Floral Scent Evaluation of Three Cut Flowers Through Sensorial and Gas Chromatography Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sensory Analysis of Floral Scent
2.3. Evaluation of VOCs Using GC-MS
2.4. Statistics
3. Results
3.1. Sensory Analysis
3.2. VOCs Analysis.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Raguso, R.A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
- Aros, D.; Spadafora, N.; Venturi, M.; Núñez-Lillo, G.; Meneses, C.; Methven, L.; Müller, C.; Rogers, H. Floral scent evaluation of segregating lines of Alstroemeria caryophyllaea. Sci. Hortic. 2015, 185, 183–192. [Google Scholar] [CrossRef]
- Amrad, A.; Moser, M.; Mandel, T.; de Vries, M.; Schuurink, R.C.; Freitas, L.; Kuhlemeier, C. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr. Biol. 2016, 26, 3303–3312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borda, A.M.; Clark, D.G.; Huber, D.J.; Welt, B.A.; Nell, T.A. Effects of ethylene on volatile emission and fragrance in cut roses: The relationship between fragrance and vase life. Postharvest Biol. Technol. 2011, 59, 245–252. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 2000, 122, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Dudareva, N.; Pichersky, E. (Eds.) Biology of Floral Scent; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Veramendi, M.; Herencia, P.; Ares, G. Perfume odor categorization: To what extent trained assessors and consumers agree? J. Sens. Stud. 2013, 28, 76–89. [Google Scholar] [CrossRef]
- Hinterholzer, A.; Schieberle, P. Identification of the most odour-active volatiles in fresh, hand-extracted juice of Valencia late oranges by odour dilution techniques. Flavour Fragr. J. 1998, 13, 49–55. [Google Scholar] [CrossRef]
- Jo, H.; Rodiek, S.; Fujii, E.; Miyazaki, Y.; Park, B.J.; Ann, S.W. Physiological and psychological response to floral scent. HortScience 2013, 48, 82–88. [Google Scholar] [CrossRef]
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; De Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Tao, N.P.; Gu, S.Q. Characterization of the key odor-active compounds in steamed meat of Coilia ectenes from Yangtze River by GC-MS-O. Eur. Food Res. Technol. 2014, 238, 237–245. [Google Scholar] [CrossRef]
- Úbeda, C.; San-Juan, F.; Concejero, B.; Callejón, R.M.; Troncoso, A.M.; Morales, M.L.; Ferreira, V.; Hernández-Orte, P. Glycosidically bound aroma compounds and impact odorants of four strawberry varieties. J. Agric. Food Chem. 2012, 60, 6095–6102. [Google Scholar] [CrossRef]
- Kong, Y.; Sun, M.; Pan, H.T.; Zhang, Q.X. Composition and emission rhythm of floral scent volatiles from eight lily cut flowers. J. Am. Soc. Hortic. Sci. 2012, 137, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Yu, R.; Fan, Y. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta 2014, 240, 745–762. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wan, Y.; Sun, Z.; Li, T.; Liu, X.; Ma, H.; Li, Z. Floral scent chemistry of Luculia yunnanensis (Rubiaceae), a species endemic to China with sweetly fragrant flowers. Molecules 2017, 22, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amerine, M.A.; Pangborn, R.M.; Roessler, E.B. Principles of Sensory Evaluation of Food; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Andreu-Sevilla, A.J.; Mena, P.; Martí, N.; Viguera, C.G.; Carbonell-Barrachina, Á.A. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Res. Int. 2013, 54, 246–254. [Google Scholar] [CrossRef]
