Fittonia verschaffeltii Response to Artificial Light Treatments: BIOMASS, Nutrient Concentrations and Physiological Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Spectral Distribution and Agronomic Characterization of Light Treatments
2.3. Biomass Parameters
2.4. Root, Stem and Leaf Nutrients
2.5. Biochemical Parameters
2.6. Pigments Concentrations
2.7. Relationship between Pigment Content and Absorbed Light Spectrum
2.8. Statistical Analysis
3. Results
3.1. Spectral Distribution and Agronomic Characterization
3.2. Biomass Parameters
3.3. Contents of N, P and K in Roots, Stems and Leaves
3.4. Biochemical Parameters
3.5. Changes in Pigment Concentrations
3.6. Plant’s Harvesting Lamp PAR Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, B.; Zhou, X.; Xu, R.; Wang, J.; Lin, Y.; Pang, J.; Wu, S.; Zhong, F. Comprehensive analysis of photosynthetic characteristics and quality improvement of purple cabbage under different combinations of monochromatic light. Front. Plant Sci. 2016, 7, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, P.; Terfa, M.T.; Olsen, J.E.; Torre, S. Red and blue light effects on morphology and flowering of Petunia × hybrida. Sci. Hortic. 2015, 184, 171–178. [Google Scholar] [CrossRef]
- Chung, J.P.; Huang, C.Y.; Dai, T.E. Spectral effects on embryogenesis and plant-let growth of Oncidium ‘Gower Ramsey’. Sci. Hortic. 2010, 124, 511–526. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Douwstra, P.; Trouwborst, G.; van Ieperen, W.; Harbinson, J. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 2010, 61, 1267–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stutte, G.W. Light-emitting diodes for manipulating the phytochrome apparatus. HortScience 2009, 44, 231–234. [Google Scholar] [CrossRef]
- Goto, E. Plant production in a closed plant factory with artificial lighting. Acta Hortic. 2012, 956, 37–49. [Google Scholar] [CrossRef]
- Bercu, R.; Popoviciu, D.R. Anatomy of Fittonia verschaffeltii (Lem.) Van Houtte (Acanthaceae). Ann. Rom. Soc. Cell Biol. 2015, 19, 23–28. [Google Scholar]
- Almansa, E.M.; Espín, A.; Chica, R.M.; Lao, M.T. Changes in endogenous auxin concentration in cultivars of tomato seedlings under artificial light. HortScience 2011, 46, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Currey, C.J.; Lopez, R.G. Cuttings of Impatiens, Pelargonium, and Petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance. HortScience 2013, 48, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Dieleman, J.A.; De Visser, P.H.; Meinen, E.; Grit, J.G.; Dueck, T. Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3D modelling. Front. Plant Sci. 2019, 10, 839. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, E.; Ouzounis, T.; Giday, H.; Schipper, R.; Heuvelink, E.; Marcelis, L.F. Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Front. Plant Sci. 2019, 9, 2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radmer, R.J.; Kok, B. Light Conversion Efficiency in Photosynthesis. In Encyclopedia of Plant Physiology (New Series); Trebst, A., Avron, M., Photosynthesis, I., Eds.; Springer: Berlin/Heidelberg, Germany, 1977; Volume 5. [Google Scholar]
- Long, S.P.; Zhu, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Steiner, A. A universal method for preparing nutrient solution of a certain desired composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef] [Green Version]
- Baille, A.; González-Real, M.M.; López, J.C.; Cabrera, J.; Pérez-Parra, J. Characterization of the solar diffuse component under “Parral” plastic greenhouses. Acta Hortic. 2003, 614, 341–346. [Google Scholar] [CrossRef]
- Ryser, P.; Lambers, H. Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 1995, 170, 251–265. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Lavandula multifida response to salinity: Growth, nutrient uptake, and physiological changes. J. Plant Nutr. Soil Sci. 2017, 180, 96–104. [Google Scholar] [CrossRef]
