Two-Photon-Induced Microstereolithography of Chitosan-g-Oligolactides as a Function of Their Stereochemical Composition
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Copolymers Processing
2.2. Characterization of Chitosan-g-oligo(l,l-/l,d-lactide) Copolymers
2.3. Fabrication of the Hydrogels by Two Photon-Induced Microstereolithography
2.4. Characterization of the Hydrogels
3. Results and Discussion
3.1. Copolymer Characterization
3.2. Two-Photon Induced Stereolithography of the Copolymers
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Melchels, F.P.W.; Feijen, J.; Grijpma, D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010, 31, 6121–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciuciu, A.I.; Cywinski, P.J. Two-photon polymerization of hydrogels—Versatile solutions to fabricate well-defined 3D structures. RSC Adv. 2014, 4, 45504–45516. [Google Scholar] [CrossRef]
- Raimondi, M.T.; Eaton, S.M.; Nava, M.M.; Laganà, M.; Cerullo, G.; Osellame, R. Two-photon laser polymerization: From fundamentals to biomedical application in tissue engineering and regenerative medicine. J. Appl. Biomater. Biomech. 2012, 10, 55–65. [Google Scholar]
- Bobula, T.; Buffa, R.; Hermannová, M.; Kohutová, L.; Procházková, P.; Vágnerová, H.; Cepa, M.; Wolfová, L.; Zidek, O.; Velebny, V. A novel photopolymerizable derivative of hyaluronan for designed hydrogel formation. Carbohydr. Polym. 2017, 161, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Bencherif, S.A.; Srinivasan, A.; Horkay, F.; Hollinger, J.O.; Matyjaszewski, K.; Washburn, N.R. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials 2008, 29, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.; Brandt, O.; Deiwick, A.; Chichkov, B. Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study. Int. J. Bioprint. 2017, 3, 42–53. [Google Scholar] [CrossRef]
- Ng, W.L.; Yeong, W.Y.; Naing, M.W. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int. J. Bioprint. 2015, 2, 53–62. [Google Scholar] [CrossRef]
- Wang, S.; Lee, J.M.; Yeong, W.Y. Smart hydrogels for 3D bioprinting. Int. J. Bioprint. 2015, 1, 3–14. [Google Scholar] [CrossRef]
- Croisier, F.; Jerome, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef]
- Kil’deeva, N.R.; Kasatkina, M.A.; Drozdova, M.G.; Demina, T.S.; Uspenskii, S.A.; Mikhailov, S.N.; Markvicheva, E.A. Biodegradable scaffolds based on chitosan: Preparation, properties, and use for the cultivation of animal cells. Appl. Biochem. Microbiol. 2016, 52, 515–524. [Google Scholar] [CrossRef]
- Giri, T.K.; Thakur, A.; Alexander, A.; Ajazuddin, B.H.; Tripathi, D.K. Modified chitosan hydrogels as drug delivery and tissue engineering systems: Present status and applications. Acta Pharm. Sin. B 2012, 2, 439–449. [Google Scholar] [CrossRef]
- Correa, D.S.; Tayalia, P.; Cosendey, G.; Santos, D.S.; Aroca, R.F.; Mazur, E.; Mendonca, C.R. Two-photon polymerization for fabricating structures containing the biopolymer chitosan. J. Nanosci. Nanotechnol. 2009, 9, 5845–5849. [Google Scholar] [CrossRef] [PubMed]
- Kufelt, O.; El-Tamer, A.; Sehring, C.; Meißner, M.; Schlie-Wolter, S.; Chichkov, B.N. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomater. 2015, 18, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Timashev, P.S.; Demina, T.S.; Minaev, N.V.; Bardakova, K.N.; Koroleva, A.V.; Kufelt, O.A.; Chickov, B.N.; Panchenko, V.Y.; Akopova, T.A.; Bagratashvili, V.N. Fabrication of microstructured materials based on chitosan and its derivatives using two-photon polymerization. High Energy Chem. 2015, 49, 300–303. [Google Scholar] [CrossRef]
- Akopova, T.A.; Demina, T.S.; Bagratashvili, V.N.; Bardakova, K.N.; Novikov, M.M.; Selezneva, I.I.; Istomin, A.V.; Svidchenko, E.A.; Cherkaev, G.V.; Surin, N.M.; et al. Solid state synthesis of chitosan and its unsaturated derivatives for laser microfabrication of 3D scaffolds. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87. [Google Scholar] [CrossRef]
- Akopova, T.A.; Timashev, P.S.; Demina, T.S.; Bardakova, K.N.; Minaev, N.V.; Burdukovskii, V.F.; Cherkaev, G.V.; Vladimirov, L.V.; Istomin, A.V.; Svidchenko, E.A.; et al. Solid-state synthesis of unsaturated chitosan derivatives to design 3D structures through two-photon-induced polymerization. Mendeleev Commun. 2015, 25, 280–282. [Google Scholar] [CrossRef]
