Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics
Abstract
:1. Introduction
2. Synthesis of Functional Ethylenedioxythiophene (EDOT-ProDOT) Monomers
3. Innovative PEDOT Biopolymer Aqueous Dispersions
4. Applications of Innovative PEDOT-Based Materials
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Chiang, C.K.; Fincher, C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39, 1098–1101. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, J. Scientific Importance of Water-Processable PEDOT-PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. J. Polym. Sci. A 2017, 55, 1121–1150. [Google Scholar] [CrossRef]
- Malliaras, G.; Abidian, M.R. Organic Bioelectronic Materials and Devices. Adv. Mater. 2015, 27, 7492. [Google Scholar] [CrossRef] [PubMed]
- Berggren, M.; Richter-Dahlfors, A. Organic Bioelectronics. Adv. Mater. 2007, 19, 3201–3213. [Google Scholar] [CrossRef]
- Green, R.; Abidian, M.R. Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Adv. Mater. 2015, 27, 7620–7637. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.T.; Gabrielsson, E.O.; Tybrandt, K.; Berggren, M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016, 116, 13009–13041. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Sharma, R.C. Advances in conductive polymers. Eur. Polym. J. 1998, 34, 1053–1060. [Google Scholar] [CrossRef]
- Guimard, N.K.; Gomez, N.; Schmidt, C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007, 32, 876–921. [Google Scholar] [CrossRef]
- Rivnay, J.; Owens, R.M.; Malliaras, G.G. The Rise of Organic Bioelectronics. Chem. Mater. 2014, 26, 679–685. [Google Scholar] [CrossRef]
- Strakosas, X.; Wei, B.; Martin, D.C.; Owens, R.M.; Nilsson, O.; Simon, D.T.; Berggren, M.; Fischbach, C.; Malliaras, G.G.; Gourdon, D.; et al. Biofunctionalization of polydioxythiophene derivatives for biomedical applications. J. Mater. Chem. B 2016, 4, 4952–4968. [Google Scholar] [CrossRef]
- De Mel, A.; Jell, G.; Stevens, M.M.; Seifalian, A.M. Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review. Biomacromolecules 2008, 9, 2969–2979. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Martin, D.C. Impedance spectroscopy and nanoindentation of conducting poly(3,4-ethylenedioxythiophene) coatings on microfabricated neural prosthetic devices. J. Mater. Res. 2006, 21, 1124–1132. [Google Scholar] [CrossRef]
- Povlich, L.K.; Cho, J.C.; Leach, M.K.; Corey, J.M.; Kim, J.; Martin, D.C. Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochim. Biophys. Acta 2013, 1830, 4288–4293. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Chen, L.; Pan, J.; Hu, Y.; Li, S.; Zhao, J. Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells. Nanoscale Res. Lett. 2016, 11, 532. [Google Scholar] [CrossRef] [PubMed]
- Herland, A.; Persson, K.M.; Lundin, V.; Fahlman, M.; Berggren, M.; Jager, E.W.H.; Teixeira, A.I. Electrochemical Control of Growth Factor Presentation To Steer Neural Stem Cell Differentiation. Angew. Chem. Int. Ed. 2011, 50, 12529–12533. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Chan, H.S.O.; Yu, W.-L. Synthesis and characterization of electrically conducting copolymers of ethylenedioxythiophene and 1,3-propylenedioxythiophene with ω-functional substituents. J. Mater. Sci. Lett. 1997, 16, 809–811. [Google Scholar] [CrossRef]
- Lima, A.; Schottland, P.; Sadki, S.; Chevrot, C. Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate. Synth. Met. 1998, 93, 33–41. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, L.; Zhang, K.; Duan, X.; Xu, J.; Dong, L.; Sun, H.; Zhu, X.; Zhen, S. Synthesis and characterization of PEDOT derivative with carboxyl group and its chemo sensing application as enhanced optical materials. J. Appl. Polym. Sci. 2015, 132, 41559. [Google Scholar] [CrossRef]
- Otero, M.; Dittrich, T.; Rappich, J.; Heredia, D.A.; Fungo, F.; Durantini, E.; Otero, L. Photoinduced charge separation in organic-inorganic hybrid system: C60-containing electropolymer/CdSe-quantum dots. Electrochim. Acta 2015, 173, 316–322. [Google Scholar] [CrossRef]
