Moderation of Inulin and Polyphenolics Contents in Three Cultivars of Helianthus tuberosus L. by Potassium Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Sample Preparation
2.1.2. Identification of Inulin
2.1.3. Identification and Quantification of Polyphenolic Compounds
2.1.4. Antioxidant Capacity
2.1.5. Antioxidant Profiling by On-Line HPLC-PDA with Post-Column Derivatization with ABTS
2.2. Statistical Analysis
3. Results and Discussion
3.1. Inulin
3.2. Polyphenols
3.3. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Georgescu, L.A.; Stoica, I. Studies concerning the dynamic of enzyme hydrolyze on the Jerusalem artichoke (Helianthus tuberosus L.) inulin. Anal. Univ. Dunarea Galati VI Food Technol. 2005, 1, 77–81. [Google Scholar]
- Zaky, E.A. Physiological response to diets fortified with Jerusalem artichoke tubers (Helianthus tuberosus L.) powder by diabetic rats. Am. Eurasian J. Agric. Environ. Sci. 2009, 5, 682–688. [Google Scholar]
- Cieślik, E.; Gębusia, A. Topinambur (Helianthus tuberosus L.)—Bulwa o właściwościach prozdrowotnych. Postęp. Nauk Rol. 2010, 3, 91–103. (In Polish) [Google Scholar]
- Young-Jun, L.; Myoung-gi, L.; Seok-Yeong, Y.; Won-Byong, Y.; Ok-Hwan, L. Changes in physicochemical characteristics and antioxidant activities of Jerusalem artichoke tea infusions resulting from different production processes. Food Sci. Biotechnol. 2014, 23, 1885–1892. [Google Scholar]
- Roberfroid, M.B.; Van Loom, J.; Gibson, G.R. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 1998, 128, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hofi, A.A. Technological and biological uses of Jerusalem artichoke powder and resistant starch. Ann. Agric. Sci. Moshtohor 2005, 43, 279–291. [Google Scholar]
- Roberfroid, M.B. Inulin-type fructans: Functional food ingredients. J. Nutr. 2007, 137, 2493–2502. [Google Scholar] [CrossRef] [Green Version]
- Petkova, N.; Ivanov, I.; Denev, P.; Pavlov, A. Bioactive substance and free radical scavenging activities of flour from Jerusalem Artichoke (Helianthus tuberosus L.) tubers—A comparative study. Turk. J. Agric. Nat. Sci. 2014, 2, 1773–1778. [Google Scholar]
- Tchoné, M.; Bärwald, G.; Annemüller, G.; Fleischer, L.G. Separation and identification of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.). Sci. Aliment. 2006, 26, 394–408. [Google Scholar] [CrossRef]
- Cieślik, E.; Filipiak-Florkiewicz, A. Prospective usage of Jerusalem artichoke (Helianthus tuberosus L.) for producing functional food. Żywność-Nauka Technologia Jakość 2007, 1, 73–81. (In Polish) [Google Scholar]
- Florkiewicz, A.; Cieślik, E.; Filipiak-Florkiewicz, A. Wpływ odmiany i terminu zbioru na skład chemiczny bulw topinamburu (Helianthus tuberosus L.). Żywność-Nauka Technologia Jakość 2007, 3, 71–81. (In Polish) [Google Scholar]
- Cieślik, E.; Kopeć, A.; Praznik, W. Functional properties of fructan. In Proceedings of the Ninth Seminar on Inulin, Budapest, Hungary, 18–19 April 2002; Volume 27. [Google Scholar]
