Effects of Exogenous Application of Osmotic Adjustment Substances on Growth, Pigment Concentration, and Physiological Parameters of Dracaena sanderiana Sander under Different Levels of Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Growing Conditions
2.2. Experimental Design and Treatments
2.3. Color Parameters and Photosynthetic Pigment Concentration
2.4. Biomass Parameters
2.5. Stomatal Density and Dimensions
2.6. Biochemical Parameters
2.7. Statistical Analysis
3. Results
3.1. Plant Growth and Biomass Production
3.2. Color of Leaves
3.3. Photosynthetic Pigments
3.4. Features of Stomata
3.5. Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.; Schroeder, J.I. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014, 19, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassaniti, C.; Romano, D.; Hop, M.E.C.M.; Flowers, T.J. Growing floricultural crops with brackish water. Environ. Exp. Bot. 2013, 92, 165–175. [Google Scholar] [CrossRef]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Res. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Tuteja, N.; Peter Singh, L.; Gill, S.S.; Gill, R.; Tuteja, R. Salinity stress: A major constraint in crop production. In Improving Crop Resistance to Abiotic Stress; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 71–96. [Google Scholar]
- Munns, R.; Gilliham, M. Salinity tolerance of crops—What is the cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Foolad, M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Murata, N. Glycinebetaine: An effective protectant against abiotic stress in plants. Trends Plant Sci. 2008, 13, 499–504. [Google Scholar] [CrossRef]
- Kurepin, L.V.; Ivanov, A.G.; Zaman, M.; Pharis, R.P.; Hurry, V.; Hüner, N.P. Interaction of glycine betaine and plant hormones: Protection of the photosynthetic apparatus during abiotic stress. In Photosynthesis: Structures, Mechanisms, and Applications; Springer: Cham, Switzerland, 2017; pp. 185–202. [Google Scholar]
- Rahman, M.S.; Miyake, H.; Takeoka, Y. Effects of exogenous glycinebetaine on growth and ultra-structure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod. Sci. 2011, 5, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Kaya, C.; Tuna, A.L.; Ashraf, M.; Altunlu, H. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ. Exp. Bot. 2007, 60, 397–403. [Google Scholar] [CrossRef]
- Nawaz, K.; Ashraf, M. Improvement in salt tolerance of maize by exogenous application of glycinebetaine: Growth and water relations. Pak. J. Bot. 2007, 39, 1647–1653. [Google Scholar]
- Raza, S.H.; Athar, H.; Ashraf, M.; Hameed, A. Glycinebetaine induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ. Exp. Bot. 2007, 60, 368–376. [Google Scholar] [CrossRef]
- Mahmood, T.; Ashraf, M.; Shahbaz, M. Does exogenous application of glycinebetaine as a pre-sowing seed treatment improve growth and regulate some key physiological attributes in wheat plants grown under water deficit conditions? Pak. J. Bot. 2009, 41, 1291–1302. [Google Scholar]
- Abbas, W.; Ashraf, M.; Akrama, N.A. Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci. Hortic. 2010, 125, 188–195. [Google Scholar] [CrossRef]
- Habib, N.; Ashraf, M.; Ali, Q.; Perveen, R. Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugar beet extract. S. Afr. J. Bot. 2012, 83, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Cirillo, C.; Rouphael, Y.; Caputo, R.; Raimondi, G.; Sifola, M.I.; De Pascale, S. Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrubs. J. Hort. Sci. Biotech. 2016, 91, 14–22. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acids biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Tantawy, A.S.; Abdel-Mawgoud, A.M.R.; El-Nemr, M.A.; Chamoun, Y.G. Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Eur. J. Sci. Res. 2009, 30, 484–494. [Google Scholar]