- Marrikar, F.S.; Brumbach, M.; Evans, D.H.; Lebrón-Paler, A.; Pemberton, J.E.; Wysocki, R.J.; Armstrong, N.R. Modification of Indium−Tin Oxide Electrodes with Thiophene Copolymer Thin Films: Optimizing Electron Transfer to Solution Probe Molecules. Langmuir 2007, 23, 1530–1542. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.-E.; Fages, F.; Moustrou, C.; Brisset, H.; Spinelli, N.; Chaix, C.; Mandrand, B. Characterization of PEDOT film functionalized with a series of automated synthesis ferrocenyl-containing oligonucleotides. Tetrahedron 2005, 61, 3947–3952. [Google Scholar] [CrossRef]
- Mawad, D.; Artzy-Schnirman, A.; Tonkin, J.; Ramos, J.; Inal, S.; Mahat, M.M.; Darwish, N.; Zwi-Dantsis, L.; Malliaras, G.G.; Gooding, J.J.; Lauto, A.; Stevens, M.M. Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene). Chem. Mater. 2016, 28, 6080–6088. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.M.; Kantchev, E.A.B.; Yu, H.; Ying, J.Y. Conductivity Shift of Polyethylenedioxythiophenes in Aqueous Solutions from Side-Chain Charge Perturbation. Macromolecules 2007, 40, 6025–6027. [Google Scholar] [CrossRef]
- Luo, S.-C.; Sekine, J.; Zhu, B.; Zhao, H.; Nakao, A.; Yu, H.-H. Polydioxythiophene Nanodots, Nonowires, Nano-Networks, and Tubular Structures: The Effect of Functional Groups and Temperature in Template-Free Electropolymerization. ACS Nano 2012, 6, 3018–3026. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-A.; Luo, S.-C.; Zhu, B.; Chen, C.; Yamashita, Y.; Yu, H. Molecular or Nanoscale Structures? The Deciding Factor of Surface Properties on Functionalized Poly(3,4-ethylenedioxythiophene) Nanorod Arrays. Adv. Funct. Mater. 2013, 23, 3212–3219. [Google Scholar] [CrossRef]
- Su, W.; Nguyen, H.T.; Cho, M.; Son, Y.; Lee, Y. Synthesis, characterization and self-assembled film of poly(3-((2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy)propane-1-thiol) (PEDTMSHA). Synth. Met. 2010, 160, 2471–2475. [Google Scholar] [CrossRef]
- Besbes, M.; Trippé, G.; Leviallain, E.; Mazari, M.; Le Derf, F.; Perepichka, I.F.; Derdour, A.; Gorgues, A.; Sallé, M.; Roncali, J. Rapid and Efficient Post-Polymerization Functionalization of Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives on an Electrode Surface. Adv. Mater. 2001, 13, 1249–1252. [Google Scholar] [CrossRef]
- Trippé, G.; Le Derf, F.; Lyskawa, J.; Mazari, M.; Roncali, J.; Gorgues, A.; Levillain, E.; Sallé, M. Crown-Tetrathiafulvalenes Attached to a Pyrrole or an EDOT Unit: Synthesis, Electropolymerization and Recognition Properties. Chem. A Eur. J. 2004, 10, 6497–6509. [Google Scholar] [CrossRef] [PubMed]
- Godeau, G.; N’na, J.; Boutet, K.; Darmanin, T.; Guittard, F. Postfunctionalization of Azido or Alkyne Poly(3,4-ethylenedioxythiophene) Surfaces: Superhydrophobic and Parahydrophobic Surfaces. Macromol. Chem. Phys. 2016, 217, 554–561. [Google Scholar] [CrossRef]
- Godeau, G.; Ben Taher, Y.; Pujol, M.; Guittard, F.; Darmanin, T. Perfluorinated ProDOT monomers for superhydrophobic/oleophobic surfaces elaboration. J. Fluor. Chem. 2016, 191, 90–96. [Google Scholar] [CrossRef]
- Stéphan, O.; Schottland, P.; Le Gall, P.-Y.; Chevrot, C.; Mariet, C.; Carrier, M. Electrochemical behaviour of 3,4-ethylenedioxythiophene functionalized by a sulphonate group. Application to the preparation of poly(3,4-ethylenedioxythiophene) having permanent cation-exchange properties. J. Electroanal. Chem. 1998, 443, 217–226. [Google Scholar] [CrossRef]
- Lu, B.; Lu, Y.; Wen, Y.; Duan, X.; Xu, J.; Chen, S.; Zhang, L. Synthesis, Characterization, and Vitamin C Detection of a Novel L-Alanine-Modified PEDOT with Enhanced Chirality. Int. J. Electrochem. Sci. 2013, 8, 2826–2841. [Google Scholar]
- Schwendeman, I.; Gaupp, C.L.; Hancock, J.M.; Groenendaal, L.; Reynolds, J.R. Perfluoroalkanoate-Substituted PEDOT for Electrochromic Device Applications. Adv. Funct. Mater. 2003, 13, 541–547. [Google Scholar] [CrossRef]