- Del Barrio-Galán, R.; Medel-Marabolí, M.; Peña-Neira, Á. Effect of different aging techniques on the polysaccharide and phenolic composition and sensory characteristics of Syrah red wines fermented using different yeast strains. Food Chem. 2015, 179, 116–126. [Google Scholar] [CrossRef]
- Aros, D.; Gonzalez, V.; Allemann, R.K.; Müller, C.T.; Rosati, C.; Rogers, H.J. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J. Exp. Bot. 2012, 63, 2739–2752. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.C.; Yeh, T.F. Floral consumption values for consumer groups with different purchase choices for flowers. HortTechnology 2009, 19, 563–571. [Google Scholar] [CrossRef]
- Rabobank. World floriculture map 2015. Rabobank Ind. Note 2015, 475, 1–4. [Google Scholar]
- Doty, R.L. An examination of relationships between the pleasantness, intensity, and concentration of 10 odorous stimuli. Percept. Psychophys. 1975, 17, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Distel, H.; Ayabe-Kanamura, S.; Martínez-Gómez, M.; Schicker, I.; Kobayakawa, T.; Saito, S.; Hudson, R. Perception of everyday odors—Correlation between intensity, familiarity and strength of hedonic judgement. Chem. Senses 1999, 24, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Leenders, M.A.; Smidts, A.; El Haji, A. Ambient scent as a mood inducer in supermarkets: The role of scent intensity and time-pressure of shoppers. J. Retail. Consum. Serv. 2016, 48, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Moskowitz, H.R. Intensity and hedonic functions for chemosensory stimuli. Chem. Senses Nutr. 1977, 1, 71–101. [Google Scholar]
- Spence, C. Crossmodal correspondences: A tutorial review. Atten. Percept. Psychophys. 2011, 73, 971–995. [Google Scholar] [CrossRef] [Green Version]
- Schifferstein, H.N.; Tanudjaja, I. Visualising fragrances through colours: The mediating role of emotions. Perception 2004, 33, 1249–1266. [Google Scholar] [CrossRef]
- Seo, H.S.; Arshamian, A.; Schemmer, K.; Scheer, I.; Sander, T.; Ritter, G.; Hummel, T. Cross-modal integration between odors and abstract symbols. Neurosci. Lett. 2010, 478, 175–178. [Google Scholar] [CrossRef]
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef]
- Schiestl, F.P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 2010, 13, 643–656. [Google Scholar] [CrossRef]
- Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W. The volatile constituents in the peel and pulp of a green Thai mango, Khieo Sawoei cultivar (Mangifera indica L.). Food Sci. Technol. Res. 2001, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Castellanos, P.P.; Bishop, C.D.; Pascual-Villalobos, M.J. Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry 2001, 57, 99–102. [Google Scholar] [CrossRef]
- Usami, A.; Ono, T.; Marumoto, S.; Miyazawa, M. Comparison of volatile compounds with characteristic odor in flowers and leaves of nojigiku (Chrysanthemum japonense). J. Oleo Sci. 2013, 62, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Yan, Z.; Zhao, J.; Zhu, Y. Headspace solid-phase microextraction and gas chromatography-mass spectrometry of volatile components of Chrysanthemum morifolium Ramat. Trop. J. Pharm. Res. 2016, 15, 2241–2244. [Google Scholar] [CrossRef] [Green Version]
- Wongchaochant, S.; Inamoto, K.; Doi, M. Analysis of flower scent of freesia species and cultivars. Acta Hortic. 2005, 673, 595–601. [Google Scholar] [CrossRef]
- Fu, Y.; Gao, X.; Xue, Y.; Hui, Y.; Chen, F.; Su, Q.; Wang, L. Volatile compounds in the flowers of Freesia parental species and hybrids. J. Integr. Plant Biol. 2007, 49, 1714–1718. [Google Scholar] [CrossRef]
- Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants; Lavoisier publishing: Paris, France, 1995. [Google Scholar]