- El-Samad, H.M.; Shaddad, M.A.K.; Barakat, N. Improvement of plants salt tolerance by exogenous application of amino acids. J. Med. Plants Res. 2011, 5, 5692–5699. [Google Scholar]
- Sadak, M.; Abdelhamid, M.T.; Schmidhalter, U. Effect of foliar application of aminoacids on plant yield and some physiological parameters in bean plants irrigated with seawater. Acta Biol. Colomb. 2015, 20, 141–152. [Google Scholar]
- Badran, E.G.; Abogadallah, G.M.; Nada, R.M.; Alla, M.M.N. Role of glycine in improving the ionic and ROS homeostasis during NaCl stress in wheat. Protoplasma 2015, 252, 835–844. [Google Scholar] [CrossRef]
- Yang, X.; Cui, X.; Zhao, L.; Guo, D.; Feng, L.; Wei, S.; Zhao, C.; Huang, D. Exogenous glycine nitrogen enhances accumulation of glycosylated flavonoids and antioxidant activity in lettuce (Lactuca sativa L.). Front. Plant Sci. 2017, 8, 2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Sci. Hortic. 2016, 201, 84–91. [Google Scholar] [CrossRef] [Green Version]
- García-Caparrós, P.; Llanderal, A.; El-Tarawy, A.; Majsztrik, J.; Lao, M.T. Response of container-grown Confeti tree irrigated with runoff water. HortTechnology 2017, 27, 625–630. [Google Scholar] [CrossRef] [Green Version]
- García-Caparrós, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral management of irrigation water in intensive horticultural systems of Almeria. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef] [Green Version]
- Aslam, J.; Mujib, A.; Sharma, M.P. In vitro micropropagation of Dracaena sanderiana Sander ex Mast: An important indoor ornamental plant. Saudi J. Biol. Sci. 2013, 20, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Sereshti, H.; Eskandarpour, N.; Samadi, S.; Aliakbarzadeh, G. Investigation on Dracaena sanderiana phytoremediation ability for Hg and Cd using multivariate optimized task specific ionic liquid-based dispersive liquid-liquid microextraction. Int. J. Environ. Res. 2014, 8, 1075–1084. [Google Scholar]
- Hu, L.; Hu, T.; Zhang, X.; Pang, H.; Fu, J. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J. Am. Soc. Hortic. Sci. 2012, 137, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Malekzadeh, P. Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiol. Mol. Biol. Plants 2015, 21, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kang, S.W.; Pak, C.H.; Kim, M.S. Changes in leaf variegation and coloration of english ivy and polka dot plant under various indoor light intensities. HortTechnology 2012, 22, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvent with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Valdes, R.; Miralles, J.; Franco, J.A.; Sánchez-Blanco, M.J.; Bañón, S. Using soil bulk electrical conductivity to manage saline irrigation in the production of potted poinsettia. Sci. Hortic. 2014, 170, 1–7. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; McConnell, D.B.; Henny, R.J. A simple and effective method for quantifying leaf variegation. HortTechnology 2007, 17, 285–288. [Google Scholar] [CrossRef]
- Ben Amor, N.; Ben Hamed, K.; Debez, A.; Grignon, C.; Abdelly, C. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci. 2005, 168, 889–899. [Google Scholar] [CrossRef]
