Effects of Straw Return Mode on Soil Aggregates and Associated Carbon in the North China Plain
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling and Measurements
2.3.1. Soil Aggregates
2.3.2. Soil Analysis
2.4. Incubation Experiment
2.5. Statistical Analysis
3. Results
3.1. Effects of Straw Return Modes on the SOC Concentration and Storage
3.2. Effects of Straw Return Modes on SOC Mineralization
3.3. Effects of Straw Return Modes on the Particle Size Distribution and Stability of Soil Aggregates
3.4. Effects of Straw Return Modes on Aggregate-Associated SOC Concentration
3.5. Effects of Straw Returning Modes on Aggregate-Associated SOC Storage
4. Discussion
4.1. SOC Storage and Mineralization
4.2. Aggregate Size Distribution and Associated C
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, X.J.; Chen, G.H.; Wang, S.Y.; Zhang, L.Y.; Zhang, R. Temperature sensitivity of different soil carbon pools under biochar addition. Environ. Sci. Pollut. Res. 2019, 26, 4130–4140. [Google Scholar] [CrossRef] [PubMed]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Xie, J.Y.; Hou, M.M.; Zhou, Y.T.; Wang, R.J.; Zhang, S.L.; Yang, X.Y.; Sun, B.H. Carbon sequestration and mineralization of aggregate-associated carbon in an intensively cultivated Anthrosol in north China as affected by long term fertilization. Geoderma 2017, 296, 1–9. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, B.Y.; Liu, S.L.; Qi, J.Y.; Wang, X.; Pu, C.; Li, S.S.; Zhang, X.Z.; Yang, X.G.; Lal, R.; et al. Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degrad. Dev. 2019. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 2015, 70, 55a–62a. [Google Scholar] [CrossRef] [Green Version]
- Htun, Y.M.; Tong, Y.A.; Gao, P.C.; Ju, X.T. Coupled effects of straw and nitrogen management on N2O and CH4 emissions of rainfed agriculture in Northwest China. Atmos. Environ. 2017, 157, 156–166. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wang, X.J.; Xu, M.G.; Huang, S.M.; Liu, H.; Peng, C. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosciences 2010, 7, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Tian, D.; Liu, J.; Lv, S.; He, X.; Gao, M. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 2018, 265, 576–586. [Google Scholar] [CrossRef]
- Gao, L.; Wang, B.; Li, S.; Wu, H.; Wu, X.; Liang, G.; Gong, D.; Zhang, X.; Cai, D.; Degré, A. Soil Wet Aggregate Distribution and Pore Size Distribution Under Different Tillage Systems After 16 Years in the Loess Plateau of China. Catena 2019, 38–47. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Jastrow, J.D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 1996, 28, 665–676. [Google Scholar] [CrossRef]