- Mystkowska, I.; Zarzecka, K. Wartość odżywcza i prozdrowotna słonecznika bulwiastego (Helianthus tuberosus L.). Post. Fitoter. 2013, 2, 123–126. (In Polish) [Google Scholar]
- Baldini, M.; Danuso, F.; Monti, A.; Amaducci, M.T.; Stevanato, P.; Mastro, G. Chichory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest. Ital. J. Agron. 2006, 2, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Góral, S. Zmienność morfologiczna i plonowanie wybranych klonów słonecznika bulwiastego –topinambur (Helianthus tuberosus L.). Hodowla Roślin i Nasiennictwo 1998, 2, 6–11. (In Polish) [Google Scholar]
- Praznik, W.; Cieślik, E.; Filipiak, A. The influence of harvest time on the content of nutritional components in tubers of Jerusalem artichoke (Helianthus tuberosus L.). In Proceedings of the Seventh Seminar on Inulin, Leuven, Belgium, 22–23 January 1998; pp. 154–157. [Google Scholar]
- Sawicka, B. Wpływ nawożenia azotem na wartość biologiczną bulw Helianthus tuberosus L. Roczniki Akademii Rolniczej w Poznaniu 2000, 313, 447–451. (In Polish) [Google Scholar]
- Matias, J.; Gonzales, J.; Cabanillas, J.; Royano, L. Influence of NPK fertilisation and harvest date on agronomic performance of Jerusalem artichoke crop in the Guadiana Basin (Southwestern Spain). Ind. Crop. Prod. 2013, 48, 191–197. [Google Scholar] [CrossRef]
- Sawicka, B.; Kalembasa, D.; Skiba, D. Variability in macroelement content in the aboveground part of Helianthus tuberosus L. at different nitrogen fertilization levels. Plant Soil Environ. 2015, 61, 158–163. [Google Scholar] [CrossRef]
- Gao, K.; Zhu, T.X.; Wang, Q.B. Nitrogen fertilization, irrigation, and harvest times affect biomass and energy value of Helianthus tuberosus L. J. Plant Nutr. 2016, 39, 1906–1914. [Google Scholar]
- Stolzenburg, K. Anbau und Verwertung von Topinambur (Helianthus tuberosus L.). Informationen fur Pflanzenproduktion Sonderheft 2002, 1, 10. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In World Soil Resources Reports, 2nd ed.; FAO: Roma, Italy, 2006. [Google Scholar]
- Houba, V.J.G.; Van der Lee, J.J.; Novozamsky, I. Soil analysis procedure: other procedure. J. Soil Sci. Plant Nut. 1995. [Google Scholar]
- Lachman, J.; Hamouz, K.; Orsák, M.; Pivec, V.; Hejtmánková, K.; Pazderů, K.; Čepl, J. Impact of selected factors—Cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem. 2012, 133, 1107–1116. [Google Scholar] [CrossRef]
- Nemś, A.; Pęksa, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Kita, A.; Drożdż, W.; Hamouz, K. Anthocyanin and antioxidant activity of snacks with coloured potato. Food Chem. 2015, 172, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Sustainable Chemistry Solutions, AOAC (Method 999.03), AACC (Method 32-32.01), CODEX (Typ III Method). In Enzyme Sources Guide; Megazyme International Ireland: Bray Business Park, Bray, Co.: Wicklow, Ireland, 2014; p. 11.