- Ben Amor, N.; Ben Hamed, K.; Debez, A.; Grignon, C.; Abdelly, C. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci. 2005, 168, 889–899. [Google Scholar] [CrossRef]
- Csáky, A.; Martínez-Grau, M.A. Técnicas Experimentales en Síntesis Orgánica; Síntesis: Madrid, Spain, 1998. [Google Scholar]
- Krom, M.D. Spectrophotometric determination of ammonia: Study of a modified Berthelot reaction using salicylate and dicholoroisocyanurate. Analyst 1980, 105, 305–316. [Google Scholar] [CrossRef]
- Hogue, E.; Wilcow, G.E.; Cantliffe, D.J. Effect of soil P on phosphate fraction in tomato leaves. J. Am. Soc. Hortic. Sci. 1970, 95, 174–176. [Google Scholar]
- Lachica, M.; Aguilar, A.; Yanez, J. Análisis foliar: Métodos utilizados en la estación experimental del Zaidín. Anal. Edafol. Agrobiol. 1973, 32, 1033–1047. [Google Scholar]
- Irigoyen, J.J.; Emerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Tien, T.M.; Gaskin, M.H.; Hubbell, D.H. Plant growth substance produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanun L.). Appl. Environ. Microbiol. 1979, 37, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvent with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Whitmarsh, J.; Govindjee. The photosynthetic process. In Concepts in Photobiology: Photosynthesis and Photomorphogenesis; Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, K.-D., Govindjee, Eds.; Narosa Publishers and Kluwer Academic: New Delhi, India, 1999; pp. 11–51. [Google Scholar]
- Wollaeger, H.M.; Runkle, E.S. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience 2015, 50, 522–529. [Google Scholar] [CrossRef] [Green Version]
- Khattak, A.M.; Pearson, S. Spectral filters and temperature effects on the growth and development of chrysanthemums under low light integral. Plant Growth Regul. 2006, 49, 61–68. [Google Scholar] [CrossRef]
- Randall, W.C.; Lopez, R.G. Comparison of supplemental lighting from high-pressure sodium lamps and light-emitting diodes during bedding plant seedling production. HortScience 2014, 49, 589–595. [Google Scholar] [CrossRef]
- Randall, W.C.; Lopez, R.G. Comparison of bedding plant seedlings grown under sole-source light-emitting diodes (LEDs) and greenhouse supplemental lighting from LEDs and high-pressure sodium lamps. HortScience 2015, 50, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, T.D.; Raschke, K. Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiol. 1981, 68, 1170–1174. [Google Scholar] [CrossRef] [Green Version]
- Mills, H.A.; Jones, J.J.B. Plant Analysis Handbook II; MicroMacro Publishing, Inc.: Athens, GA, USA, 1996; p. 422. [Google Scholar]
- Almansa, E.M.; Espín, A.; Chica, R.M.; Lao, M.T. Nutritional response of seedling tomato plants under different lighting treatments. J. Plant Nutr. 2017, 40, 467–475. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Sams, C.E. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Am. Soc. Hortic. Sci. 2013, 138, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Babourina, O.; Newman, I.; Shabala, S. Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin mutant Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA 2002, 99, 2433–2438. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.W.; Lee, C.W.; Paek, K.Y. Influence of mixed LED radiation on the growth of annual plants. J. Plant Biol. 2006, 49, 286–290. [Google Scholar] [CrossRef]
- Islam, M.A.; Tarkowská, D.; Clarke, J.L.; Blystad, D.R.; Gislerød, H.R.; Torre, S.; Olsen, J.E. Impact of end-of-day red and far-red light on plant morphology and hormone physiology of poinsettia. Sci. Hortic. 2014, 174, 77–86. [Google Scholar] [CrossRef]