- Urlacher, V.B.; Makhsumkhanov, A.; Schmid, R.D. Biotransformation of β-ionone by engineered cytochrome P450 BM-3. Appl. Microbiol. Biotechnol. 2006, 70, 53–59. [Google Scholar] [CrossRef]
- Baldermann, S.; Kato, M.; Fleischmann, P.; Watanabe, N. Biosynthesis of α-and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans. Acta Biochim. Pol. 2012, 59, 79–81. [Google Scholar] [CrossRef]
- Simkin, A.J.; Underwood, B.A.; Auldridge, M.; Loucas, H.M.; Shibuya, K.; Schmelz, E.; Clark, D.G.; Klee, H.J. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of petunia flowers. Plant Physiol. 2004, 136, 3504–3514. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Oyama-Okubo, N.; Nakayama, M.; Takatsu, Y.; Kasumi, M. Floral scent of wild Gladiolus species and the selection of breeding material for this character. Breed. Sci. 2008, 58, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Wooding, S. Olfaction: It makes a world of scents. Curr. Biol. 2013, 23, R677–R679. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, S.R.; McRae, J.F.; Bava, C.M.; Beresford, M.K.; Hunter, D.; Jia, Y.; Atkinson, K.R.; Chheang, S.L.; Jin, D.; Peng, M.; et al. A Mendelian trait for olfactory sensitivity affects odor experience and food selection. Curr. Biol. 2013, 23, 1601–1605. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.S.; Schwieterman, M.L.; Kim, J.Y.; Cho, K.H.; Clark, D.G.; Colquhoun, T.A. Lilium floral fragrance: A biochemical and genetic resource for aroma and flavor. Phytochemistry 2016, 122, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 2017, 22, 1148. [Google Scholar] [CrossRef] [Green Version]
- Robles-Zepeda, R.E.; Lozoya-Gloria, E.; López, M.G.; Villarreal, M.L.; Ramírez-Chávez, E.; Molina-Torres, J. Montanoa tomentosa glandular trichomes containing kaurenoic acids chemical profile and distribution. Fitoterapia 2009, 80, 12–17. [Google Scholar] [CrossRef]
- Hilo de Souza, E.; Massarioli, A.P.; Moreno, I.A.; Souza, F.V.; Ledo, C.A.; Alencar, S.M.; Martinelli, A.P. Volatile compounds profile of Bromeliaceae flowers. Rev. Biol. Trop. 2016, 64, 1101–1116. [Google Scholar] [CrossRef]
- Byers, K.J.; Vela, J.P.; Peng, F.; Riffell, J.A.; Bradshaw, H.D. Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (Mimulus). Plant J. 2014, 80, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Toropov, A.A.; Toropova, A.P.; Cappellini, L.; Benfenati, E.; Davoli, E. Odor threshold prediction by means of the Monte Carlo method. Ecotoxicol. Environ. Saf. 2016, 133, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Saison, D.; De Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Xiao, Z. Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose. Food Chem. 2017, 221, 1484–1490. [Google Scholar] [CrossRef]
- Atanasova, B.; Thomas-Danguin, T.; Langlois, D.; Nicklaus, S.; Chabanet, C.; Etiévant, P. Perception of wine fruity and woody notes: Influence of peri-threshold odorants. Food Qual. Prefer. 2005, 16, 504–510. [Google Scholar] [CrossRef]
(%) | |
---|---|
Age | |
< 31 years old | 73 |
31–45 years old | 19 |
> 45 years old | 9 |
Sex | |
Female | 64 |
Male | 36 |
Purchase Frequency | |
Weekly | 4 |
Every 2 weeks | 8 |
Monthly | 16 |
Occasionally | 52 |
Never | 20 |
Likert scale (1 to 5) | |
Character Most Appreciated | |
Flower size | 3.68 a |
Flower colour | 4.84 c |
Floral scent | 4.27 b |
Stem length | 3.74 a |
Vase life | 3.98 a |
Kovats | ID | Volatile Compound | Aromatic Description | Relative Area | ||
---|---|---|---|---|---|---|
Chrysanthemum | Freesia | Oriental Lily | ||||
