Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential Distribution under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Priority Neglected and Underutilized Fruit Species (NUFS) Selection
2.2. Species Occurrence Data
2.3. Environmental Variables
2.4. Maxent Modeling
2.5. Model Performance
2.6. Potential Area of Prediction
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galhena, D.H.; Freed, R.; Maredia, K.M. Home gardens: A promising approach to enhance household food security and wellbeing. Agric. Food Secur. 2013, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- MoFE. Biodiversity Conservation in Sri Lanka: A Framework for Action; Ministry of Forestry and Environment: Battaramulla, Sri Lanka, 1999.
- MoMD&E. National Biodiversity Strategic Action Plan 2016–2022. Colombo, Sri Lanka; Ministry of Mahaweli Development and Environment: Colombo, Sri Lanka, 2016.
- Punyawardena, B.V.R. Rainfall of Sri Lanka and Agroecological Zones; Department of Agriculture: Peradeniaya, Sri Lanka, 2008.
- Pushpakumara, G.; Silva, P. Agrobiodiverisity in Sri Lanka; Biodiversity Secretariat, Ministry of Environment and Natural Resources: Battaramulla, Sri Lanka, 2009.
- Dahanayake, N. Some neglected and underutilized fruit-crops in Sri Lanka. Int. J. Sci. Res. Publ. 2015, 5, 1–7. [Google Scholar]
- Haq, N. Fruits for the Future in Asia. In Proceedings of a Regional Consultation Meeting on Utilization of Tropical Fruit Trees in Asia; Crops for the Future: Bangkok, Thailand, 2002. [Google Scholar]
- Padulosi, S.; Heywood, V.; Hunter, D.; Jarvis, A. Underutilized species and climate change: Current status and outlook. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2011; pp. 507–521. [Google Scholar]
- Padulosi, S.; Hodgkin, T.; Williams, J.; Haq, N. 30 Underutilized crops: Trends, challenges and opportunities in the 21st century. In Managing Plant Genetic Diversity; Engels, J.M.M., Ramanatha Rao, V., Brown, A.H.D., Jackson, M.T., Eds.; CAB International Publishing: Wallingford, UK, 2002; pp. 323–338. [Google Scholar]
- Delêtre, M.; Gaisberger, H.; Arnaud, E. Agrobiodiversity in Perspectives—A Review of Questions, Tools, Concepts and Methodologies; Bioversity International: Rome, Italy, 2012; p. 77. [Google Scholar]
- Mabhaudhi, T.; Chimonyo, V.G.P.; Hlahla, S.; Massawe, F.; Mayes, S.; Nhamo, L.; Modi, A.T. Prospects of orphan crops in climate change. Planta 2019, 250, 695–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, K. Agrobiodiversity: The living library. Nature 2017, 544, S8–S10. [Google Scholar] [CrossRef] [PubMed]
- Padulosi, S.; Thompson, J.; Rudebjer, P. Fighting Poverty, Hunger and Malnutrition with Neglected and Underutilized Species: Needs, Challenges and the Way Forward; Bioversity International: Rome, Italy, 2013. [Google Scholar]
- Pushpakumara, D.K.N.G.; Gunasena, H.P.M.; Singh, V.P. Underutilized Fruit Trees in Sri Lanka Volume 1; World Agroforestry Centre, South Asia Office: New Delhi, India; National Multipurpose Tree Species Research Network of Sri Lanka; Sri Lanka Council for Agriculture Research Policy; Asian Centre for Underutilized Crops in Sri Lanka: New Delhi, India, 2007. [Google Scholar]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Maxted, N. Global conservation priorities for crop wild relatives. Nat. Plants 2016, 2, 16022. [Google Scholar] [CrossRef]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.; Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. In. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [Green Version]