- Wang, X.; Qi, J.Y.; Zhang, X.Z.; Li, S.S.; Virk, A.L.; Zhao, X.; Xiao, X.P.; Zhang, H.L. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil Tillage Res. 2019, 194, 104339. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Cantero-Martinez, C.; Alvaro-Fuentes, J. Tillage effects on soil aggregation and soil organic carbon profile distribution under Mediterranean semi-arid conditions. Soil Use Manag. 2010, 26, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Lugato, E.; Simonetti, G.; Morari, F.; Nardi, S.; Berti, A.; Giardini, L. Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment. Geoderma 2010, 157, 80–85. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.K.; Saha, S.; Mani, P.K.; Mandal, B. Effect of organic inputs on aggregate associated organic carbon concentration under long-term rice–wheat cropping system. Geoderma 2010, 154, 379–386. [Google Scholar] [CrossRef]
- Chen, Z.D.; Ti, J.S.; Chen, F. Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China. Nutr. Cycl. Agroecol. 2017, 109, 103–114. [Google Scholar] [CrossRef]
- Zhao, H.L.; Shar, A.G.; Li, S.; Chen, Y.L.; Shi, J.L.; Zhang, X.Y.; Tian, X.H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Soon, Y.K.; Lupwayi, N.Z. Straw management in a cold semi-arid region: Impact on soil quality and crop productivity. Field Crops Res. 2012, 139, 39–46. [Google Scholar] [CrossRef]
- Bossuyt, H.; Denef, K.; Six, J.; Frey, S.D.; Merckx, R.; Paustian, K. Influence of microbial populations and residue quality on aggregate stability. Appl. Soil Ecol. 2001, 16, 195–208. [Google Scholar] [CrossRef]
- Dimassi, B.; Mary, B.; Fontaine, S.; Perveen, N.; Revaillot, S.; Cohan, J.P. Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization. Soil Biol. Biochem. 2014, 78, 332–339. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Minamiya, Y.; Tsuzura, H.; Watanabe, Y.; Yagioka, A.; Kaneko, N. Changes in water stable aggregate and soil carbon accumulation in a no-tillage with weed mulch management site after conversion from conventional management practices. Geoderma 2014, 221, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Yoder, R.E. A Direct Method of Aggregate Analysis of Soils and a Study of the Physical Nature of Erosion Losses. Agron. J. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W.; Wu, J.; Jiang, X.; Zhu, X. Can intercropping with the cash crop help improve the soil physico-chemical properties of rubber plantations? Geoderma 2019, 335, 149–160. [Google Scholar] [CrossRef]
- Bao, S.D. Methods for Soil Agricultural and Chemical Analysis; Chinese Agricultural Press: Beijing, China, 2000; pp. 30–34. [Google Scholar]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Raiesi, F.; Kabiri, V. Carbon and nitrogen mineralization kinetics as affected by tillage systems in a calcareous loam soil. Ecol. Eng. 2017, 106, 24–34. [Google Scholar] [CrossRef]
- Dai, H.; Chen, Y.; Liu, K.; Li, Z.; Qian, X.; Zang, H.; Yang, X.; Zhao, Y.; Shen, Y.; Li, Z.; et al. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three-year field study. J. Clean. Prod. 2019, 212, 393–400. [Google Scholar] [CrossRef]