- Wu, J.-G.; Lee, C.-Y.; Wu, S.-S.; Luo, S.-C. Ionic Liquid-Assisted Electropolymerization for Lithographical Perfluorocarbon Deposition and Hydrophobic Patterning. ACS Appl. Mater. Interfaces 2016, 8, 22688–22695. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Hernández, G.; Veloso, A.; Devaraj, S.; Mecerreyes, D.; Armand, M. PEDOT Radical Polymer with Synergetic Redox and Electrical Properties. ACS Macro Lett. 2016, 5, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; You, J.; Kim, E. Flexible Conductive Polymer Patterns from Vapor Polymerizable and Photo-Cross-Linkable EDOT. Macromolecules 2010, 43, 2322–2327. [Google Scholar] [CrossRef]
- Asplund, M.; Thaning, E.; Lundberg, J.; Sandberg-Nordqvist, A.C.; Kostyszyn, B.; Inganäs, O.; von Holst, H. Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 2009, 4, 45009. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhu, B.; Luo, S.-C.; Lin, H.-A.; Nakao, A.; Yamashita, Y.; Yu, H. Controlled Protein Absorption and Cell Adhesion on Polymer-Brush-Grafted Poly(3,4-ethylenedioxythiophene) Films. ACS Appl. Mater. Interfaces 2013, 5, 4536–4543. [Google Scholar] [CrossRef] [PubMed]
- Malmström, J.; Nieuwoudt, M.K.; Strover, L.T.; Hackett, A.; Laita, O.; Brimble, M.A.; Williams, D.E.; Travas-Sejdic, J. Grafting from Poly(3,4-ethylenedioxythiophene): A Simple Route to Versatile Electrically Addressable Surfaces. Macromolecules 2013, 46, 4955–4965. [Google Scholar] [CrossRef]
- Taleb, S.; Darmanin, T.; Guittard, F. Superhydrophobic conducting polymers with switchable water and oil repellency by voltage and ion exchange. RSC Adv. 2014, 4, 3550–3555. [Google Scholar] [CrossRef]
- Fager, E.W. Some Derivatives of 3,4-Dioxythiophene. J. Am. Chem. Soc. 1945, 67, 2217–2218. [Google Scholar] [CrossRef]
- Akoudad, S.; Roncali, J. Electrogenerated poly(thiophenes) with extremely low bandgap. Synth. Met. 1999, 101, 149. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, C.; Wang, C.; Zuo, H.; Shen, Y. 3,4-Ethylenedioxythiophene Functionalizationed with Tetrathiafulvalene: Synthesis and Selective Esterification: EDOT Functionalizationed with TTF: Synthesis and Selective Esterification. J. Heterocycl. Chem. 2014, 51, 1277–1281. [Google Scholar] [CrossRef]
- Döbbelin, M.; Pozo-Gonzalo, C.; Marcilla, R.; Blanco, R.; Segura, J.L.; Pomposo, J.A.; Mecerreyes, D. Electrochemical synthesis of PEDOT derivatives bearing imidazolium-ionic liquid moieties. J. Polym. Sci. A 2009, 47, 3010–3021. [Google Scholar] [CrossRef]
- Döbbelin, M.; Marcilla, R.; Pozo-Gonzalo, C.; Mecerreyes, D.; Dobbelin, M. Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. J. Mater. Chem. 2010, 20, 7613. [Google Scholar] [CrossRef]
- Qin, L.; Xu, J.; Lu, B.; Lu, Y.; Duan, X.; Nie, G. Synthesis and electrochromic properties of polyacrylate functionalized poly(3,4-ethylenedioxythiophene) network films. J. Mater. Chem. 2012, 22, 18345. [Google Scholar] [CrossRef]
- Bazaco, R.B.; Gómez, R.; Seoane, C.; Bäuerle, P.; Segura, J.L. Specific recognition of a nucleobase-functionalized poly(3,4-ethylenedioxithiophene) (PEDOT) in aqueous media. Tetrahedron Lett. 2009, 50, 4154–4157. [Google Scholar] [CrossRef]
- Balog, M.; Rayah, H.; Le Derf, F.; Sallé, M. A versatile building block for EDOT or PEDOT functionalization. New J. Chem. 2008, 32, 1183. [Google Scholar] [CrossRef] [Green Version]
- Godeau, G.; N’Na, J.; Darmanin, T.; Guittard, F. Azidomethyl-EDOT as a Platform for Tunable Surfaces with Nanostructures and Superhydrophobic Properties. J. Phys. Chem. B 2015, 119, 6873–6877. [Google Scholar] [CrossRef] [PubMed]
- Scavetta, E.; Mazzoni, R.; Mariani, F.; Margutta, R.G.; Bonfiglio, A.; Demelas, M.; Fiorilli, S.; Marzocchi, M.; Fraboni, B. Dopamine amperometric detection at a ferrocene clicked PEDOT:PSS coated electrode. J. Mater. Chem. B 2014, 2, 2861. [Google Scholar] [CrossRef]
- Daugaard, A.E.; Hvilsted, S.; Hansen, T.S.; Larsen, N.B. Conductive Polymer Functionalization by Click Chemistry. Macromolecules 2008, 41, 4321–4327. [Google Scholar] [CrossRef]