- Halliday, K.J.; Martinez-Garcia, J.F.; Josse, E.M. Integration of light and auxin signaling. Cold Spring Harbor Perspect. Biol. 2009, 1, a001586. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Van Labeke, M.C. Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality. J. Plant Physiol. 2017, 213, 66–74. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2002; p. 690. [Google Scholar]
- García-Caparrós, P.; Almansa, E.M.; Chica, R.M.; Lao, M.T. Effects of artificial light treatments on growth, mineral composition, physiology, and pigment concentration in Dieffenbachia maculata “Compacta” plants. Sustainability 2019, 11, 2867. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Van Labeke, M.C. Long-term effects of red-and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Front. Plant Sci. 2017, 8, 917. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2010, 62, 869–882. [Google Scholar] [CrossRef] [Green Version]
- Eggink, L.L.; Park, H.; Hoober, J.K. The role of chlorophyll b in photosynthesis: Hypothesis. BMC Plant Biol. 2001, 1, 2. [Google Scholar] [CrossRef]
Spectral Region (nm) | Irradiance (µmol m−2 s−1) | ||
---|---|---|---|
TL-D | TL-D + LEDs | TL-5 | |
UV (300–400) | 0.49 | 0.25 | 1.22 |
B (400–500) | 25.40 | 22.11 | 16.78 |
R (600–700) | 39.32 | 30.02 | 44.99 |
FR (700–800) | 3.81 | 1.94 | 5.45 |
PAR (400–700) | 112.38 | 77.37 | 101.22 |
NIR (700–1100) | 6.09 | 3.06 | 10.56 |
TOTAL (300–1100) | 118.96 | 80.68 | 113.00 |
PAR:TOTAL | 0.94 | 0.96 | 0.90 |
PAR:NIR | 18.45 | 25.25 | 9.58 |
B:R | 0.65 | 0.74 | 0.37 |
B:FR | 6.66 | 11.39 | 3.08 |
R:FR | 10.31 | 15.46 | 8.25 |
Light Treatments | Roots | Stems | Leaves | |
---|---|---|---|---|
N | TL-D | 15.54 ± 1.54 a | 16.66 ± 1.40 a | 14.84 ± 1.26 a |
TL-D + LEDs | 15.54 ± 1.54 a | 16.38 ± 1.52 a | 14.98 ± 1.35 a | |
TL-5 | 15.12 ± 1.33 a | 16.24 ± 1.68 a | 15.54 ± 1.50 a | |
P | TL-D | 1.55 ± 0.31 a | 0.93 ± 0.31 a | 2.48 ± 0.28 b |
TL-D + LEDs | 1.86 ± 0.26 a | 1.14 ± 0.30 a | 2.60 ± 0.25 b | |
TL-5 | 1.78 ± 0.29 a | 1.20 ± 0.25 a | 3.41 ± 0.30 a | |
K | TL-D | 26.13 ± 2.34 b | 15.21 ± 1.24 b | 46.41 ± 4.29 b |
TL-D + LEDs | 33.54 ± 3.12 a | 24.96 ± 2.38 a | 45.24 ± 4.51 b | |
TL-5 | 27.13 ± 2.21 b | 16.38 ± 1.39 b | 59.67 ± 5.56 a |
Light Treatments | Chl a | Chl b | Chl (a+b) | Car |
---|---|---|---|---|
TL-D | 0.58 ± 0.02 a | 0.31 ± 0.01 a | 0.89 ± 0.04 a | 0.09 ± 0.01 a |
TL-D + LEDs | 0.53 ± 0.02 b | 0.27 ± 0.01 b | 0.80 ± 0.03 b | 0.09 ± 0.01 a |
TL-5 | 0.60 ± 0.03 a | 0.32 ± 0.03 a | 0.90 ± 0.03 a | 0.11 ± 0.01 a |
USECla | USEClb | USECar | |
---|---|---|---|
TL-D | 1.39 ± 0.27 a | 0.90 ± 0.09 a | 0.22 ± 0.04 a |
TL-D + LEDs | 0.86 ± 0.16 b | 0.73 ± 0.07 b | 0.20 ± 0.04 a |
TL-5 | 1.57 ± 0.27 a | 0.92 ± 0.09 a | 0.21 ± 0.05 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Caparros, P.; Almansa, E.M.; Barbero, F.J.; Chica, R.M.; Lao, M.T. Fittonia verschaffeltii Response to Artificial Light Treatments: BIOMASS, Nutrient Concentrations and Physiological Changes. Agronomy 2020, 10, 126. https://doi.org/10.3390/agronomy10010126
García-Caparros P, Almansa EM, Barbero FJ, Chica RM, Lao MT. Fittonia verschaffeltii Response to Artificial Light Treatments: BIOMASS, Nutrient Concentrations and Physiological Changes. Agronomy. 2020; 10(1):126. https://doi.org/10.3390/agronomy10010126
Chicago/Turabian StyleGarcía-Caparros, Pedro, Eva María Almansa, Francisco Javier Barbero, Rosa María Chica, and María Teresa Lao. 2020. "Fittonia verschaffeltii Response to Artificial Light Treatments: BIOMASS, Nutrient Concentrations and Physiological Changes" Agronomy 10, no. 1: 126. https://doi.org/10.3390/agronomy10010126
APA StyleGarcía-Caparros, P., Almansa, E. M., Barbero, F. J., Chica, R. M., & Lao, M. T. (2020). Fittonia verschaffeltii Response to Artificial Light Treatments: BIOMASS, Nutrient Concentrations and Physiological Changes. Agronomy, 10(1), 126. https://doi.org/10.3390/agronomy10010126