Long Lived Photoexcitation Dynamics in π-Conjugated Polymer/PbS Quantum Dot Blended Films for Photovoltaic Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jiang, Y.; Seo, J.-W.; Seok, J.; Lee, J.-Y.; Kim, K. Roughening Conjugated Polymer Surface for Enhancing the Charge Collection Efficiency of Sequentially Deposited Polymer/Fullerene Photovoltaics. Polymers 2015, 7, 1497–1509. [Google Scholar] [CrossRef]
- Kakogianni, S.; Andreopoulou, A.K.; Kallitsis, J.K. Synthesis of Polythiophene-Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers. Polymers 2016, 8, 440. [Google Scholar] [CrossRef]
- Colbert, A.E.; Jedlicka, E.; Wu, W.; Ginger, D.S. Subpicosecond Photon-Energy-Dependent Hole Transfer from PbS Quantum Dots to Conjugated Polymers. J. Phys. Chem. Lett. 2016, 7, 5150–5155. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Yuan, J.; Yuan, H.; Jin, F.; Han, L.; Sheng, C.; Ma, W.; Zhao, H. Ultrafast Electron Transfer in Low-Band Gap Polymer/PbS Nanocrystalline Blend Films. Adv. Funct. Mater. 2015, 26, 713–721. [Google Scholar] [CrossRef]
- Firdaus, Y.; Miranti, R.; Fron, E.; Khetubol, A.; Vandenplas, E.; Cheyns, D.; Borchert, H.; Parisi, J.; Van der Auweraer, M. Charge separation dynamics at bulk heterojunctions between poly(3-hexylthiophene) and PbS quantum dots. J. Appl. Phys. 2015, 118, 055502. [Google Scholar] [CrossRef] [Green Version]
- Polman, A.; Knight, M.; Garnett, E.C.; Ehrler, B.; Sinke, W.C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, Y.; Vandenplas, E.; Khetubol, A.; Cheyns, D.; Gehlhaar, R.; Van der Auweraer, M. Charge transport and recombination in P3HT:PbS solar cells. J. Appl. Phys. 2015, 117, 095503. [Google Scholar] [CrossRef] [Green Version]
- Speirs, M.J.; Balazs, D.M.; Dirin, D.N.; Kovalenko, M.V.; Loi, M.A. Increased efficiency in pn-junction PbS QD solar cells via NaHS treatment of the p-type layer. Appl. Phys. Lett. 2017, 110, 103904. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, W.; Li, S.; Mukherjee, S.; Carpenter, J.H.; Awartani, O.; Jiao, X.; Hou, J.; Ade, H. High-Efficiency Nonfullerene Organic Solar Cell: Critical Factors that Affect Complex Multi-Length Scale Morphology and Device Performance. Adv. Energy Mater. 2017, 7, 1602000. [Google Scholar] [CrossRef]
- Zhong, H.; Ye, L.; Chen, J.-Y.; Jo, S.B.; Chueh, C.-C.; Carpenter, J.H.; Ade, H.; Jen, A.K.-Y. A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. J. Mater. Chem. A 2017, 5, 10517–10525. [Google Scholar] [CrossRef]
- El Zawawi, I.K.; El-Zahed, H.; Terra, F.S.; Ibrahim, R.S.; Mahmoud, G.M.; El-Menyawy, E.M. Structural, optical and electrical properties of PbS and PbSe quantum dot thin films. J. Mater. Sci. Mater. Electron. 2016, 27, 10070–10077. [Google Scholar]
- Nam, M.; Park, J.; Kim, S.-W.; Lee, K. Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer. J. Mater. Chem. A 2014, 2, 3978–3985. [Google Scholar] [CrossRef]
- Hines, D.A.; Kamat, P.V. Recent Advances in Quantum Dot Surface Chemistry. ACS Appl. Mater. Interfaces 2014, 6, 3041–3057. [Google Scholar] [CrossRef] [PubMed]
- Albero, J.; Clifford, J.N.; Palomares, E. Quantum dot based molecular solar cells. Coord. Chem. Rev. 2014, 53, 263–264. [Google Scholar] [CrossRef]
- Borriello, C.; Bruno, A.; Diana, R.; Di Luccio, T.; Morvillo, P.; Ricciardi, R.; Villani, F.; Minarini, C. PbS nanocrystals in hybrid systems for solar cell applications. Phys. Status Solidi A 2014, 212, 245–251. [Google Scholar] [CrossRef]
- Lim, J.; Lee, D.; Park, M.; Song, J.; Lee, S.; Kang, M.S.; Lee, C.; Char, K. Modular Fabrication of Hybrid Bulk Heterojunction Solar Cells Based on Breakwater-like CdSe Tetrapod Nanocrystal Network Infused with P3HT. J. Phys. Chem. C 2014, 118, 3942–3952. [Google Scholar] [CrossRef]
- Brown, P.R.; Kim, D.; Lunt, R.R.; Zhao, N.; Bawendi, M.G.; Grossman, J.C.; Bulović, V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. ACS Nano 2014, 8, 5863–5872. [Google Scholar] [CrossRef] [PubMed]