928 | C | xylene | plastic | 51.1 ± 0.4 | 45.3 ± 13.51 | 155 ± 31 |
940 | B | origanene | wood, green, herb | nd * | nd | 163 ± 38 |
950 | B | α-pinene | pine, turpentine | 78.4 ± 12.5 | 7.40 ± 0.77 | 719 ± 159 |
976 | B | camphene | camphor, mothball, oil, warm | 93.7 ± 8.2 | nd | nd |
995 | C | cumene | solvent | 38.9 ± 2.2 | 23.8 ± 5.7 | 150 ± 51 |
1006 | A | β-pinene | pine, resin, turpentine, wood | 186 ± 9 | 9.03 ± 1.91 | 218 ± 64 |
1008 | B | mesitylene | pesticide | 45.2 ± 12.9 | 24.5 ± 0.8 | 77.8 ± 7.3 |
1024 | B | D-limonene | lemon, orange | 43.83 ± 12.62 | 37.9 ± 10.3 | 779 ± 118 |
1028 | B | eucalyptol | pine, eucalyptus, herbal, camphor | nd | nd | 2447 ± 665 |
1036 | C | β-terpinene | lemon | 24.29 ± 5.46 | nd | 184 ± 13 |
1046 | B | trans-β-ocimene | herbaceous, weak floral, green, terpenic | 10.9 ± 1.1 | nd | 1180 ± 48 |
1054 | A | β-cis-ocimene | warm herbaceous, green, terpenic | nd | 10.2 ± 1.6 | 35,931 ± 6234 |
1062 | - | Unidentified terpene 1 | ni** | 21.1 ± 3.3 | 19.8 ± 1.6 | 3887 ± 578 |
1085 | B | γ-terpinene | gasoline, turpentine, bitter, resin | 6.94 ± 1.09 | 4.26 ± 1.39 | nd |
1101 | A | linalool | flower, lavender, bergamot, coriander | nd | 982 ± 256 | nd |
1108 | B | nonanal | fat, citrus, green, pungent | 12.5 ± 1.7 | nd | nd |
1110 | B | chrysanthenone | ni | 63.6 ± 18.6 | nd | nd |
1155 | B | camphor | camphor, earth, pine, spice | 159 ± 30 | nd | nd |
1171 | C | methyl benzoate | prune, lettuce, herb, sweet | nd | nd | 2916 ± 918 |
1345 | C | farnesane | ni | 107 ± 27 | 135 ± 12 | nd |
1445 | B | dihydro-β-ionone | woody cedar, berry seedy, oily | nd | 47.5 ± 14.8 | nd |
1446 | B | caryophyllene | balsamic, hop, wood, spice | 41.3 ± 9.7 | nd | nd |
1453 | B | α-bergamotene | wood, warm, tea | 25.6 ± 1.3 | nd | nd |
1490 | B | β-ionone | seaweed, violet, flower, raspberry | nd | 412 ± 118 | nd |
1496 | B | α-farnesene | wood, sweet, citrus, floral | 17.9 ± 0.5 | nd | 48.2 ± 7.8 |
1512 | C | (E)-β-famesene | citrus, green, floral, fresh | 94.8 ± 5.1 | nd | nd |
1539 | B | δ-cadinene | thyme, medicine, wood | 32.5 ± 3.7 | nd | nd |
1544 | - | Unidentified terpene 2 | ni | 54.5 ± 10.8 | 3.24 ± 1.15 | nd |
Sum total | 1221 | 3278 | 84,791 | |||
* nd = not detected; ** ni = no information |
Major Compound | Flower | Concentration (μg·L−1) | ODT * | OAV | |
---|---|---|---|---|---|
β-pinene | Chrysanthemum | 40.7 | ±1.80 | 1500 | 0.03 |
β-cis-ocimene | Oriental lily | 5552 | ±990 | 34 | 163.29 |
Linalool | Freesia | 11,800 | ±220 | 1 | 11,800 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aros, D.; Garrido, N.; Rivas, C.; Medel, M.; Müller, C.; Rogers, H.; Úbeda, C. Floral Scent Evaluation of Three Cut Flowers Through Sensorial and Gas Chromatography Analysis. Agronomy 2020, 10, 131. https://doi.org/10.3390/agronomy10010131
Aros D, Garrido N, Rivas C, Medel M, Müller C, Rogers H, Úbeda C. Floral Scent Evaluation of Three Cut Flowers Through Sensorial and Gas Chromatography Analysis. Agronomy. 2020; 10(1):131. https://doi.org/10.3390/agronomy10010131
Chicago/Turabian StyleAros, Danilo, Nicole Garrido, Constanza Rivas, Marcela Medel, Carsten Müller, Hilary Rogers, and Cristina Úbeda. 2020. "Floral Scent Evaluation of Three Cut Flowers Through Sensorial and Gas Chromatography Analysis" Agronomy 10, no. 1: 131. https://doi.org/10.3390/agronomy10010131
APA StyleAros, D., Garrido, N., Rivas, C., Medel, M., Müller, C., Rogers, H., & Úbeda, C. (2020). Floral Scent Evaluation of Three Cut Flowers Through Sensorial and Gas Chromatography Analysis. Agronomy, 10(1), 131. https://doi.org/10.3390/agronomy10010131