- Bandula, A.; Jayaweera, C.; De Silva, A.; Oreiley, P.; Karunarathne, A.; Malkanthi, S. Role of underutilized crop value chains in rural food and income security in Sri Lanka. Procedia Food Sci. 2016, 6, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Siddique, K.H.M. Future Smart Food-Rediscovering Hidden Treasures of Neglected and Underutilized Species for Zero Hunger in Asia; Food & Agriculture Organisation of the United Nations Bangkok: Bangkok, Thailand, 2018; pp. 51–59. [Google Scholar]
- Malkanthi, S. Importance of Underutilized Crops in Thanamalwila Divisional Secretariat Division in Monaragala District in Sri Lanka. J. Agric. Sci. Sri Lanka 2017, 12. [Google Scholar] [CrossRef]
- Singh, A.; Dubey, P.K.; Chaurasia, R.; Dubey, R.K.; Pandey, K.K.; Singh, G.S.; Abhilash, P.C. Domesticating the Undomesticated for Global Food and Nutritional Security: Four Steps. Agronomy 2019, 9, 491. [Google Scholar] [CrossRef] [Green Version]
- Brijesh, S.; Daswani, P.; Tetali, P.; Antia, N.; Birdi, T. Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: Validating its traditional usage. BMC Complement. Altern. Med. 2009, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- El-Siddig, K.; Gunasena, H.P.M.; Prasad, B.A.; Pushpakumara, D.K.N.G.; Ramana, K.V.R.; Vijayanand, P.; Williams, J.T. Tamarind: Tamarindus Indica. Vol. 1; Southampton Centre for Underutilised Crops: Southampton, UK, 2006. [Google Scholar]
- Pareek, O.P.; Sharma, S. Underutilized Fruits and Nuts Vol.2; Aavishkar Publishers Distributors: Jaipur, India, 2009. [Google Scholar]
- Ilaiyaraja, N.; Likhith, K.; Babu, G.S.; Khanum, F. Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chem. 2015, 173, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Jama, B.; Mohamed, A.; Mulatya, J.; Njui, A. Comparing the “Big Five”: A framework for the sustainable management of indigenous fruit trees in the drylands of East and Central Africa. Ecol. Indic. 2008, 8, 170–179. [Google Scholar] [CrossRef]
- Moghadamtousi, S.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.; Kadir, H. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci. 2015, 16, 15625–15658. [Google Scholar] [CrossRef] [PubMed]
- Kuru, P. Tamarindus indica and its health related effects. Asian Pac. J. Trop. Biomed. 2014, 4, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, D.; Tripathy, G.; Patanaik, S. Anticancer activity of Limonia acidissima Linn (Rutaceae) fruit extracts on human breast cancer cell lines. Trop. J. Pharm. Res. 2012, 11, 413–419. [Google Scholar] [CrossRef]
- Ilango, K.; Chitra, V. Wound healing and anti-oxidant activities of the fruit pulp of Limonia acidissima Linn (Rutaceae) in rats. Trop. J. Pharm. Res. 2010, 9, 223–230. [Google Scholar] [CrossRef]
- Rahman, S.; Parvin, R. Therapeutic potential of Aegle marmelos (L.)—An overview. Asian Pac. J. Trop. Dis. 2014, 4, 71–77. [Google Scholar] [CrossRef]
- Adewole, S.O.; Caxton-Martins, E.A. Morphological changes and hypoglycemic effects of Annona muricata linn.(annonaceae) leaf aqueous extract on pancreatic β-cells of streptozotocin-treated diabetic rats. Afr. J. Biomed. Res. 2006, 9. [Google Scholar] [CrossRef]
- Liu, N.; Yang, H.L.; Wang, P.; Lu, Y.C.; Yang, Y.J.; Wang, L.; Lee, S.C. Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathway. J. Ethnopharmacol. 2016, 189, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Havinga, R.M.; Hartl, A.; Putscher, J.; Prehsler, S.; Buchmann, C.; Vogl, C.R. Tamarindus indica L.(Fabaceae): Patterns of use in traditional African medicine. J. Ethnopharmacol. 2010, 127, 573–588. [Google Scholar] [CrossRef]
- MoE. Sri Lanka’s Second National Communication on Climate Change; Ministry of Environment: Colombo, Sri Lanka, 2011.