- Strein, E.; deQuilettes, D.W.; Hsieh, S.T.; Colbert, A.E.; Ginger, D.S. Hot Hole Transfer Increasing Polaron Yields in Hybrid Conjugated Polymer/PbS Blends. J. Phys. Chem. Lett. 2014, 5, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Kramer, I.J.; Sargent, E.H. The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chem. Rev. 2014, 114, 863–882. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, H.; Colbert, A.E.; Strein, E.; Janke, E.M.; Salvador, M.; Schlenker, C.W.; Ginger, D.S. Size-Dependent Charge Transfer Yields in Conjugated Polymer/Quantum Dot Blends. J. Phys. Chem. C 2014, 118, 5710–5715. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Yuan, J.; Wei, H.; Huang, X.; Han, L.; Wang, W.; Wang, H.; Ma, W. High-Efficiency Hybrid Solar Cells Based on Polymer/PbSxSe1-xNanocrystals Benefiting from Vertical Phase Segregation. Adv. Mater. 2013, 25, 5772–5778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ye, L.; Hou, J. Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Well-Known PBDTTT Polymers. Adv. Energy Mater. 2016, 6, 1502529. [Google Scholar] [CrossRef]
- Das, S.; Keum, J.K.; Browning, J.F.; Gu, G.; Yang, B.; Dyck, O.; Do, C.; Chen, W.; Chen, J.; Ivanov, I.; et al. Correlating high power conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures. Nanoscale 2015, 7, 15576–15583. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T.P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174–179. [Google Scholar] [CrossRef]
- Du, X.; Zeng, Q.; Jin, G.; Liu, F.; Ji, T.; Yue, Y.; Yang, Y.; Zhang, H.; Yang, B. Constructing Post-Permeation Method to Fabricate Polymer/Nanocrystals Hybrid Solar Cells with PCE Exceeding 6%. Small 2017, 13, 1603771. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Fan, B.; Zhang, S.; Li, S.; Yang, B.; Qin, Y.; Zhang, H.; Hou, J. Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Sci. China Mater. 2015, 58, 953–960. [Google Scholar] [CrossRef]
- Bin, H.; Gao, L.; Zhang, Z.-G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; et al. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 2016, 7, 13651. [Google Scholar] [CrossRef] [PubMed]
- Sarritzu, V.; Sestu, N.; Marongiu, D.; Chang, X.; Masi, S.; Rizzo, A.; Colella, S.; Quochi, F.; Saba, M.; Mura, A.; et al. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Sci. Rep. 2017, 7, 44629. [Google Scholar] [CrossRef] [PubMed]
- Hines, M.A.; Scholes, G.D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater. 2003, 15, 1844–1849. [Google Scholar] [CrossRef]
- Seo, J.; Kim, S.J.; Kim, W.J.; Singh, R.; Samoc, M.; Cartwright, A.N.; Prasad, P.N. Enhancement of the photovoltaic performance in PbS nanocrystal: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 2009, 20, 095202. [Google Scholar] [CrossRef] [PubMed]
- Firdausa, Y.; Khetubola, A.; Kudretb, S. Ligand exchange and photoluminescence quenching in organic-inorganic blends poly (3-hexylthiophene) P3HT:PbS. Photonics Sol. Energy Syst. IV 2012, 8438, 84381G. [Google Scholar]
- Tan, Z.-K.; Moghaddam, R.S.; Lai, M.L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, R.Z.; Wang, Y.C.; Sheng, C.-X.; Li, H.; Hong, W.; Tang, W.H.; Tian, C.S.; Chen, Q. Long lived photoexcitation dynamics in π-conjugated polymer and fullerene blended films. Org. Electron. 2013, 14, 2058–2064. [Google Scholar] [CrossRef]
- McDaniel, H.; Fuke, N.; Makarov, N.S.; Pietryga, J.M.; Klimov, V.I. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells. Nat. Commun. 2013, 4, 2887. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Z.; Yang, X.; Hong, W.; Wang, Y.C.; Li, H.; Li, L.; Sheng, C.-X. Excited-states spectroscopies and its magnetic field effect of π-conjugated polymer-fullerene blends with below-gap excitation. Synth. Met. 2017, 223, 132–136. [Google Scholar] [CrossRef]
- Nelson, J. Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection. Phys. Rev. B 2003, 67, 155209. [Google Scholar] [CrossRef]
- Moule, A.J.; Chang, L.; Thambidurai, C.; Vidu, R.; Stroeve, P. Hybrid solar cells: Basic principles and the role of ligands. J. Mater. Chem. 2012, 22, 2351–2368. [Google Scholar] [CrossRef]