- Kan, Z.-R.; Virk, A.L.; Wu, G.; Qi, J.-Y.; Ma, S.-T.; Wang, X.; Zhao, X.; Lal, R.; Zhang, H.-L. Priming effect intensity of soil organic carbon mineralization under no-till and residue retention. Appl. Soil Ecol. 2019, 103445. [Google Scholar] [CrossRef]
- Fang, Y.; Nazaries, L.; Singh, B.K.; Singh, B.P. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Glob. Chang. Biol. 2018, 24, 2775–2790. [Google Scholar] [CrossRef] [PubMed]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (2nd Edition). Agron. Monogr. 1986, 9, 425–442. [Google Scholar]
- Barthes, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Piccolo, A.; Pietramellara, G.; Mbagwu, J.S.C. Use of humic substances as soil conditioners to increase aggregate stability. Geoderma 1997, 75, 267–277. [Google Scholar] [CrossRef]
- Verhulst, N.; Kienle, F.; Sayre, K.D.; Deckers, J.; Raes, D.; Limon-Ortega, A.; Tijerina-Chavez, L.; Govaerts, B. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil. 2011, 340, 453–466. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Crop Residue Removal for Bioenergy Reduces Soil Carbon Pools: How Can We Offset Carbon Losses? BioEnergy Res. 2013, 6, 358–371. [Google Scholar] [CrossRef]
- Autret, B.; Mary, B.; Chenu, C.; Balabane, M.; Girardin, C.; Bertrand, M.; Grandeau, G.; Beaudoin, N. Alternative arable cropping systems: A key to increase soil organic carbon storage? Results from a 16 year field experiment. Agric. Ecosyst. Environ. 2016, 232, 150–164. [Google Scholar] [CrossRef]
- O’Brien, S.L.; Jastrow, J.D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biol. Biochem. 2013, 61, 1–13. [Google Scholar] [CrossRef]
Year | Treatments | Maize Straw (kg·ha−1) | Wheat Straw (kg·ha−1) |
---|---|---|---|
2015.10–2016.10 | NSR | 0 | 0 |
WR | 0 | 7250 | |
WR-MR | 11,432 | 9167 | |
2016.10–2017.10 | NSR | 0 | 0 |
WR | 0 | 10,175 | |
WR-MR | 10,970 | 10,800 |
Year | 2016 | 2017 | ||||
---|---|---|---|---|---|---|
Treatments | BD (g cm−3) | SOC (g kg−1) | SOC Storage (Mg ha−1) | BD (g cm−3) | SOC (g kg−1) | SOC Storage (Mg ha−1) |
0–5 cm | ||||||
NSR | 1.39 | 7.25b | 5.03b | 1.30 | 7.88b | 5.12b |
WR | 1.30 | 9.80a | 6.39a | 1.29 | 10.40a | 6.72a |
WR-MR | 1.29 | 9.95a | 6.41a | 1.26 | 11.10a | 7.00a |
5–10 cm | ||||||
NSR | 1.37 | 7.18b | 4.91b | 1.36 | 7.73b | 5.26b |
WR | 1.36 | 9.98a | 6.24a | 1.33 | 10.29a | 6.84a |
WR-MR | 1.32 | 9.58a | 6.30a | 1.31 | 11.23a | 7.35a |
10–20 cm | ||||||
NSR | 1.43 | 4.04c | 5.79c | 1.40 | 4.37b | 6.10b |
WR | 1.49 | 6.19a | 9.27a | 1.45 | 6.77a | 9.84a |
WR-MR | 1.51 | 5.55b | 8.38b | 1.38 | 6.58a | 9.05a |
20–30 cm | ||||||
NSR | 1.48 | 4.04a | 5.97a | 1.42 | 4.96a | 7.04a |
WR | 1.59 | 3.76a | 6.41a | 1.48 | 4.68a | 6.94a |
WR-MR | 1.55 | 4.12a | 6.41a | 1.48 | 4.88a | 7.24a |
30–50 cm | ||||||
NSR | 1.42 | 3.98a | 11.33a | 1.47 | 3.57a | 10.48a |
WR | 1.55 | 3.83a | 11.85a | 1.55 | 3.87a | 11.96a |
WR-MR | 1.41 | 3.70a | 10.41a | 1.48 | 3.52a | 10.40a |