- Rodriguez, J.L.; Davies, W.J. The effect of temperature and ABA on stomata of Zea mays L. J. Exp. Bot. 1982, 33, 977–987. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Emerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root their relative astringency and radical scavenging effect. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [Green Version]
- Osman, H.S.; Salim, B.B. Influence of exogenous application of some phytoprotectants on growth, yield and pod quality of snap bean under NaCl salinity. Ann. Agric. Sci. 2016, 61, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, E.; Ekinci, M.; Turan, M.; Dursun, A.; Kul, R.; Parlakova, F. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch. Agric. Soil Sci. 2015, 61, 1673–1689. [Google Scholar] [CrossRef]
- Cassaniti, C.; Leonardi, C.; Flowers, T.J. The effect of sodium chloride on ornamental shrubs. Sci. Hortic. 2009, 122, 586–593. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Lao, M.T. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic. 2018, 240, 430–439. [Google Scholar] [CrossRef]
- Sobahan, M.A.; Akter, N.; Ohno, M.; Okuma, E.; Hirai, Y.; Mori, I.C.; Nakamura, Y.; Murata, Y. Effects of exogenous proline and glycine betaine on the salt tolerance of rice cultivars. Bio. Biotech. Biochem. 2012, 76, 1568–1570. [Google Scholar] [CrossRef] [PubMed]
- Vladimirova, S.V.; McConnell, D.B.; Kane, M.E.; Henley, R.W. Morphological plasticity of Dracaena sanderana ‘Ribbon’ in response to four light intensities. HortScience 1997, 32, 1049–1052. [Google Scholar] [CrossRef]
- Nam, Y.K.; Kwack, H.R.; Kwack, B.H. Different extents of leaf-variegation in Epipremnum aureum as influenced by different light levels. J. Kor. Soc. Hort. Sci. 1997, 38, 537–540. [Google Scholar]
- Pennisi, S.; van Iersel, M.W.; Burnett, S.E. Photosynthetic irradiance and nutrition effects on growth of English ivy in subirrigation systems. HortScience 2005, 40, 1740–1745. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.W.; Seeley, J.G. The effect of shading and nutrient supply on variegation and nutrient content of variegated cultivars of Peperomia obtusifolia. J. Am. Soc. Hort. Sci. 1983, 108, 429–433. [Google Scholar]
- Leyva, R.; Sánchez-Rodríguez, E.; Ríos, J.J.; Rubio-Wilhelmi, M.M.; Romero, L.; Ruiz, J.M.; Blasco, B. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci. 2011, 181, 195–202. [Google Scholar] [CrossRef]
- Athar, H.; Zafar, Z.U.; Ashraf, M. Glycinebetaine improved photosynthesis in canola under salt stress: Evaluation of chlorophyll fluorescence parameters as potential indicators. J. Agron. Crop Sci. 2015, 201, 428–442. [Google Scholar] [CrossRef]
- Mäkela, P.; Mantila, J.; Hinkkanen, R.; Pehu, E.; Peltnen-Sainio, P. Effect of foliar applications of glycinebetaine on stress tolerance, growth and yield of spring cereals and summer turnip rape in Finland. J. Agron. Crop Sci. 1996, 176, 223–234. [Google Scholar] [CrossRef]
- Athar, H.; Ashraf, M.; Wahid, A.; Jamil, A. Inducing salt tolerance in canola (Brassica napus L.) by exogenous application of glycinebetaine and proline: Response at the initial growth stages. Pak. J. Bot. 2009, 41, 1311–1319. [Google Scholar]
