Advances in Genomic Interventions for Wheat Biofortification: A Review
Abstract
:1. Introduction
2. Biofortification for the Grain Protein Content
2.1. Epistatic Interactions for the Grain Protein Content
2.2. Different Prospects of GS for Wheat Biofortification with Protein
3. Biofortification for the Grain Fe and Zn Content
3.1. QTLs for the Grain Fe and Zn Concentrations in Wheat
3.2. Breeding Strategies to Develop Zn- and Fe-Biofortified Wheat
3.3. Different Prospects of GS in Wheat Biofortification with Fe and Zn
4. Biofortification for the Grain Selenium Content
QTLs for the Se Content in Wheat Grain
5. Biofortification for the Grain Yellow Pigment Content (GYPC)
5.1. QTLs Identified for GYPC in Wheat
5.2. Allelic Variation and Marker-Assisted Selection
5.3. GS for Yellow Pigment Improvement
6. Biofortification for the Grain Phytic Acid Content
Genetic Variation and Breeding Strategies
7. Biofortification for the Anthocyanin Content
7.1. Genetic Basis of Purple-Colored Wheat Grains
7.2. Development of Anthocyanin-Biofortified Purple Wheat
8. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grew, R. Food in Global History; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Nezhad, A.; Holick, M.F. Vitamin D for Health: A Global Perspective. Mayo Clin. Proc. 2013, 88, 720–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, E. Addressing nutritional gaps with multivitamin and mineral supplements. Nutr. J. 2014, 13, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Valença, A.W.; Bake, A.; Brouwer, I.D.; Giller, K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Secur. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [Green Version]
- Curtis, T.; Halford, N.G. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [Google Scholar] [CrossRef] [Green Version]
- Iizumi, T.; Furuya, J.; Shen, Z.; Kim, W.; Okada, M.; Fujimori, S.; Hasegawa, T.; Nishimori, M. Responses of crop yield growth to global temperature and socioeconomic changes. Sci. Rep. 2017, 7, 7800. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Arora, S.; Cheema, J.; Poland, J.; Uauy, C.; Chhuneja, P. Genome-Wide Association Mapping of Grain Micronutrients Concentration in Aegilops tauschii. Front. Plant Sci. 2019, 10, 54. [Google Scholar] [CrossRef]
- Fambrini, M.; Pugliesi, C. Carotenoids in Crops: Roles, Regulation of the Pathway, Breeding to Improve the Content. In Beta Carotene Dietary Sources, Cancer and Cognition; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 1–57. [Google Scholar]
- Mellado-Ortega, E.; Hornero-Méndez, D. Lutein esterification in wheat flour increases the carotenoid retention and is induced by storage temperatures. Foods 2017, 6, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.J.; Lowe, G.L. Carotenoids—Antioxidant Properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Jin, L.; Zhang, G.; Lu, Y.; Shen, Y.; Bao, J. Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theor. Appl. Genet. 2011, 122, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Chunduri, V.; Kumar, A.; Kumar, R.; Khare, P.; Kondepudi, K.K.; Bishnoi, M.; Garg, M. Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization. PLoS ONE 2018, 13, e0194367. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Kutman, U. Agronomic biofortification of cereals with zinc: A review: Agronomic zinc biofortification. Eur. J. Soil Sci. 2017, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Deschamps, S.; Llaca, V.; May, G.D. Genotyping-by-Sequencing in Plants. Biology 2012, 1, 460–483. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, U.; Shafqat, S.; Khan, F.; Majid, M.; Hussain, H.; Kazi, A.G.; John, R.; Ahmad, P. Plant exomics: Concepts, applications and methodologies in crop improvement. Plant Signal Behav. 2014, 10, e976152. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lin, F.; An, D.; Wang, W.; Huang, R. Genome Sequencing and Assembly by Long Reads in Plants. Genes 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Klimenko, I.; Razgulayeva, N.; Gau, M.; Okumura, K.; Nakaya, A.; Tabata, S.; Kozlov, N.N.; Isobe, S. Mapping candidate QTLs related to plant persistency in red clover. Theor. Appl. Genet. 2010, 120, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Meng, L.; Wang, J.; Zhang, L. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses. Heredity 2017, 119, 256–264. [Google Scholar] [CrossRef]
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Ahmadi, J.; Pour-Aboughadareh, A.; Ourang, S.F.; Mehrabi, A.A.; Siddique, K.H.M. Wild relatives of wheat: Aegilops–Triticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiol. Plant. 2018, 40, 1–14. [Google Scholar] [CrossRef]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and Future Use of Wild Relatives in Crop Breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Breseghello, F.; Coelho, A.S.G. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J. Agric. Food Chem. 2013, 61, 8277–8286. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, F.; Xu, J.; Li, Z.; Xu, S. Mapping quantitative trait loci in selected breeding populations: A segregation distortion approach. Heredity 2015, 115, 538–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moose, S.P.; Mumm, R.H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 2008, 147, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Nabi, G.; Ullah, M.W.; Yousaf, M.; Manan, S.; Siddique, R.; Hou, H. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species. Int. J. Genom. 2016, 2016, 3460416. [Google Scholar] [CrossRef]
- Wambugu, P.W.; Ndjiondjop, M.N.; Henry, R.J. Role of genomics in promoting the utilization of Plant Genetic Resources in genebanks. Brief. Funct. Genom. 2018, 17, 198–206. [Google Scholar] [CrossRef]