Year | 2016 | 2017 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Percentage (%) | MWD (mm) | GMD (mm) | Percentage (%) | MWD (mm) | GMD (mm) | |||||||
Treatments | >2 mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm | >2 mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm | ||||
0–5 cm | ||||||||||||
NSR | 4.06b | 24.74a | 32.00b | 39.20a | 0.41b | 0.49a | 24.62c | 21.04a | 13.86b | 35.99a | 0.87b | 0.63a |
WR | 4.19b | 24.83a | 32.70b | 38.28b | 0.45a | 0.48a | 30.80b | 19.16b | 15.37a | 34.66b | 0.95a | 0.66a |
WR-MR | 5.50a | 23.22b | 36.25a | 35.03c | 0.44a | 0.48a | 40.09a | 15.78c | 11.03c | 33.37c | 0.89b | 0.62a |
5–10 cm | ||||||||||||
NSR | 4.40c | 21.90a | 42.28a | 31.41c | 0.44b | 0.49a | 30.21c | 19.89a | 14.18a | 35.71a | 0.87b | 0.63a |
WR | 7.04b | 22.21a | 32.97b | 37.77a | 0.49a | 0.50a | 34.75b | 17.20b | 13.15b | 34.91a | 0.93b | 0.65a |
WR-MR | 8.72a | 22.45a | 33.25b | 35.58b | 0.48a | 0.49a | 37.44a | 17.48b | 12.11c | 32.96b | 0.98a | 0.67a |
10–20 cm | ||||||||||||
NSR | 2.67c | 15.44b | 33.42c | 48.47a | 0.30b | 0.42a | 33.66b | 14.07c | 14.24b | 38.03a | 0.87b | 0.61b |
WR | 4.38a | 16.51a | 34.14b | 44.97b | 0.34a | 0.44a | 22.64c | 19.77a | 17.19a | 40.40a | 0.72c | 0.56c |
WR-MR | 3.64b | 16.21a | 35.68a | 44.47b | 0.33a | 0.43a | 43.26a | 15.85b | 13.12c | 32.73b | 1.03a | 0.67a |
20–30 cm | ||||||||||||
NSR | 1.72a | 11.91b | 34.22b | 52.15a | 0.25a | 0.39a | 8.30b | 13.51a | 19.37b | 58.82a | 0.38b | 0.42b |
WR | 1.35b | 12.30a | 34.32b | 52.04a | 0.27a | 0.39a | 7.82b | 13.58a | 22.13a | 56.48b | 0.37b | 0.42b |
WR-MR | 1.59a | 11.78b | 35.25a | 51.38b | 0.25a | 0.39a | 19.13a | 10.45b | 20.13b | 55.62b | 0.59a | 0.48a |
30–50 cm | ||||||||||||
NSR | 1.21a | 10.78c | 31.73c | 56.28a | 0.24a | 0.39a | 3.82c | 10.43b | 22.96a | 62.79a | 0.35a | 0.40a |
WR | 1.21a | 11.10b | 35.54a | 52.15b | 0.23a | 0.39a | 5.98b | 11.58a | 22.06a | 60.38b | 0.32a | 0.40a |
WR-MR | 1.25a | 12.19a | 33.53b | 53.03b | 0.22a | 0.38a | 8.28a | 11.41a | 18.41b | 61.90a | 0.26b | 0.38a |
Year | 2016 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|
Aggregate-Associated C (g kg−1) | Aggregate-Associated C (g kg−1) | |||||||
Treatments | >2 mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm | >2 mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm |
0–5 cm | ||||||||
NSR | 8.09c | 9.66c | 6.77c | 5.86b | 8.71b | 10.12c | 9.08b | 8.42c |
WR | 10.33b | 10.71b | 8.56b | 8.33a | 11.87a | 12.85a | 11.52a | 11.28a |
WR-MR | 11.08a | 12.51a | 9.48a | 8.66a | 11.38a | 12.31b | 11.49a | 10.76b |
5–10 cm | ||||||||
NSR | 7.97c | 9.21c | 6.43c | 6.05c | 9.26b | 9.10b | 6.17c | 8.89c |
WR | 10.53b | 10.74b | 7.80b | 8.35a | 11.82a | 12.82a | 10.86b | 11.01b |
WR-MR | 11.27a | 11.90a | 8.49a | 7.99b | 11.51a | 12.66a | 11.22a | 11.27a |
10–20 cm | ||||||||
NSR | 4.46c | 7.50a | 5.52a | 4.93a | 6.77b | 7.49b | 8.03c | 8.67c |