- Yang, Z.; Yu, J.; Merewitz, E.; Huang, B. Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. J. Am. Soc. Hortic. Sci. 2012, 137, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, K.; Tester, M.; Roy, S.J. Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ. 2009, 32, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Schilling, R.K.; Marschner, P.; Shavrukov, Y.; Berger, B.; Tester, M.; Roy, S.J.; Plett, D.C. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol. J. 2014, 12, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Holmstrom, K.O.; Somersalo, S.; Mandal, A.; Palva, E.T.; Welin, B. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot. 2000, 51, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manaf, H.H. Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant. Ann. Agric. Sci. 2016, 61, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Silveira, J.A.; Carvalho, F.E. Proteomics, photosynthesis and salt resistance in crops: An integrative view. J. Proteom. 2016, 143, 24–35. [Google Scholar] [CrossRef]
- Scalia, R.; Oddo, E.; Russo, G.; Saiano, F.; Grisafi, F. Effectiveness of glycinebetaine foliar application in relieving salt stress symptoms in two turf-grasses. Grassland Sci. 2014, 60, 92–97. [Google Scholar] [CrossRef]
- Khalifa, G.S.; Abdelrassoul, M.; Hegazi, A.M.; Elsherif, M.H. Attenuation of negative effects of saline stress in two lettuce cultivars by salicylic acid and glycine betaine. Gesunde Pflanz. 2016, 68, 177–189. [Google Scholar] [CrossRef]
- Chaum, S.; Kirdmanee, C. Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak. J. Bot. 2009, 41, 87–98. [Google Scholar]
- Maksimovic, I.; Putnik-Delić, M.; Gani, I.; Marić, J.; Ilin, Ž. Growth, ion composition, and stomatal conductance of peas exposed to salinity. Cent. Eur. J. Biol. 2010, 5, 682–691. [Google Scholar] [CrossRef]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.J.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, A.; Şirikçi, R.; Kocaçınar, F.; Değer, Ö.; Demirkırıan, A.R. Alleviation of salt-induced adverse effects in pepper seedlings by seed application of glycinebetaine. Sci. Hortic. 2012, 148, 197–205. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.Y.; Luo, Y.; Wang, G.P.; Zouand, Q.; Wang, W. Overaccumulation of glycinebetaine alleviates the negative effects of salt stress in wheat. Russ. J. Plant Physiol. 2009, 56, 370–376. [Google Scholar] [CrossRef]
- Demiral, T.; Türkan, I. Exogenous glycine betaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ. Exp. Bot. 2006, 56, 72–79. [Google Scholar] [CrossRef]
- Mohammed, A.R.; Tarpley, L. Characterization of rice (Oryza sativa L.) physiological responses to α-tocopherol, glycine betaine or salicylic acid application. J. Agric. Sci. 2011, 3, 3. [Google Scholar] [CrossRef] [Green Version]
Growth Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
Factor | Plant Height (cm) | Leaf Number | Root Length (cm) | Leaf Area (cm2 plant−1) | % Damages | Variegation Index | Total Plant Dry Weight (g) | Plant Water Content (-) | |
A: Levels of Salinity | * | ns | * | * | * | ns | * | ns | |
S1 | 35.39 ± 1.02 a | 15.62 ± 0.48 | 23.82 ± 0.82 b | 382.42 ± 8.02 a | 1.57 ± 0.02 b | 0.57 ± 0.04 | 7.83 ± 0.20 a | 3.88 ± 0.15 | |
S2 | 32.39 ± 0.99 b | 15.10 ± 0.50 | 27.90 ± 0.90 a | 364.91 ± 8.41 b | 1.62 ± 0.02 a | 0.57 ± 0.04 | 7.24 ± 0.18 b | 3.99 ± 0.15 | |
B: Mode of Application | ns | ns | * | * | * | ns | * | * | |
F1 | 33.46 ± 0.88 | 15.16 ± 0.49 | 26.54 ± 0.94 a | 368.64 ± 8.02 b | 1.65 ± 0.02 a | 0.58 ± 0.04 | 7.17 ± 0.19 b | 4.13 ± 0.14 a | |
F2 | 34.89 ± 0.92 | 15.52 ± 0.50 | 24.18 ± 0.80 b | 388.68 ± 8.51 a | 1.52 ± 0.02 b | 0.58 ± 0.04 | 7.59 ± 0.20 a | 3.74 ± 0.13 b | |
C: Osmotic Adjustment Substances | * | * | * | * | * | ns | * | ns | |