- Bu, H.-B.; Götz, G.; Reinold, E.; Vogt, A.; Schmid, S.; Blanco, R.; Segura, J.L.; Bäuerle, P. “Click”-functionalization of conducting poly(3,4-ethylenedioxythiophene) (PEDOT). Chem. Commun. 2008, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- Shida, N.; Ishiguro, Y.; Atobe, M.; Fuchigami, T.; Inagi, S. Electro-Click Modification of Conducting Polymer Surface Using Cu(I) Species Generated on a Bipolar Electrode in a Gradient Manner. ACS Macro Lett. 2012, 1, 656–659. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Superoleophobic surfaces with short fluorinated chains? Soft Matter 2013, 9, 5982. [Google Scholar] [CrossRef]
- Hu, D.; Lu, B.; Duan, X.; Xu, J.; Zhang, L.; Zhang, K.; Zhang, S.; Zhen, S. Synthesis of novel chiral l -leucine grafted PEDOT derivatives with excellent electrochromic performances. RSC Adv. 2014, 4, 35597. [Google Scholar] [CrossRef]
- Segura, J.L.; Gómez, R.; Reinold, E.; Bäuerle, P. Synthesis and Electropolymerization of a Perylenebisimide-Functionalized 3,4-Ethylenedioxythiophene (EDOT) Derivative. Org. Lett. 2005, 7, 2345–2348. [Google Scholar] [CrossRef] [PubMed]
- Segura, J.L.; Gómez, R.; Blanco, R.; Reinold, E.; Bäuerle, P. Synthesis and Electronic Properties of Anthraquinone-, Tetracyanoanthraquinodimethane-, and Perylenetetracarboxylic Diimide-Functionalized Poly(3,4-ethylenedioxythiophenes). Chem. Mater. 2006, 18, 2834–2847. [Google Scholar] [CrossRef]
- Caras-Quintero, D.; Bäuerle, P. Efficient synthesis of 3,4-ethylenedioxythiophenes (EDOT) by Mitsunobu reaction. Chem. Commun. 2002, 2690–2691. [Google Scholar] [CrossRef]
- Lu, Y.; Wen, Y.; Lu, B.; Duan, X.; Xu, J.; Zhang, L.; Huang, Y. Electrosynthesis and characterization of poly(hydroxy-methylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application. Chin. J. Polym. Sci. 2012, 30, 824–836. [Google Scholar] [CrossRef]
- Zhang, L.; Wen, Y.-P.; Yao, Y.-Y.; Wang, Z.-F.; Duan, X.-M.; Xu, J.-K. Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. Chin. Chem. Lett. 2014, 25, 517–522. [Google Scholar] [CrossRef]
- Conte, P.; Darmanin, T.; Guittard, F. Spider-web-like fiber toward highly oleophobic fluorinated materials with low bioaccumulative potential. React. Funct. Polym. 2014, 74, 46–51. [Google Scholar] [CrossRef]
- Goda, T.; Toya, M.; Matsumoto, A.; Miyahara, Y. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS Appl. Mater. Interfaces 2015, 7, 27440–27448. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.-B.; Götz, G.; Reinold, E.; Vogt, A.; Schmid, S.; Segura, J.L.; Blanco, R.; Gómez, R.; Bäuerle, P. Efficient post-polymerization functionalization of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) via “click”-reaction. Tetrahedron 2011, 67, 1114–1125. [Google Scholar] [CrossRef]
- Godeau, G.; N’Na, J.; El Kout, E.; Ben Trad, R.; Darmanin, T.; El Kateb, M.; Beji, M.; Guittard, F. Staudinger-Vilarassa reaction versus Huisgen reaction for the control of surface hydrophobicity and water adhesion. Polym. Adv. Technol. 2016, 27, 993–998. [Google Scholar] [CrossRef]
- Godeau, G.; N’Na, J.; Guittard, F.; Darmanin, T. Azido Platform Surfaces for Post-Functionalization with Aromatic Groups Using the Huisgen Reaction to Obtain High Water Adhesion. Macromol. Chem. Phys. 2016, 217, 2107–2115. [Google Scholar] [CrossRef]
- Goll, M.; Ruff, A.; Muks, E.; Goerigk, F.; Omiecienski, B.; Ruff, I.; González-Cano, R.C.; Lopez Navarrete, J.T.; Ruiz Delgado, M.C.; Ludwigs, S. Functionalized branched EDOT-terthiophene copolymer films by electropolymerization and post-polymerization “click”-reactions. Beilstein J. Org. Chem. 2015, 11, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Diouf, A.; Darmanin, T.; Dieng, S.Y.; Guittard, F. Superhydrophobic (low adhesion) and parahydrophobic (high adhesion) surfaces with micro/nanostructures or nanofilaments. J. Colloid Interface Sci. 2015, 453, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Sarac, A.S.; Ozgul, S.E.; Faltz, H.; Gencturk, A.; Gilsing, H.-D.; Schulz, B. Nanofiber Network of Electropolymerized 3,4-(2-Benzylpropylenedioxy)thiophene on Single Carbon Fiber Microelectrode. J. Nanosci. Nanotechnol. 2010, 10, 8043–8053. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, P.; Zay, B.J.; Cai, C.; Chai, Y.; Lawrence, D. Matched-dual-polymer electrochromic lenses, using new cathodically coloring conducting polymers, with exceptional performance and incorporated into automated sunglasses. J. Appl. Polym. Sci. 2014, 131, 41043. [Google Scholar] [CrossRef]