- Yue, W.; Zhao, Y.; Shao, S.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: Effect of alkyl chain length on device performance. J. Mater. Chem. 2009, 19, 2199–2206. [Google Scholar] [CrossRef]
- Firdaus, Y.; Vandenplas, E.; Justo, Y.; Gehlhaar, R.; Cheyns, D.; Hens, Z.; Auweraer, M.V. Enhancement of the photovoltaic performance in P3HT:PbS hybrid solar cells using small size PbS quantum dots. J. Appl. Phys. 2014, 116, 094305. [Google Scholar] [CrossRef]
- Nismy, N.A.; Jayawardena, K.D.G.I.; Adikaari, A.A.D.T.; Silva, S.R.P. Photoluminescence Quenching in Carbon Nanotube-Polymer/Fullerene Films: Carbon Nanotubes as Exciton Dissociation Centres in Organic Photovoltaics. Adv. Mater. 2011, 23, 3796–3800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, X. Confinement-Dependent Below-Gap State in PbS Quantum Dot Films Probed by Continuous-Wave Photoinduced Absorption. J. Phys. Chem. B 2008, 112, 9557–9560. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, H.; Adachi, S. Optical properties of PbS. J. Appl. Phys. 1998, 83, 5997. [Google Scholar] [CrossRef]
- Jiang, X.M.; Osterbacka, R.; Korovyanko, O. Spectroscopic studies of photoexcitations in regioregular and regiorandom polythiophene films. Adv. Funct. Mater. 2002, 12, 587–597. [Google Scholar] [CrossRef]
- Sheng, C.-X.; Basel, T.; Pandit, B.; Vardeny, Z.V. Photoexcitation dynamics in polythiophene/fullerene blends for photovoltaic applications. Org. Electron. 2012, 13, 1031–1037. [Google Scholar] [CrossRef]
- Heinemann, M.D.; von Maydell, K.; Zutz, F.; Kolny-Olesiak, J.; Borchert, H.; Riedel, I.; Parisi, J. Photo-induced Charge Transfer and Relaxation of Persistent Charge Carriers in Polymer/Nanocrystal Composites for Applications in Hybrid Solar Cells. Adv. Funct. Mater. 2009, 19, 3788–3795. [Google Scholar] [CrossRef]
- Epshtein, O.; Nakhmanovich, G.; Eichen, Y.; Ehrenfreund, E. Dispersive dynamics of photoexcitations in conjugated polymers measured by photomodulation spectroscopy. Phys. Rev. B 2001, 63, 125206. [Google Scholar] [CrossRef]
- Guo, J.; Ohkita, H.; Yokoya, S.; Benten, H.; Ito, S. Bimodal Polarons and Hole Transport in Poly(3-hexylthiophene): Fullerene Blend Films. J. Am. Chem. Soc. 2010, 132, 9631–9637. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Vardeny, Z.V.; Sariciftci, N.S.; Heeger, A.J. Absorption-detected magnetic-resonance studies of photoexcitations in conjugated-polymer/C60composites. Phys. Rev. B 1996, 53, 2187–2190. [Google Scholar] [CrossRef]
- Epshtein, O.; Eichen, Y.; Ehrenfreund, E.; Wohlgenannt, M.; Vardeny, Z.V. Linear and Nonlinear Photoexcitation Dynamics in π-Conjugated Polymers. Phys. Rev. Lett. 2003, 90, 046804. [Google Scholar] [CrossRef] [PubMed]
- Greaney, M.J.; Brutchey, R.L. Ligand engineering in hybrid polymer: Nanocrystal solar cells. Mater. Today 2015, 18, 31–38. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Yan, X.; Yang, X.; Wang, Y.; Li, H.; Sheng, C. Long Lived Photoexcitation Dynamics in π-Conjugated Polymer/PbS Quantum Dot Blended Films for Photovoltaic Application. Polymers 2017, 9, 352. https://doi.org/10.3390/polym9080352
Wang R, Yan X, Yang X, Wang Y, Li H, Sheng C. Long Lived Photoexcitation Dynamics in π-Conjugated Polymer/PbS Quantum Dot Blended Films for Photovoltaic Application. Polymers. 2017; 9(8):352. https://doi.org/10.3390/polym9080352
Chicago/Turabian StyleWang, Ruizhi, Xiaoliang Yan, Xiao Yang, Yuchen Wang, Heng Li, and Chuanxiang Sheng. 2017. "Long Lived Photoexcitation Dynamics in π-Conjugated Polymer/PbS Quantum Dot Blended Films for Photovoltaic Application" Polymers 9, no. 8: 352. https://doi.org/10.3390/polym9080352
APA StyleWang, R., Yan, X., Yang, X., Wang, Y., Li, H., & Sheng, C. (2017). Long Lived Photoexcitation Dynamics in π-Conjugated Polymer/PbS Quantum Dot Blended Films for Photovoltaic Application. Polymers, 9(8), 352. https://doi.org/10.3390/polym9080352