, 4, 11729–11737. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Huang, Y.C.; Hsiow, C.Y.; Yang, Y.W.; Huang, C.I.; Rwei, S.P.; Wang, H.L.; Wang, L. Effect of side-chain architecture on the optical and crystalline properties of two-dimensional polythiophenes. Macromolecules 2013, 46, 5985–5997. [Google Scholar] [CrossRef]
- Galbrecht, F.; Bünnagel, T.W.; Scherf, U.; Farrell, T. Microwave-assisted preparation of semiconducting polymers. Macromol. Rapid Commun. 2007, 28, 387–394. [Google Scholar] [CrossRef]
- Cai, P.; Xu, X.; Sun, J.; Chen, J.; Cao, Y. Effects of including electron-withdrawing atoms on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene-based donor–acceptor polymers: Towards an acceptor design for efficient polymer solar cells. RSC Adv. 2017, 7, 20440–20450. [Google Scholar] [CrossRef]
- Hsiow, C.-Y.; Raja, R.; Wang, C.-Y.; Lin, Y.-H.; Yang, Y.-W.; Hsieh, Y.-J.; Rwei, S.-P.; Chiu, W.-Y.; Huang, C.-I.; Wang, L. Impact of constitution of the terthiophene–vinylene conjugated side chain on the optical and photovoltaic properties of two-dimensional polythiophenes. Phys. Chem. Chem. Phys. 2014, 16, 25111–25120. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, J.B.; Shin, S.A.; Hyun, M.H.; Hwang, D.H. Low-bandgap copolymers consisting of 2,1,3-benzoselenadiazole and carbazole derivatives with thiophene or selenophene π-bridges. Polymer 2014, 55, 3605–3613. [Google Scholar] [CrossRef]
Polymer | Yield (%) | Mw (kDa) | Mn (kDa) | PDI |
---|---|---|---|---|
PDTBSeVTT-2TF | 80 | 249.6 | 74.5 | 3.34 |
Polymer | λmax (nm) | λonset (nm) | Egopt (eV) Film e | Eonset,ox (V) | HOMO (eV) f | LUMO (eV) g | ||
---|---|---|---|---|---|---|---|---|
Solution a | Film b | Film Annealed c | Film Annealed d | |||||
PDTBSeVTT-2TF | 356, 447, 629 | 365, 451, 647 | 367, 453, 651 | 796 | 1.57 | 1.19 | −5.57 | −4.0 |
Processing Temperature | Voc (mV) | Jsc (mA/cm2) | FF (%) | PCE (%) | Rs (Ωcm2) | Rsh (Ωcm2) |
---|---|---|---|---|---|---|
50 °C | 711.25 ± 4.39 | 10.10 ± 0.22 | 62.73 ± 1.12 | 4.50 ± 0.13 (4.69) | 5.60 ± 0.49 | 0.90 ± 0.09 |
65 °C | 707.43 ± 4.98 | 10.99 ± 0.09 | 62.01 ± 2.29 | 4.82 ± 0.21 (5.11) | 5.87 ± 1.16 | 0.95 ± 0.23 |
Processing Temperatures (°C) | Blend e− Mobility | Blend h+ Mobility | h+/e− Ratio |
---|---|---|---|
µe (cm−2·V−1·s−1) | µh (cm−2·V−1·s−1) | µe/µh | |
50 | 2.02 × 10−4 | 1.92 × 10−4 | 0.95 |
65 | 2.65 × 10−4 | 3.11 × 10−4 | 1.17 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raja, R.; Luo, S.; Hsiow, C.-Y.; Rwei, S.-P.; Wang, L. Novel Two-Dimensional Conjugated Polymer Containing Fluorinated Bithiophene as Donor and Benzoselenodiazole as Acceptor Units with Vinyl-Terthiophene Pendants for Polymer Photovoltaic Cells. Polymers 2017, 9, 272. https://doi.org/10.3390/polym9070272
Raja R, Luo S, Hsiow C-Y, Rwei S-P, Wang L. Novel Two-Dimensional Conjugated Polymer Containing Fluorinated Bithiophene as Donor and Benzoselenodiazole as Acceptor Units with Vinyl-Terthiophene Pendants for Polymer Photovoltaic Cells. Polymers. 2017; 9(7):272. https://doi.org/10.3390/polym9070272
Chicago/Turabian StyleRaja, Rathinam, Shengkai Luo, Chuen-Yo Hsiow, Syang-Peng Rwei, and Leeyih Wang. 2017. "Novel Two-Dimensional Conjugated Polymer Containing Fluorinated Bithiophene as Donor and Benzoselenodiazole as Acceptor Units with Vinyl-Terthiophene Pendants for Polymer Photovoltaic Cells" Polymers 9, no. 7: 272. https://doi.org/10.3390/polym9070272
APA StyleRaja, R., Luo, S., Hsiow, C. -Y., Rwei, S. -P., & Wang, L. (2017). Novel Two-Dimensional Conjugated Polymer Containing Fluorinated Bithiophene as Donor and Benzoselenodiazole as Acceptor Units with Vinyl-Terthiophene Pendants for Polymer Photovoltaic Cells. Polymers, 9(7), 272. https://doi.org/10.3390/polym9070272