- Agarwal, N.; Mishra, S.P.; Hung, C.-H.; Kumar, A.; Ravikanth, M. The Synthesis and Crystal Structure of β-Substituted Thiaporphyrins with Novel Cyclic Substituents. Bull. Chem. Soc. Jpn. 2004, 77, 1173–1180. [Google Scholar] [CrossRef]
- Reeves, B.D.; Grenier, C.R.G.; Argun, A.A.; Cirpan, A.; McCarley, T.D.; Reynolds, J.R. Spray Coatable Electrochromic Dioxythiophene Polymers with High Coloration Efficiencies. Macromolecules 2004, 37, 7559–7569. [Google Scholar] [CrossRef]
- Godeau, G.; N’Na, J.; Darmanin, T.; Guittard, F. Poly(3,4-propylenedioxythiophene) mono-azide and di-azide as platforms for surface post-functionalization. Eur. Polym. J. 2016, 78, 38–45. [Google Scholar] [CrossRef]
- Bhuvana, T.; Kim, B.; Yang, X.; Shin, H.; Kim, E. Reversible Full-Color Generation with Patterned Yellow Electrochromic Polymers. Angew. Chem. Int. Ed. 2013, 52, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Kerszulis, J.A.; Amb, C.M.; Dyer, A.L.; Reynolds, J.R. Follow the Yellow Brick Road: Structural Optimization of Vibrant Yellow-to-Transmissive Electrochromic Conjugated Polymers. Macromolecules 2014, 47, 5462–5469. [Google Scholar] [CrossRef]
- Shi, P.; Amb, C.M.; Knott, E.P.; Thompson, E.J.; Liu, D.Y.; Mei, J.; Dyer, A.L.; Reynolds, J.R. Broadly Absorbing Black to Transmissive Switching Electrochromic Polymers. Adv. Mater. 2010, 22, 4949–4953. [Google Scholar] [CrossRef] [PubMed]
- Lamy, M.; Darmanin, T.; Guittard, F. Highly hydrophobic films with high water adhesion by electrodeposition of poly(3,4-propylenedioxythiophene) containing two alkoxy groups. Colloid Polym. Sci. 2015, 293, 933–940. [Google Scholar] [CrossRef]
- Yang, X.; Seo, S.; Park, C.; Kim, E. Electrical Chiral Assembly Switching of Soluble Conjugated Polymers from Propylenedioxythiophene-Phenylene Copolymers. Macromolecules 2014, 47, 7043–7051. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Amb, C.M.; Reynolds, J.R. A Side-Chain Defunctionalization Approach Yields a Polymer Electrochrome Spray-Processable from Water. Adv. Mater. 2010, 22, 5383–5387. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Ouyang, L.; Liu, J.; Martin, D.C. Post-polymerization functionalization of poly(3,4-propylenedioxythiophene) (PProDOT) via thiol–ene “click” chemistry. J. Mater. Chem. B 2015, 3, 5028–5034. [Google Scholar] [CrossRef]
- Godeau, G.; Amigoni, S.; Darmanin, T.; Guittard, F. Post-functionalization of plasma treated polycarbonate substrates: An efficient way to hydrophobic, oleophobic plastics. Appl. Surf. Sci. 2016, 387, 28–35. [Google Scholar] [CrossRef]
- Otley, M.T.; Alamer, F.A.; Zhu, Y.; Singhaviranon, A.; Zhang, X.; Li, M.; Kumar, A.; Sotzing, G.A. Acrylated Poly(3,4-propylenedioxythiophene) for Enhancement of Lifetime and Optical Properties for Single-Layer Electrochromic Devices. ACS Appl. Mater. Interfaces 2014, 6, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Wolfs, M.; Darmanin, T.; Guittard, F. Superhydrophobic surfaces from 3,4-propylenedioxythiophene (ProDOT) derivatives. Eur. Polym. J. 2013, 49, 2267–2274. [Google Scholar] [CrossRef]
- Shallcross, R.C.; D’Ambruoso, G.D.; Korth, B.D.; Hall, H.K.; Zheng, Z.; Pyun, J.; Armstrong, N.R. Poly(3,4-ethylenedioxythiophene)? Semiconductor Nanoparticle Composite Thin Films Tethered to Indium Tin Oxide Substrates via Electropolymerization. J. Am. Chem. Soc. 2007, 129, 11310–11311. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, B.; Anand, C.; Mano, A.; Zaidi, J.S.M.; Ariga, K.; You, J.; Vinu, A.; Kim, E. A Single-Step Synthesis of Electroactive Mesoporous ProDOT-Silica Structures. Angew. Chem. Int. Ed. 2015, 54, 8407–8410. [Google Scholar] [CrossRef] [PubMed]
- Kros, A.; Nolte, R.J.M.; Sommerdijk, N.A.J.M. Poly(3,4-ethylenedioxythiophene)-based copolymers for biosensor applications. J. Polym. Sci. A 2002, 40, 738–747. [Google Scholar] [CrossRef]