- Jayawardena, S.; Dharshika, T.; Herath, R. Observed climate trends, future climate change projections and posible impacts for Sri Lanka. ‘Neela Haritha’ Clim. Chang. Mag. Sri Lanka 2017, 2, 144–151. [Google Scholar]
- Eckstein, D.; Hutfils, M.; Winges, M. Global Climate Risk Index 2019—Who Suffers Most From Extreme Weather Events? Weather-Related Loss Events in 2017 and 1998 to 2017; Germanwatch: Bonn, Germany, 2018. [Google Scholar]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.T.; Haq, N. Global Research on Underutilised Crops; an Assessment of Current Activities and Proposals for Enhanced Cooperation; ICUC: Southampton, UK, 2002. [Google Scholar]
- Jayasinghe-Mudalige, U.K.; Henson, S. Economic incentives for firms to implement enhanced food safety controls: Case of the Canadian red meat and poultry processing sector. Rev. Agric. Econ. 2006, 28, 494–514. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Young, N.; Carter, L.; Evangelista, P.A. MaxEnt Model v3. 3.3 e Tutorial (ArcGIS v10). 2011. Available online: http://ibis.colostate.edu/webcontent/ws/coloradoview/tutorialsdownloads/a_maxent_model_v7.pdf (accessed on 10 March 2019).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Watanabe, M.; Suzuki, T.; O’ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- Sharmila, S.; Joseph, S.; Sahai, A.; Abhilash, S.; Chattopadhyay, R. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Glob. Planet. Chang. 2015, 124, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Kumar, D.; Ganguly, A.R.; Sanjay, J.; Mujumdar, M.; Krishnan, R.; Shah, R.D. Reliability of regional and global climate models to simulate precipitation extremes over India. J. Geophys. Res. Atmos. 2014, 119, 9301–9323. [Google Scholar] [CrossRef]
- Sperber, K.R.; Annamalai, H.; Kang, I.-S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Kariyawasam, C.S.; Kumar, L.; Ratnayake, R.S.S. Invasive Plant Species Establishment and Range Dynamics in Sri Lanka under Climate Change. Entropy 2019, 21, 571. [Google Scholar] [CrossRef] [Green Version]
- Lamsal, P.; Kumar, L.; Aryal, A.; Atreya, K. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 2018, 47, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Aryal, A.; Nan, Z.; Ji, W. Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS ONE 2015, 10, e0138969. [Google Scholar] [CrossRef] [PubMed]
- Aryal, A.; Shrestha, U.B.; Ji, W.; Ale, S.B.; Shrestha, S.; Ingty, T.; Maraseni, T.; Cockfield, G.; Raubenheimer, D. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 2016, 6, 4065–4075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, B.; Delsol, R.; Hugueny, B.; Meynard, C.N.; Barhoumi, C.; Barbet-Massin, M.; Bellard, C. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 2018, 45, 1994–2002. [Google Scholar] [CrossRef]
- Boubli, J.; De Lima, M. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in Northwestern Amazonia via a maximum entropy algorithm. Int. J. Primatol. 2009, 30, 217–228. [Google Scholar] [CrossRef]
- Ibanez, I.; Silander, J., Jr.; Allen, J.M.; Treanor, S.A.; Wilson, A. Identifying hotspots for plant invasions and forecasting focal points of further spread. J. Appl. Ecol. 2009, 46, 1219–1228. [Google Scholar] [CrossRef] [Green Version]
- O’donnell, J.; Gallagher, R.V.; Wilson, P.D.; Downey, P.O.; Hughes, L.; Leishman, M.R. Invasion hotspots for non-native plants in Australia under current and future climates. Glob. Chang. Biol. 2012, 18, 617–629. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Hughes, L.; Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 2005, 186, 251–270. [Google Scholar] [CrossRef]
- Elith, J. Predicting Distributions of Invasive Species 2015. Available online: https://arxiv.org/ftp/arxiv/papers/1312/1312.0851.pdf (accessed on 12 February 2019).