- Armentano, I.; Bitnis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopes-Manchado, M.A.; Kenny, J.M. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog. Polym. Sci. 2013, 38, 1720–1747. [Google Scholar] [CrossRef]
- Re, G.L.; Benali, S.; Habibi, Y.; Raquez, J.-M.; Dubois, P. Stereocomplexed PLA nanocomposites: From in situ polymerization to materials properties. Eur. Polym. J. 2014, 54, 138–150. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Demina, T.S.; Zaytseva-Zotova, D.S.; Timashev, P.S.; Bagratashvili, V.N.; Bardakova, K.N.; Sevrin, Ch.; Svidchenko, E.A.; Surin, N.M.; Markvicheva, E.A.; Grandfils, Ch.; et al. Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87. [Google Scholar] [CrossRef]
- Demina, T.S.; Zaytseva-Zotova, D.S.; Akopova, T.A.; Zelenetskii, A.N.; Markvicheva, E.A. Macroporous hydrogels based on chitosan derivatives: Preparation, characterization and in vitro evaluation. J. Appl. Polym. Sci. 2017, 134, 13. [Google Scholar] [CrossRef]
- Demina, Т.S.; Bardakova, K.N.; Svidchenko, E.A.; Minaev, N.V.; Pudovkina, G.I.; Novikov, M.M.; Butnary, D.V.; Surin, N.M.; Akopova, T.A.; Bagratashvilli, V.N.; et al. Fabrication of microstructured materials based on chitosan and d,l-lactide copolymers using laser-induced microstereolithography. High Energy Chem. 2016, 50, 389–394. [Google Scholar] [CrossRef]
- Akopova, T.A.; Zelenetskii, A.N.; Ozerin, A.N. Solid State Synthesis and Modification of Chitosan. In Focus on Chitosan Research; Ferguson, A.N., O’Neill, A.G., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 223–254. [Google Scholar]
- Breel, E. Characterizing the Micro-Mechanical Properties of Immersed Hydrogels by Nanoindentation; Technical Report; Optics11: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Duarte, M.L.; Ferreira, M.C.; Marvao, M.R.; Rocha, J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 2002, 31, 1–8. [Google Scholar] [CrossRef]
- Pan, P.; Yang, J.; Shan, G.; Bao, Y.; Weng, Z.; Cao, A.; Yazawa, K.; Inoue, Y. Temperature-variable FTIR and solid-state 13C NMR investigations on crystalline structure and molecular dynamics of polymorphic poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Macromolecules 2012, 45, 189–197. [Google Scholar] [CrossRef]
- Krikorian, V.; Pochan, D.J. Crystallization behavior of Poly(l-lactic acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules 2005, 38, 6520–6527. [Google Scholar] [CrossRef]
Sample | Components | Components Ratio, w/w | Relative Amount of the Reacted Oligolactide, wt % * | Grafting Degree, % |
---|---|---|---|---|
CLL-c | Chs-c/oligo(l,l-lactide) | 50/50 | 5.4 | 5.4 |
CLL-s | Chs-s/oligo(l,l-lactide) | 40/60 | 23.4 | 35.1 |
CLD-s | Chs-s/oligo(l,d-lactide) | 40/60 | 24.5 | 36.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demina, T.S.; Bardakova, K.N.; Minaev, N.V.; Svidchenko, E.A.; Istomin, A.V.; Goncharuk, G.P.; Vladimirov, L.V.; Grachev, A.V.; Zelenetskii, A.N.; Timashev, P.S.; et al. Two-Photon-Induced Microstereolithography of Chitosan-g-Oligolactides as a Function of Their Stereochemical Composition. Polymers 2017, 9, 302. https://doi.org/10.3390/polym9070302
Demina TS, Bardakova KN, Minaev NV, Svidchenko EA, Istomin AV, Goncharuk GP, Vladimirov LV, Grachev AV, Zelenetskii AN, Timashev PS, et al. Two-Photon-Induced Microstereolithography of Chitosan-g-Oligolactides as a Function of Their Stereochemical Composition. Polymers. 2017; 9(7):302. https://doi.org/10.3390/polym9070302
Chicago/Turabian StyleDemina, Tatiana S., Kseniia N. Bardakova, Nikita V. Minaev, Eugenia A. Svidchenko, Alexander V. Istomin, Galina P. Goncharuk, Leonid V. Vladimirov, Andrey V. Grachev, Alexander N. Zelenetskii, Peter S. Timashev, and et al. 2017. "Two-Photon-Induced Microstereolithography of Chitosan-g-Oligolactides as a Function of Their Stereochemical Composition" Polymers 9, no. 7: 302. https://doi.org/10.3390/polym9070302
APA StyleDemina, T. S., Bardakova, K. N., Minaev, N. V., Svidchenko, E. A., Istomin, A. V., Goncharuk, G. P., Vladimirov, L. V., Grachev, A. V., Zelenetskii, A. N., Timashev, P. S., & Akopova, T. A. (2017). Two-Photon-Induced Microstereolithography of Chitosan-g-Oligolactides as a Function of Their Stereochemical Composition. Polymers, 9(7), 302. https://doi.org/10.3390/polym9070302