- Guler, F.G.; Gilsing, H.-D.; Schulz, B.; Sarac, A.S. Impedance and Morphology of Hydroxy- and Chloro-Functionalized Poly(3,4-propylenedioxythiophene) Nanostructures. J. Nanosci. Nanotechnol. 2012, 12, 7869–7878. [Google Scholar] [CrossRef] [PubMed]
- Guler, F.G.; Sarac, A.S. Electrochemical synthesis of Poly[3,4-Propylenedioxythiophene-co-N-Phenylsulfonyl Pyrrole]: Morphological, electrochemical and spectroscopic characterization. Express Polym. Lett. 2011, 5, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Dirlam, P.T.; Kim, H.J.; Arrington, K.J.; Chung, W.J.; Sahoo, R.; Hill, L.J.; Costanzo, P.J.; Theato, P.; Char, K.; Pyun, J.; et al. Single chain polymer nanoparticles via sequential ATRP and oxidative polymerization. Polym. Chem. 2013, 4, 3765. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Wettability of poly(3-alkyl-3,4-propylenedioxythiophene) fibrous structures forming nanoporous, microporous or micro/nanostructured networks. Mater. Chem. Phys. 2014, 146, 6–11. [Google Scholar] [CrossRef]
- Mallouki, M.; Aubert, P.-H.; Beouch, L.; Vidal, F.; Chevrot, C. Symmetrical electrochromic device from poly(3,4-(2,2-dimethylpropylenedioxy)thiophene)-based semi-interpenetrating polymer network. Synth. Met. 2012, 162, 1903–1911. [Google Scholar] [CrossRef]
- Kim, S.; Kong, X.; Taya, M. Electrochromic windows based on anodic electrochromic polymesitylenes containing 9H-carbazole-9-ethanol moieties. Sol. Energy Mater. Sol. Cells 2013, 117, 183–188. [Google Scholar] [CrossRef]
- Grenier, C.R.G.; George, S.J.; Joncheray, T.J.; Meijer, E.W.; Reynolds, J.R. Chiral Ethylhexyl Substituents for Optically Active Aggregates of π-Conjugated Polymers. J. Am. Chem. Soc. 2007, 129, 10694–10699. [Google Scholar] [CrossRef] [PubMed]
- İçli-Özkut, M.; Mersini, J.; Önal, A.M.; Cihaner, A. Substituent and heteroatom effects on the electrochromic properties of similar systems. J. Polym. Sci. A 2012, 50, 615–621. [Google Scholar] [CrossRef]
- Liang, Y.; Peng, B.; Liang, J.; Tao, Z.; Chen, J. Triphenylamine-Based Dyes Bearing Functionalized 3,4-Propylenedioxythiophene Linkers with Enhanced Performance for Dye-Sensitized Solar Cells. Org. Lett. 2010, 12, 1204–1207. [Google Scholar] [CrossRef] [PubMed]
- Shivananda, K.N.; Cohen, I.; Borzin, E.; Gerchikov, Y.; Firstenberg, M.; Solomeshch, O.; Tessler, N.; Eichen, Y. Sequence-Independent Synthesis of π-conjugated Arylenevinylene Oligomers using Bifunctional Thiophene Monomers. Adv. Funct. Mater. 2012, 22, 1489–1501. [Google Scholar] [CrossRef]
- Weng, B.; Ashraf, S.; Innis, P.C.; Wallace, G.G. Colour tunable electrochromic devices based on PProDOT-(Hx)2 and PProDOT-(EtHx)2 polymers. J. Mater. Chem. C 2013, 1, 7430. [Google Scholar] [CrossRef]
- El-Maiss, J.; Darmanin, T.; Guittard, F. Low bioaccumulative materials for parahygrophobic nanosheets with sticking behaviour. J. Colloid Interface Sci. 2015, 447, 167–172. [Google Scholar] [CrossRef] [PubMed]
- El-Maiss, J.; Darmanin, T.; Taffin de Givenchy, E.; Amigoni, S.; Eastoe, J.; Sagisaka, M.; Guittard, F. Superhydrophobic surfaces with low and high adhesion made from mixed (hydrocarbon and fluorocarbon) 3,4-propylenedioxythiophene monomers. J. Polym. Sci. B 2014, 52, 782–788. [Google Scholar] [CrossRef]
- El-Maiss, J.; Darmanin, T.; Taffin de Givenchy, E.; Guittard, F. Elaboration of Superhydrophobic Surfaces containing Nanofibers and Wrinkles with Controllable Water and Oil Adhesion: Elaboration of Superhydrophobic Surfaces containing Nanofibers. Macromol. Mater. Eng. 2014, 299, 959–965. [Google Scholar] [CrossRef]
- Mantione, D.; Casado, N.; Sanchez-Sanchez, A.; Sardon, H.; Mecerreyes, D. Easy-to-make carboxylic acid dioxythiophene monomer (ProDOT-COOH) and functional conductive polymers. J. Polym. Sci. A 2017, 55, 2721–2724. [Google Scholar] [CrossRef]
- Amorini, F.; Zironi, I.; Marzocchi, M.; Gualandi, I.; Calienni, M.; Cramer, T.; Fraboni, B.; Castellani, G. Electrically Controlled “Sponge Effect” of PEDOT:PSS Governs Membrane Potential and Cellular Growth. ACS Appl. Mater. Interfaces 2017, 9, 6679–6689. [Google Scholar] [CrossRef] [PubMed]