WR | 7.64a | 7.57a | 5.21b | 4.79ab | 10.26a | 10.86a | 9.41b | 9.11b |
WR-MR | 6.40b | 6.57b | 5.05b | 4.58b | 10.20a | 10.99a | 10.09a | 9.67a |
20–30 cm | ||||||||
NSR | 4.45a | 4.27a | 3.57a | 3.61a | 4.25b | 3.96b | 4.85b | 4.46c |
WR | 4.22a | 4.27a | 3.33a | 3.46a | 7.93a | 7.48a | 7.40a | 6.91a |
WR-MR | 4.36a | 4.25a | 3.49a | 3.50a | 7.84a | 7.41a | 7.06a | 7.11a |
30–50 cm | ||||||||
NSR | 4.39a | 4.00a | 3.69a | 3.57ab | 4.40c | 3.97c | 3.40c | 3.24b |
WR | 4.23a | 3.96a | 3.21b | 3.39b | 7.63b | 7.05b | 6.65b | 6.44a |
WR-MR | 4.20a | 3.74a | 3.51a | 3.64a | 8.03a | 7.62a | 7.12a | 6.72a |
Year | 2016 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|
Aggregate-Associated C Storage (Mg ha−1) | Aggregate-Associated C Storage (Mg ha−1) | |||||||
Treatments | >2 mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm | >2 mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm |
0–5 cm | ||||||||
NSR | 0.23c | 1.66c | 1.50c | 1.59c | 1.39c | 1.38b | 0.82b | 1.97c |
WR | 0.28b | 1.74b | 1.83b | 2.08a | 2.36b | 1.59a | 1.14a | 2.53a |
WR-MR | 0.39a | 1.87a | 2.21a | 1.95a | 2.88a | 1.23c | 0.80b | 2.26b |
5–10 cm | ||||||||
NSR | 0.24c | 1.38c | 1.86a | 1.30c | 1.90b | 1.23b | 0.60b | 2.16c |
WR | 0.51b | 1.63b | 1.75b | 2.15a | 2.73a | 1.47a | 0.95a | 2.56a |
WR-MR | 0.65a | 1.76a | 1.86a | 1.87b | 2.82a | 1.45a | 0.89a | 2.43b |
10–20 cm | ||||||||
NSR | 0.17c | 1.66b | 2.65a | 3.43a | 3.18c | 1.47c | 1.60c | 4.60b |
WR | 0.50a | 1.86a | 2.65a | 3.21b | 3.38b | 3.12a | 2.35a | 5.35a |
WR-MR | 0.35b | 1.61b | 2.72a | 3.08b | 6.07a | 2.40b | 1.82b | 4.35c |
20–30 cm | ||||||||
NSR | 0.11a | 0.75b | 1.81a | 2.79a | 0.50c | 0.76c | 1.33c | 3.72b |
WR | 0.09a | 0.83a | 1.81a | 2.86b | 0.92b | 1.50a | 2.42a | 5.78a |
WR-MR | 0.11a | 0.78ab | 1.91a | 2.80b | 2.22a | 1.15b | 2.11b | 5.87a |
30–50 cm | ||||||||
NSR | 0.15a | 1.23b | 3.33a | 5.72a | 0.49c | 1.21b | 2.29c | 5.97b |
WR | 0.16a | 1.36a | 3.53a | 5.46a | 1.41b | 2.52a | 4.54a | 12.02a |
WR-MR | 0.15a | 1.28ab | 3.31a | 5.43a | 1.97a | 2.57a | 3.87b | 12.30a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Kan, Z.; Qi, J.; Zhang, H. Effects of Straw Return Mode on Soil Aggregates and Associated Carbon in the North China Plain. Agronomy 2020, 10, 61. https://doi.org/10.3390/agronomy10010061
Ma S, Kan Z, Qi J, Zhang H. Effects of Straw Return Mode on Soil Aggregates and Associated Carbon in the North China Plain. Agronomy. 2020; 10(1):61. https://doi.org/10.3390/agronomy10010061
Chicago/Turabian StyleMa, Shoutian, Zhengrong Kan, Jianying Qi, and Hailin Zhang. 2020. "Effects of Straw Return Mode on Soil Aggregates and Associated Carbon in the North China Plain" Agronomy 10, no. 1: 61. https://doi.org/10.3390/agronomy10010061
APA StyleMa, S., Kan, Z., Qi, J., & Zhang, H. (2020). Effects of Straw Return Mode on Soil Aggregates and Associated Carbon in the North China Plain. Agronomy, 10(1), 61. https://doi.org/10.3390/agronomy10010061