- Mod, H.K.; Scherrer, D.; Luoto, M.; Guisan, A. What we use is not what we know: Environmental predictors in plant distribution models. J. Veg. Sci. 2016, 27, 1308–1322. [Google Scholar] [CrossRef]
- Heumann, B.W.; Walsh, S.J.; Verdery, A.M.; McDaniel, P.M.; Rindfuss, R.R. Land suitability modeling using a geographic socio-environmental niche-based approach: A case study from northeastern Thailand. Ann. Assoc. Am. Geogr. 2013, 103, 764–784. [Google Scholar] [CrossRef] [PubMed]
- Kadupitiya, H.K.; De Silva, S.H.S.A.; Dilshani, D.G.S.; Weerasinghe, P. Distribution of soil organic carbon in Sri Lanka: A GIS based modeling approach. Trop. Agric. 2018, 166, 91–106. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Phillips, S.; Anderson, R.P.; Schapire, R.E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.; Guisan, A.; Group, N.P.S.D.W. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning (ACM), Banff, AB, Canada, 4–8 July 2004; p. 83. [Google Scholar]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Baldwin, R. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Townsend Peterson, A.; Loiselle, B.A.; Group, N.P.S.D.W. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 2008, 45, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al.(2007). Ecography 2008, 31, 272–278. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J. A Brief Tutorial on Maxent 2017. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 20 February 2019).
- Cheng, A.; Mayes, S.; Dalle, G.; Demissew, S.; Massawe, F. Diversifying crops for food and nutrition security—A case of teff. Biol. Rev. 2017, 92, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Pramanik, M.; Paudel, U.; Mondal, B.; Chakraborti, S.; Deb, P. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim. Risk Manag. 2018, 19, 94–105. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.C.Q.; Cordeiro, M.C.R.; Andrade, S.R.M.; Ferreira, F.R.; Filgueiras, H.A.C.; Alves, R.E.; Kinpara, D.I. Annona Species; International Centre for Underutilised Crops: Southampton, UK, 2005; p. 261. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Anthony, S. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Weerahewa, J.; Rajapakse, C.; Pushpakumara, G. An analysis of consumer demand for fruits in Sri Lanka. 1981–2010. Appetite 2013, 60, 252–258. [Google Scholar] [CrossRef]
- Abel, C.; Dumisani, K.; Precious, M.; Upenyu, N.D.R. Assessing the impact of climate change on the suitability of rainfed flu-cured tobacco (Nicotiana tobacum) production in Zimbabwe. In Proceedings of the 1st Climate Science Symposium of Zimbabwe, Cresta Lodge, Harare, Zimbabwe, 19–21 June 2013. [Google Scholar]
- Rao, N.; Shahid, M.; Al Shankiti, A.; Elouafi, I. Neglected and underutilized species for food and income security in marginal environments. Middle East Hortic. Summit 2013, 1051, 91–103. [Google Scholar] [CrossRef]
- Kariyawasam, C.S.; Kumar, L.; Ratnayake, S.S. Invasive Plants Distribution Modeling: A Tool for Tropical Biodiversity Conservation with Special Reference to Sri Lanka. Trop. Conserv. Sci. 2019, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
Category No. | Category Name | Statement No. | Statement |
---|---|---|---|
1 | Research and policy framework | U1 | Importance of national food production and food security programs |
U2 | Importance of national and regional agriculture research system | ||
2 | Germplasm and agro-ecology | U3 | Availability of germplasm |
U4 | Current genetic conservation status | ||
U5 | Potential demand for germplasm | ||
U6 | Adaptation to local climate and soil | ||
3 | Acceptability | U7 | Local preferences/consumption |
U8 | Rural income generation | ||
4 | Uses | U9 | Nutritional value and health benefits |