- Marzocchi, M.; Gualandi, I.; Calienni, M.; Zironi, I.; Scavetta, E.; Castellani, G.; Fraboni, B. Physical and Electrochemical Properties of PEDOT:PSS as a Tool for Controlling Cell Growth. ACS Appl. Mater. Interfaces 2015, 7, 17993–18003. [Google Scholar] [CrossRef] [PubMed]
- Ramuz, M.; Hama, A.; Huerta, M.; Rivnay, J.; Leleux, P.; Owens, R.M. Combined Optical and Electronic Sensing of Epithelial Cells Using Planar Organic Transistors. Adv. Mater. 2014, 26, 7083–7090. [Google Scholar] [CrossRef] [PubMed]
- Inal, S.; Hama, A.; Ferro, M.; Pitsalidis, C.; Oziat, J.; Iandolo, D.; Pappa, A.-M.; Hadida, M.; Huerta, M.; Marchat, D.; Mailley, P.; Owens, R.M. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. Adv. Biosyst. 2017, 1, 1700052. [Google Scholar] [CrossRef]
- Asplund, M.; von Holst, H.; Inganäs, O. Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 2008, 3, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Miriani, R.M.; Abidian, M.R.; Kipke, D.R. Cytotoxic analysis of the conducting polymer PEDOT using myocytes. Conf. IEEE Eng. Med. Biol. Soc. 2008, 2008, 1841–1844. [Google Scholar] [CrossRef]
- Thaning, E.M.; Asplund, M.L.M.; Nyberg, T.A.; Inganäs, O.W.; von Holst, H. Stability of poly(3,4-ethylene dioxythiophene) materials intended for implants. J. Biomed. Mater. Res. B 2010, 93B, 407–415. [Google Scholar] [CrossRef] [PubMed]
- SUZUKI, M.; Nakayama, M.; TSUJI, K.; Adachi, T.; SHIMONO, K. Electrochemical Polymerization of PEDOT/Biomolecule Composite Films on Microelectrodes for the Measurement of Extracellular Field Potential. Electrochemistry 2016, 84, 354–357. [Google Scholar] [CrossRef]
- Lv, R.; Sun, Y.; Yu, F.; Zhang, H. Fabrication of poly(3,4-ethylenedioxythiophene)-polysaccharide composites. J. Appl. Polym. Sci. 2012, 124, 855–863. [Google Scholar] [CrossRef]
- Ner, Y.; Invernale, M.A.; Grote, J.G.; Stuart, J.A.; Sotzing, G.A. Facile chemical synthesis of DNA-doped PEDOT. Synth. Met. 2010, 160, 351–353. [Google Scholar] [CrossRef]
- Horikawa, M.; Fujiki, T.; Shirosaki, T.; Ryu, N.; Sakurai, H.; Nagaoka, S.; Ihara, H. The development of a highly conductive PEDOT system by doping with partially crystalline sulfated cellulose and its electric conductivity. J. Mater. Chem. C 2015, 3, 8881–8887. [Google Scholar] [CrossRef]
- Harman, D.G.; Gorkin, R.; Stevens, L.; Thompson, B.; Wagner, K.; Weng, B.; Chung, J.H.Y.; in het Panhuis, M.; Wallace, G.G. Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS)—A highly processable conductive organic biopolymer. Acta Biomater. 2015, 14, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Mantione, D.; del Agua, I.; Schaafsma, W.; Diez-Garcia, J.; Castro, B.; Sardon, H.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces. Macromol. Biosci. 2016, 16, 1227–1238. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.I.; Katsigiannopoulos, D.; Mumtaz, M.; Petsagkourakis, I.; Pecastaings, G.; Fleury, G.; Schatz, C.; Pavlopoulou, E.; Brochon, C.; Hadziioannou, G.; et al. How To Choose Polyelectrolytes for Aqueous Dispersions of Conducting PEDOT Complexes. Macromolecules 2017, 50, 1959–1969. [Google Scholar] [CrossRef]
- Del Agua, I.; Mantione, D.; Casado, N.; Sanchez-Sanchez, A.; Malliaras, G.G.; Mecerreyes, D. Conducting Polymer Iongels Based on PEDOT and Guar Gum. ACS Macro Lett. 2017, 6, 473–478. [Google Scholar] [CrossRef]
- Yan, H.; Jo, T.; Okuzaki, H. Highly Conductive and Transparent Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) (PEDOT/PSS) Thin Films. Polym. J. 2009, 41, 1028–1029. [Google Scholar] [CrossRef]
- Döbbelin, M.; Marcilla, R.; Salsamendi, M.; Pozo-Gonzalo, C.; Carrasco, P.M.; Pomposo, J.A.; Mecerreyes, D. Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT:PSS Films. Chem. Mater. 2007, 19, 2147–2149. [Google Scholar] [CrossRef]
- Ouyang, J. “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 2013, 34, 423–436. [Google Scholar] [CrossRef]