C | 34.33 ± 1.02 b | 14.65 ± 0.46 b | 24.31 ± 0.79 b | 348.48 ± 7.38 d | 1.86 ± 0.03 a | 0.58 ± 0.04 | 7.13 ± 0.17 b | 4.01 ± 0.14 | |
G | 31.17 ± 0.91 c | 14.89 ± 0.45 b | 24.06 ± 0.76 b | 415.12 ± 9.32 a | 1.57 ± 0.02 b | 0.57 ± 0.03 | 7.20 ± 0.15 b | 3.93 ± 0.13 | |
GB | 37.83 ± 0.99 a | 16.12 ± 0.53 a | 27.30 ± 0.85 a | 396.09 ± 8.67 b | 1.40 ± 0.02 c | 0.58 ± 0.05 | 8.39 ± 0.22 a | 3.86 ± 0.15 | |
G + GB | 33.38 ± 0.90 bc | 16.18 ± 0.54 a | 27.40 ± 0.87 a | 364.96 ± 8.02 c | 1.55 ± 0.02 b | 0.58 ± 0.04 | 7.10 ± 0.15 b | 3.86 ± 0.14 | |
Interaction | AB | * | ns | ns | ns | ns | ns | ns | ns |
AC | * | ns | ns | ns | ns | ns | ns | ns | |
BC | ns | ns | ns | ns | ns | ns | * | * | |
ABC | ns | ns | ns | ns | ns | ns | ns | ns |
Color of Leaves | |||||||
---|---|---|---|---|---|---|---|
Factor | Light Green Leaf Area | Dark Green Leaf Area | |||||
R | G | B | R | G | B | ||
A: Levels of Salinity | * | * | * | * | * | * | |
S1 | 141.61 ± 1.41 a | 155.78 ± 1.36 a | 63.62 ± 0.76 a | 103.98 ± 0.91 a | 123.38 ± 1.21 a | 56.81 ± 0.51 a | |
S2 | 138.49 ± 1.30 b | 152.17 ± 1.24 b | 59.98 ± 0.53 b | 100.67 ± 0.90 b | 120.25 ± 1.17 b | 54.61 ± 0.50 b | |
B: Mode of Application | ns | ns | ns | * | * | * | |
F1 | 138.10 ± 1.11 | 155.97 ± 1.31 | 61.44 ± 0.71 | 101.24 ± 0.91 b | 120.35 ± 1.16 b | 55.31 ± 0.55 b | |
F2 | 139.20 ± 1.17 | 156.98 ± 1.36 | 62.16 ± 0.68 | 103.43 ± 0.94 a | 123.27 ± 1.20 a | 57.10 ± 0.56 a | |
C: Osmotic Adjustment Substances | * | * | * | * | * | * | |
C | 139.70 ± 1.14 b | 154.27 ± 1.22 c | 63.99 ± 0.77 b | 101.73 ± 0.94 b | 121.30 ± 1.13 b | 54.83 ± 0.52 b | |
G | 145.41 ± 1.33 a | 162.70 ± 1.30 a | 60.19 ± 0.69 c | 105.34 ± 0.99 a | 123.21 ± 1.20 a | 54.99 ± 0.51 b | |
GB | 140.63 ± 1.22 b | 158.39 ± 1.19 b | 66.30 ± 0.80 a | 102.00 ± 0.95 b | 121.43 ± 1.12 b | 57.36 ± 0.57 a | |
G + GB | 134.47 ± 1.25 c | 151.55 ± 1.11 d | 54.73 ± 0.56 d | 99.21 ± 0.91 c | 118.30 ± 1.09 c | 51.34 ± 0.50 c | |
Interaction | AB | ns | ns | ns | ns | ns | ns |
AC | ns | * | ns | * | ns | ns | |
BC | ns | ns | * | ns | ns | * | |
ABC | ns | ns | ns | ns | ns | ns |
Photosynthetic Pigments (mg g−1 FW) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Factor | Light Green Area | Dark Green Area | |||||||
Chl a | Chl b | Chl (a + b) | Carotenoids | Chl a | Chl b | Chl (a + b) | Carotenoids | ||
A: Levels of Salinity | * | * | * | * | * | * | * | * | |
S1 | 0.53 ± 0.05 b | 0.20 ± 0.02 a | 0.70 ± 0.05 b | 0.15 ± 0.02 b | 0.91 ± 0.06 b | 0.78 ± 0.05 a | 1.69 ± 0.06 b | 0.07 ± 0.01 b | |
S2 | 0.69 ± 0.06 a | 0.11 ± 0.01 b | 0.81 ± 0.05 a | 0.21 ± 0.02 a | 1.14 ± 0.06 a | 0.67 ± 0.05 b | 1.82 ± 0.06 a | 0.15 ± 0.02 a | |
B: Mode of Application | * | ns | * | ns | * | * | * | * | |
F1 | 0.35 ± 0.04 b | 0.16 ± 0.02 | 0.51 ± 0.05 b | 0.18 ± 0.02 | 0.90 ± 0.06 b | 0.64 ± 0.05 b | 1.58 ± 0.06 b | 0.09 ± 0.01 b | |
F2 | 0.57 ± 0.05 a | 0.15 ± 0.02 | 0.72 ± 0.06 a | 0.18 ± 0.02 | 1.07 ± 0.06 a | 0.75 ± 0.05 a | 1.77 ± 0.07 a | 0.13 ± 0.02 a | |
C: Osmotic Adjustment Substances | * | * | * | * | * | * | * | * | |
C | 0.69 ± 0.05 b | 0.19 ± 0.02 b | 0.83 ± 0.07 b | 0.24 ± 0.02 a | 0.97 ± 0.07 b | 0.64 ± 0.04 c | 1.60 ± 0.08 b | 0.13 ± 0.01 a | |
G | 0.59 ± 0.04 c | 0.24 ± 0.02 a | 0.84 ± 0.07 b | 0.13 ± 0.01 d | 0.97 ± 0.07 b | 0.83 ± 0.05 a | 1.58 ± 0.08 b | 0.05 ± 0.01 c | |
GB | 0.81 ± 0.06 a | 0.18 ± 0.02 b | 0.99 ± 0.07 a | 0.16 ± 0.01 c | 1.13 ± 0.08 a | 0.71 ± 0.05 b | 1.80 ± 0.08 a | 0.09 ± 0.01 b | |
G + GB | 0.42 ± 0.04 d | 0.10 ± 0.01 c | 0.51 ± 0.05 c | 0.19 ± 0.01 b | 0.82 ± 0.07 c | 0.53 ± 0.04 d | 1.36 ± 0.07 c | 0.08 ± 0.01 b | |