- Topolska, K.; Filipiak-Florkiewicz, A.; Florkiewicz, A.; Cieślik, E. Fructan stability in strawberry sorbets in dependence on their source and the period of storage. Eur. Food Res. Technol. 2017, 243, 701–709. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J. Agric. Food Chem. 2013, 61, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P.; Laskowski, P.; Oszmiański, J. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J. Agric. Food Chem. 2014, 62, 12332–12345. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol. 1999, 299, 15–27. [Google Scholar]
- Kusznierewicz, B.; Piasek, A.; Bartoszek, A.; Namieśnik, J. The optimisation of analyical parameters for routine profiling of antioxidants in complex mixtures by HPLC coupled-postcolumn derivatisation. Phytochem. Anal. 2011, 22, 392–402. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Nowicka, P.; Turkiewicz, I.; Golis, P. Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. J. Funct. Foods 2019, 56, 353–363. [Google Scholar] [CrossRef]
- Chekroun, M.B.; Amzile, J.; El Yachioui, M.; El Haloui, N.E.; Prevost, J. Qualitative and quantitative development of carbohydrate reserves during the biological cycle of Jerusalem artichoke (Helianthus tuberosus L.) tubers. N. Z. J. Crop. Horticult. Sci. 1994, 22, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Cieślik, E.; Filipiak, A.; Filipiak-Florkiewicz, A. Wpływ terminu zbioru na zawartość węglowodanów w bulwach topinamburu (Helianthus tuberosus L.). Żywienie Człowieka i Metabolizm 2003, 30, 1076–1080. (In Polish) [Google Scholar]
- Sawicka, B. Słonecznik bulwiasty (Helianthus tuberosus L.)- Biologia, Hodowla, Znaczenie Użytkowe. Wyd. UP Lublin 2016, 223. (In Polish) [Google Scholar]
- Kapusta, I.; Krok, E.; Jamro, D.; Cebulak, T.; Kaszuba, J.; Salach, R. Identyfication and quantification of phenolic compounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers. J. Food Agric. Environ. 2013, 11, 601–606. [Google Scholar]
- Danilcenko, H.; Jariene, E.; Slepetiewne, A.; Sawicka, B.; Zaldariene, S. The distribution of bioactive compounds in the tubers of organically grown Jerusalem artichoke (Helianthus tuberosus L.) during the growing period. Acta Sci. Pol. Hortorum Cultus 2017, 16, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Terzić, S.; Atlagić, J.; Maksimo, I.; Zeremski, T.; Petrović, S.; Dedić, B. Influence of photoperiod on vegetation phases and tuber development in topinambur (Helianthus tuberosus L.). Arch. Biol. Sci. 2012, 64, 175–182. [Google Scholar] [CrossRef]
- Kavalcova, P.; Bystricka, J.; Toth, T.; Volnova, B.; Kopernicka, M.; Harangozo, L. Potassium and its effect on the content of polyphenols in onion (Allium cepa L.). J. Microbiol. Biotechnol. Food Sci. 2015, 4, 74–77. [Google Scholar] [CrossRef]