U10 | Cultural acceptance and consumer preferences | ||
U11 | Potential diversification for products | ||
U12 | Multiple uses (wood value, medicinal value, etc.) | ||
5 | Production and practices | U13 | Wide adaptability |
U14 | Cropping systems suitability | ||
U15 | Satisfies need for crop diversification | ||
U16 | Pest/disease situation | ||
U17 | Production and technology | ||
U18 | Seasonality | ||
U19 | Availability of planting material | ||
U20 | Local Knowledge | ||
6 | Post-harvest | U21 | Possibility of storage |
U22 | Processing technology | ||
U23 | Products in relation to markets | ||
7 | Market and value chain | U24 | Access to market |
U25 | Potential value addition | ||
U26 | Potential export processing |
Rank | Scientific Name | Family | Common Name | Local Name | FSI |
---|---|---|---|---|---|
1 | Limonia acidissima | Rutaceae | Wood apple | Divul | 0.696 |
2 | Aegle marmelos | Rutaceae | Bael, bhel | Beli | 0.674 |
3 | Annona muricata | Annonaceae | Soursop | Katuannoda | 0.648 |
4 | Phyllanthus emblica | Phyllanthaceae | Indian gooseberry | Nelli | 0.629 |
5 | Tamarindus indica | Fabaceae | Tamarind | Siyambala | 0.595 |
6 | Citrus reticulata | Rutaceae | Mandarine | Dodam | 0.564 |
7 | Psidium guajava | Myrtaceae | Guava | Pera | 0.535 |
8 | Syzygium aqueum | Myrtaceae | Water apple | Jambu | 0.438 |
9 | Garcinia quaesita | Clusiaceae | Brindle berry | Goraka | 0.403 |
10 | Dialium ovoideum | Fabaceae | Velvet tamarind | Gal siyambala | 0.401 |
11 | Mangifera indica. | Anacardiaceae | Mango | Mee amba | 0.399 |
12 | Citrus grandis | Rutaceae | Pumello | Jambola | 0.399 |
13 | Psidium catlleianum | Myrtaceae | Cherry guava | Cherry pera | 0.351 |
14 | Flacourtia inermis | Salicaceae | Lovi/batoko plum | Lovi | 0.351 |
15 | Pouteria campechiana | Sapotaceae | Canistel | Lavulu | 0.341 |
16 | Elaeocarpus serratus | Elaeocarpaceae | Ceylon olive | Veralu | 0.337 |
17 | Lansium domesticum | Meliaceae | Langsat | Gaduguda | 0.337 |
18 | Flacourtia indica | Salicaceae | Ramontchi | Uguressa | 0.326 |
19 | Manilkara zapota | Sapotaceae | Sapodilla | Sapodilla | 0.309 |
20 | Ziziphus mauritiana | Rhamnaceae | Chinese date | Masan | 0.309 |
21 | Averrhoa carambola | Oxalidaceae | Carambola | Kamaranga | 0.253 |
22 | Psidium spp. | Myrtaceae | Guava | Jam pera | 0.233 |
23 | Syzygium cumini | Myrtaceae | Black plum | Dan | 0.222 |
24 | Cynometra cauliflora | Fabaceae | Nam nam | Nam nam | 0.201 |
25 | Carissa spinarum | Apocynaceae | Conkerberry | Karamba | 0.201 |
26 | Manilkara haxandra | Sapotaceae | Ceylon iron wood | Palu | 0.191 |
27 | Grewia tiliifolia | Tiliaceae | Dhaman | Damuna | 0.139 |
28 | Euphoria longana | Malvaceae | Longan | Mora | 0.128 |
29 | Schleichera oleosa | Sapindaceae | Ceylon oak | Kon | 0.128 |
30 | Drypetes sepiaria | Putranjivaceae | − | Weera | 0.128 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratnayake, S.S.; Kumar, L.; Kariyawasam, C.S. Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential Distribution under Climate Change. Agronomy 2020, 10, 34. https://doi.org/10.3390/agronomy10010034
Ratnayake SS, Kumar L, Kariyawasam CS. Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential Distribution under Climate Change. Agronomy. 2020; 10(1):34. https://doi.org/10.3390/agronomy10010034
Chicago/Turabian StyleRatnayake, Sujith S., Lalit Kumar, and Champika S. Kariyawasam. 2020. "Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential Distribution under Climate Change" Agronomy 10, no. 1: 34. https://doi.org/10.3390/agronomy10010034
APA StyleRatnayake, S. S., Kumar, L., & Kariyawasam, C. S. (2020). Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential Distribution under Climate Change. Agronomy, 10(1), 34. https://doi.org/10.3390/agronomy10010034