Interaction | AB | ns | ns | ns | ns | ns | ns | ns | ns |
AC | ns | ns | ns | ns | ns | ns | ns | ns | |
BC | ns | ns | ns | ns | ns | ns | ns | ns | |
ABC | ns | ns | ns | ns | ns | ns | ns | ns |
Stomatal Parameters | ||||
---|---|---|---|---|
Factor | Stomatal Density (Stomata Number per Mm2) | Length (µm) | Width (µm) | |
A: Levels of Salinity | * | * | ns | |
S1 | 19.69 ± 0.78 b | 31.94 ± 0.23 a | 27.32 ± 0.20 | |
S2 | 21.42 ± 0.81 a | 31.41 ± 0.21 b | 27.43 ± 0.22 | |
B: Mode of Application | * | * | ns | |
F1 | 21.44 ± 0.77 a | 31.43 ± 0.20 b | 27.37 ± 0.24 | |
F2 | 19.67 ± 0.75 b | 31.92 ± 0.21 a | 27.39 ± 0.24 | |
C: Osmotic Adjustment Substances | * | * | * | |
C | 18.64 ± 0.78 c | 31.87 ± 0.23 b | 28.55 ± 0.25 a | |
G | 20.40 ± 0.76 b | 32.89 ± 0.26 a | 28.01 ± 0.25 b | |
GB | 22.72 ± 0.80 a | 30.18 ± 0.20 d | 26.29 ± 0.22 d | |
G + GB | 20.46 ± 0.79 b | 31.36 ± 0.20 c | 26.96 ± 0.23 c | |
Interaction | AB | ns | ns | ns |
AC | ns | ns | ns | |
BC | ns | ns | ns | |
ABC | ns | ns | ns |
Biochemical Parameters | |||||
---|---|---|---|---|---|
Factor | TSS (µg g−1 FW) | Proline (µg g−1 FW) | Antioxidant Capacity (%) | Proteins (mg g−1 FW) | |
A: Levels of Salinity | * | * | * | * | |
S1 | 39.58 ± 1.51 a | 6.95 ± 0.03 b | 89.63 ± 3.72 a | 38.10 ± 1.75 a | |
S2 | 36.38 ± 1.43 b | 7.04 ± 0.03 a | 81.19 ± 3.43 b | 32.33 ± 1.61 b | |
B: Mode of Application | ns | ns | * | * | |
F1 | 39.69 ± 1.48 | 6.97 ± 0.03 | 89.08 ± 3.61 a | 31.64 ± 1.47 b | |
F2 | 38.26 ± 1.44 | 6.98 ± 0.03 | 81.74 ± 3.40 b | 38.79 ± 1.55 a | |
C: Osmotic Adjustment Substances | * | * | * | * | |
C | 42.04 ± 1.88 a | 6.93 ± 0.03 b | 76.67 ± 3.23 c | 41.28 ± 1.61 b | |
G | 36.83 ± 1.40 b | 7.02 ± 0.04 a | 84.22 ± 3.58 b | 46.03 ± 1.65 a | |
GB | 37.29 ± 1.38 b | 6.94 ± 0.03 b | 83.82 ± 3.61 b | 31.05 ± 1.35 c | |
G + GB | 36.73 ± 1.35 b | 6.91 ± 0.03 b | 97.49 ± 4.02 a | 24.49 ± 1.22 d | |
Interaction | AB | ns | ns | ns | ns |
AC | * | ns | ns | ns | |
BC | ns | ns | ns | ns | |
ABC | ns | ns | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Caparrós, P.; Llanderal, A.; Hegarat, E.; Jiménez-Lao, M.; Lao, M.T. Effects of Exogenous Application of Osmotic Adjustment Substances on Growth, Pigment Concentration, and Physiological Parameters of Dracaena sanderiana Sander under Different Levels of Salinity. Agronomy 2020, 10, 125. https://doi.org/10.3390/agronomy10010125
García-Caparrós P, Llanderal A, Hegarat E, Jiménez-Lao M, Lao MT. Effects of Exogenous Application of Osmotic Adjustment Substances on Growth, Pigment Concentration, and Physiological Parameters of Dracaena sanderiana Sander under Different Levels of Salinity. Agronomy. 2020; 10(1):125. https://doi.org/10.3390/agronomy10010125
Chicago/Turabian StyleGarcía-Caparrós, Pedro, Alfonso Llanderal, Elodie Hegarat, María Jiménez-Lao, and María Teresa Lao. 2020. "Effects of Exogenous Application of Osmotic Adjustment Substances on Growth, Pigment Concentration, and Physiological Parameters of Dracaena sanderiana Sander under Different Levels of Salinity" Agronomy 10, no. 1: 125. https://doi.org/10.3390/agronomy10010125
APA StyleGarcía-Caparrós, P., Llanderal, A., Hegarat, E., Jiménez-Lao, M., & Lao, M. T. (2020). Effects of Exogenous Application of Osmotic Adjustment Substances on Growth, Pigment Concentration, and Physiological Parameters of Dracaena sanderiana Sander under Different Levels of Salinity. Agronomy, 10(1), 125. https://doi.org/10.3390/agronomy10010125