- Chen, F.; Long, X.; Liu, Z.; Shao, H.; Liu, L. Analysis of phenolic acids of Jerusalem artichoke (Helianthus tuberosus L.) responding to salt-stress by liquid chromatography/tandem mass spectrometry. Sci. World J. 2014, 2014, 1–8. [Google Scholar]
- Catana, L.; Catana, M.; Iorga, E.; Lazar, A.G.; Lazar, M.A.; Teodorescu, R.; Asanica, A.; Belc, N.; Iancu, A. Valorification of Jerusalem artichoke tubers (Helianthus tuberosus L.) for achieving of functional ingredient with high nutritional value. Sciendo 2018, 1, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Heimler, D.; Romani, A.; Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: A review. Eur. Food Res. Technol. 2017, 43, 1107–1115. [Google Scholar] [CrossRef]
Compound | tR | λmax (nm) | MS (m/z) | MS/MS (m/z) |
---|---|---|---|---|
Unidentified | 2.50 | 246/263 | 359.05 | 297.23/281.42 |
Neochlorogenic acid | 2.79 | 329 | 353.07 | 191.02/135.04 |
Chlorogenic acid | 3.75 | 329 | 353.07 | 191.02/135.04 |
3,4-Dicaffeoylquinic acid | 4.05 | 325 | 515.03 | 353.06/191.02/173.05/135.12 |
3,5-Dicaffeoylquinic acid | 4.62 | 326 | 515.03 | 353.06/191.02 |
Cryptochlorogenic acid | 4.72 | 324 | 353.07 | 191.02 |
p-Coumaroylquinic acid | 5.95 | 311 | 337.03 | 191.02/173.05 |
Caffeic acid | 6.19 | 323 | 179.04 | 136.06 |
Feruoylquinic acid | 6.95 | 325 | 3670.5 | 191.0.2/172.06 |
Caffeoyl-glucoside acid | 7.13 | 327 | 341.04 | 179.04/161.0.7 |
1,5-Dicaffeoylquinic acid | 7.25 | 325 | 515.03 | 354.03/191.02/179.04 |
4,5-Dicaffeoylquinic acid | 7.46 | 327 | 515.03 | 191.02/179.04/173.03/135.07 |
Cultivar | Potassium Fertilizer Rate | Mean | Coefficient of Variation | ||
---|---|---|---|---|---|
150 kg ha−1 | 250 kg ha−1 | 350 kg ha−1 | |||
Violette de Rennes | 45.94 d | 50.51 bc | 51.68 bc | 49.38 ± 3.03 c | 5.59 |
Waldspindel | 53.18 b | 51.79 bc | 52.00 bc | 52.49 ± 0.75 b | 2.74 |
Topstar | 52.83 b | 49.26 cd | 60.85 a | 54.31 ± 5.94 a | 9.76 |
Average | 50.65 b | 50.52 b | 55.01 a |
Cultivar | Rate (kg K ha −1) | Chlorogenic acid | 1,5-dicaffeoylquinic acid | 3,4-dicaffeoylquinic acid | 3,5-dicaffeoylquinic acid | Neochlorogenic acid | Crypto- chlorogenic | Caffeoyl-glucoside acid | p-coumaroyl-quinic acid | Feruoylquinic acid | Caffeic acid | 4,5-dicaffeoylquinic acid | Total polyphenols |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Violette de Rennes | 150 | 1029.2 ± 16.22 ab | 156.33 ± 0.62 c | 96.54 ± 1.71 abc | 73.82 ± 0.25 cd | 57.47 ± 1.02 ab | 23.15 ± 0.03 d | 15.7 ± 0.36 de | 11.79 ± 0.34 b | 5.35 ± 0.57 bc | 4.33 ± 1.1 a | 3.64 ± 0.15 bc | 1477 |
250 | 996.89 ± 33.58 a | 230.51 ± 13.31 d | 89.39 ± 2.66 a | 91.69 ± 3.06 e | 55.07 ± 3.41 ab | 23.62 ± 1.86 d | 26.6 ± 1.7 f | 15.49 ± 0.86 c | 7.5 ± 3.24 c | 4.7 ± 1.61 a | 3.93 ± 0.18 c | 1545 | |
350 | 1132.74 ± 8.43 bc | 271.97 ± 2.35 e | 100.79 ± 0.2 bcd | 82.01 ± 0.14 de | 57.51 ± 0.58 ab | 17.74 ± 0.43 abc | 45.73 ± 0.22 g | 16.24 ± 0.8 c | 6.35 ± 0.56 c | 5.84 ± 0.01 ab | 6.05 ± 0.63 d | 1743 | |