- Wei, B.; Liu, J.; Ouyang, L.; Kuo, C.-C.; Martin, D.C. Significant Enhancement of PEDOT Thin Film Adhesion to Inorganic Solid Substrates with EDOT-Acid. ACS Appl. Mater. Interfaces 2015, 7, 15388–15394. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.C. Molecular design, synthesis, and characterization of conjugated polymers for interfacing electronic biomedical devices with living tissue. MRS Commun. 2015, 5, 131–153. [Google Scholar] [CrossRef]
- Stavrinidou, E.; Gabrielsson, R.; Gomez, E.; Crispin, X.; Nilsson, O.; Simon, D.T.; Berggren, M. Electronic plants. Sci. Adv. 2015, 1, e1501136. [Google Scholar] [CrossRef] [PubMed]
- Persson, K.M.; Lönnqvist, S.; Tybrandt, K.; Gabrielsson, R.; Nilsson, D.; Kratz, G.; Berggren, M. Matrix Addressing of an Electronic Surface Switch Based on a Conjugated Polyelectrolyte for Cell Sorting. Adv. Funct. Mater. 2015, 25, 7056–7063. [Google Scholar] [CrossRef]
- Luo, S.-C.; Mohamed Ali, E.; Tansil, N.C.; Yu, H.-H.; Gao, S.; Kantchev, E.A.B.; Ying, J.Y. Poly(3,4-ethylenedioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir 2008, 24, 8071–8077. [Google Scholar] [CrossRef] [PubMed]
- Persson, K.M.; Karlsson, R.; Svennersten, K.; Loffler, S.; Jager, E.W.H.; Richter-Dahlfors, A.; Konradsson, P.; Berggren, M. Electronic Control of Cell Detachment Using a Self-Doped Conducting Polymer. Adv. Mater. 2011, 23, 4403–4408. [Google Scholar] [CrossRef] [PubMed]
- Hai, W.; Goda, T.; Takeuchi, H.; Yamaoka, S.; Horiguchi, Y.; Matsumoto, A.; Miyahara, Y. Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Appl. Mater. Interfaces 2017, 9, 14162–14170. [Google Scholar] [CrossRef] [PubMed]
- Godeau, G.; Darmanin, T.; Guittard, F. Switchable and reversible superhydrophobic and oleophobic surfaces by redox response using covalent S–S bond. React. Funct. Polym. 2015, 96, 44–49. [Google Scholar] [CrossRef]
- Del Agua, I.; Mantione, D.; Marina, S.; Pitsalidis, C.; Ferro, M.; Sanchez-Sanchez, A.; Owens, R.M.; Malliaras, G.G.; Mecerreyes, D. Conducting Polymer Scaffolds based on PEDOT and Xanthan Gum for live-cell Monitoring. In preparation.
- Green, R.A.; Baek, S.; Poole-Warren, L.A.; Martens, P.J. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 2010, 11, 14107. [Google Scholar] [CrossRef] [PubMed]
- Guiseppi-Elie, A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials 2010, 31, 2701–2716. [Google Scholar] [CrossRef] [PubMed]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef] [PubMed]
PEDOT:biomolecule | Conductivity (S·cm−1) | Application | Biocompatibility Test | Particle Size and Morphology |
---|---|---|---|---|
PEDOT:dextran sulfate [112] | 7 | Drug delivery, electrostimulation of cells | Cytotoxicity, L-929 cells | 394–691 nm |
PEDOT:DNA [110] | 1 | biosensing, drug delivery | - | 50 nm fibers |
PEDOT:heparin [113] | 0.05–0.001 | Recording/stimulating in vivo | Cytotoxicity, L-929 Cellular attachment, CCF-STTG1 cells Proliferation of SH-SY5Y Cells | >1 μm spheres |
PEDOT:chondroitin Sulfate [113] | 0.075–0.002 | Recording/stimulating in vivo | Cytotoxicity, L-929 Cellular attachment, CCF-STTG1 cells Proliferation of SH-SY5Y Cells | 500 nm spheres |
PEDOT:hyaluronic acid [113] | 0.071–0.003 | Recording/stimulating in vivo | Cytotoxicity, L-929 Cellular attachment, CCF-STTG1 cells Proliferation of SH-SY5Y Cells | 200 nm spheres |
PEDOT:sulfated cellulose [111] | 0.576 | - | - | 250–350 nm |
PEDOT:pectin [114] | ˂0.01 | - | - | - |
PEDOT:guar gum [115] | 0.028–0.129 | Iongels | - | 100–300 nm spheres |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantione, D.; Del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers 2017, 9, 354. https://doi.org/10.3390/polym9080354
Mantione D, Del Agua I, Sanchez-Sanchez A, Mecerreyes D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers. 2017; 9(8):354. https://doi.org/10.3390/polym9080354
Chicago/Turabian StyleMantione, Daniele, Isabel Del Agua, Ana Sanchez-Sanchez, and David Mecerreyes. 2017. "Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics" Polymers 9, no. 8: 354. https://doi.org/10.3390/polym9080354
APA StyleMantione, D., Del Agua, I., Sanchez-Sanchez, A., & Mecerreyes, D. (2017). Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 9(8), 354. https://doi.org/10.3390/polym9080354