Waldspindel | 150 | 1262.59 ± 57.44 d | 82.95 ± 7.4 a | 104.26 ± 3.19 cde | 64.23 ± 6.83 bc | 54.22 ± 1.56 ab | 16.19 ± 0.25 ab | 12.85 ± 1.07 cd | 1.78 ± 0.16 a | 0.84 ± 0.37 ab | 9.94 ± 0.12 cd | 2.1 ± 0.64 ab | 1612 |
250 | 1195.68 ± 9.61 cd | 72.73 ± 0.06 a | 112.45 ± 1.24 ef | 58.79 ± 1.39 b | 58.88 ± 0.49 ab | 20.19 ± 1.82 bcd | 12.46 ± 0.11 c | 2.35 ± 0.28 a | 0.77 ± 0.54 ab | 10.44 ± 0.39 cd | 2.34 ± 0.52 abc | 1547 | |
350 | 1153.11 ± 13.13 bcd | 82.29 ± 0.97 a | 108.91 ± 2.12 de | 61.87 ± 0.83 bc | 60.17 ± 1.39 bc | 22.68 ± 2.79 cd | 17.57 ± 0.62 e | 2.54 ± 0.12 a | 0.28 ± 0.09 a | 11.7 ± 0.43 d | 2.94 ± 0.52 bc | 1524 | |
Topstar | 150 | 1394.84 ± 14.5 e | 120.22 ± 2.86 b | 117.62 ± 1.72 f | 62.34 ± 7.66 bc | 66.13 ± 1.65 c | 16.1 ± 1.14 ab | 5.35 ± 0.29 a | 2.37 ± 0.25 a | 9.71 ± 1.23 c | 6.25 ± 0.39 ab | 0.81 ± 0.04 a | 1802 |
250 | 1266.77 ± 65.72 de | 116.08 ± 4.83 b | 111.32 ± 0.36 ef | 41.03 ± 0.61 a | 53.52 ± 0.56 a | 30.92 ± 0.75 e | 5.61 ± 0.17 a | 1.45 ± 0.07 a | 7.99 ± 0.01 c | 8.24 ± 0.36 bc | 0.88 ± 0.02 a | 1644 | |
350 | 1246.34 ± 0.63 cd | 134.52 ± 14.42 bc | 95.48 ± 3.16 ab | 61.83 ± 1.59 bc | 55.11 ± 2.11 ab | 14.15 ± 0.23 a | 8.62 ± 0.01 b | 3.03 ± 0.21 a | 5.41 ± 0.59 bc | 12.28 ± 0.23 d | 0.78 ± 0.64 a | 1620 |
Cultivar | Rate (kg K ha−1) | TEAC ABTS | FRAP |
---|---|---|---|
Violette de Rennes | 150 | 1.55 ± 0.08 ab | 2.07 ± 0.09 de |
250 | 2.65 ± 0.21 cd | 1.81 ± 0.1 cd | |
350 | 3.28 ± 0.39 d | 1.95 ± 0.08 cde | |
Waldspindel | 150 | 0.88 ± 0.12 a | 1.28 ± 0.12 b |
250 | 0.87 ± 0.12 ab | 0.82 ± 0.02 a | |
350 | 1.16 ± 0.09 ab | 0.57 ± 0.02 a | |
Topstar | 150 | 1.37 ± 0.08 ab | 2.13 ± 0.06 e |
250 | 1.58 ± 0.14 b | 0.59 ± 0.01 a | |
350 | 2.45 ± 0.07 c | 1.71 ± 0.09 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalska-Ciechanowska, A.; Wojdyło, A.; Bogucka, B.; Dubis, B. Moderation of Inulin and Polyphenolics Contents in Three Cultivars of Helianthus tuberosus L. by Potassium Fertilization. Agronomy 2019, 9, 884. https://doi.org/10.3390/agronomy9120884
Michalska-Ciechanowska A, Wojdyło A, Bogucka B, Dubis B. Moderation of Inulin and Polyphenolics Contents in Three Cultivars of Helianthus tuberosus L. by Potassium Fertilization. Agronomy. 2019; 9(12):884. https://doi.org/10.3390/agronomy9120884
Chicago/Turabian StyleMichalska-Ciechanowska, Anna, Aneta Wojdyło, Bożena Bogucka, and Bogdan Dubis. 2019. "Moderation of Inulin and Polyphenolics Contents in Three Cultivars of Helianthus tuberosus L. by Potassium Fertilization" Agronomy 9, no. 12: 884. https://doi.org/10.3390/agronomy9120884
APA StyleMichalska-Ciechanowska, A., Wojdyło, A., Bogucka, B., & Dubis, B. (2019). Moderation of Inulin and Polyphenolics Contents in Three Cultivars of Helianthus tuberosus L. by Potassium Fertilization. Agronomy, 9(12), 884. https://doi.org/10.3390/agronomy9120884