- International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014, 345, 1251788. [Google Scholar]
- International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, 7191. [Google Scholar]
- Muir, P.; Li, S.; Lou, S.; Wang, D.; Spakowicz, D.J.; Salichos, L.; Zhang, J.; Weinstock, G.M.; Isaacs, F.; Rozowsky, J.; et al. The real cost of sequencing: Scaling computation to keep pace with data generation. Genome Biol. 2016, 17, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chiodini, R.; Badr, A.; Zhang, G. The impact of next-generation sequencing on genomics. J. Genet. Genom. 2011, 38, 95–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatta, M.; Baenziger, P.S.; Waters, B.M.; Poudel, R.; Belamkar, V.; Poland, J.; Morgounov, A. Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat. Int. J. Mol. Sci. 2018, 19, 3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, C.M.; Wayne, M. Quantitative trait locus (QTL) analysis. Nat. Educ. 2008, 1, 208. [Google Scholar]
- Wang, B.; Liu, H.; Liu, Z.; Dong, X.; Guo, J.; Li, W.; Chen, J.; Gao, C.; Zhu, Y.; Zheng, X.; et al. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biol. 2018, 18, 17. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, A. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis. Genes 2017, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, W.; Guo, N.; Zhang, Y.; Bu, Y.; Zhao, J.; Xing, H. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genom. 2018, 19, 226. [Google Scholar] [CrossRef] [Green Version]
- Civelek, M.; Lusis, A.J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 2014, 15, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Schneider, K. Mapping populations and principles of genetic mapping. In The Handbook of Plant Genome Mapping Genetic and Physical Mapping; Meksem, K., Kahl, G., Eds.; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Joppa, L.R.; Du, C.; Hart, G.E.; Hareland, G.A. Mapping gene (s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci. 1997, 37, 1586–1589. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, J.L.; Elias, E.M.; Kianian, S.F. Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. Dicoccoides Euphytica 2004, 139, 217–225. [Google Scholar] [CrossRef]
- Olmos, S.; Distelfeld, A.; Chicaiza, O.; Schlatter, A.R.; Fahima, T.; Echenique, V.; Dubcovsky, J. Precise mapping of a locus affecting grain protein content in durum wheat. Theor. Appl. Genet. 2003, 107, 1243–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, A.; Giovanni, C.D.; Laddomada, B.; Sciancalepore, A.; Simeone, R.; Devos, K.M.; Gale, M.D. Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breed. 1996, 115, 310–316. [Google Scholar] [CrossRef]
- Prasad, M.; Varshney, R.K.; Kumar, A.; Balyan, H.S.; Sharma, P.C.; Edwards, K.J.; Dhaliwal, H.S.; Roy, J.K.; Gupta, P.K. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor. Appl. Genet. 1999, 99, 341–345. [Google Scholar] [CrossRef]
- Perretant, M.R.; Cadalen, T.; Charmet, G.; Sourdille, P.; Nicolas, P.; Boeuf, C.; Tixier, M.H.; Branlard, G.; Bernard, S. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor. Appl. Genet. 2000, 100, 1167–1175. [Google Scholar] [CrossRef]
- Dholakia, B.B.; Ammiraju, J.S.S.; Santra, D.K.; Singh, H.; Katti, M.V.; Lagu, M.D.; Tamhankar, S.A.; Rao, V.S.; Gupta, V.S.; Dhaliwal, H.S.; et al. Molecular marker analysis of protein content using PCR-based markers in wheat. Biochem. Genet. 2001, 39, 325–338. [Google Scholar] [CrossRef]
- Singh, H.; Prasad, M.; Varshney, R.K.; Roy, J.K.; Balyan, H.S.; Dhaliwal, H.S.; Gupta, P.K. STMS markers for grain protein content and their validation using near-isogenic lines in bread wheat. Plant Breed. 2001, 120, 273–278. [Google Scholar] [CrossRef]
- Blanco, A.; Pasqualone, A.; Troccoli, A.; Di Fonzo, N.; Simeone, R. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol. Biol. 2002, 48, 615–623. [Google Scholar] [CrossRef]
- Börner, A.; Schumann, E.; Fürste, A.; Cöster, H.; Leithold, B.; Röder, M.; Weber, W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002, 105, 921–936. [Google Scholar] [CrossRef]
- Groos, C.; Robert, N.; Bervas, E.; Charmet, G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 2003. 106, 1032–1040. [CrossRef]
- Prasad, M.; Kumar, N.; Kulwal, P.; Röder, M.; Balyan, H.; Dhaliwal, H.; Gupta, P. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor. Appl. Genet. 2003, 106, 659–667. [Google Scholar] [CrossRef]
- Groos, C.; Bervas, E.; Charmet, G. Genetic analysis of grain protein content, grain hardness and dough rheology in a hard× hard bread wheat progeny. J. Cereal Sci. 2004, 40, 93–100. [Google Scholar] [CrossRef]
- Kulwal, P.; Kumar, N.; Kumar, A.; Gupta, R.K.; Balyan, H.S.; Gupta, P.K. Gene networks in hexaploid wheat: Interacting quantitative trait loci for grain protein content. Funct. Integr. Genom. 2005, 5, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Q.; Cloutier, S.; Lycar, L.; Radovanovic, N.; Humphreys, D.G.; Noll, J.S.; Somers, D.J.; Brown, P.D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 2006, 113, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.C.; Andreescu, C.; Breseghello, F.; Finney, P.L.; Gualberto, D.G.; Bergman, C.J.; Pena, R.J.; Perretant, M.R.; Leroy, P.; Qualset, C.O.; et al. Quantitative trait locus analysis of wheat quality traits. Euphytica 2006, 149, 145–159. [Google Scholar] [CrossRef]
- Laperche, A.; Brancourt-Hulmel, M.; Heumez, E.; Gardet, O.; Hanocq, E.; Devienne-Barret, F.; Le Gouis, J. Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor. Appl. Genet. 2007, 115, 399–415. [Google Scholar] [CrossRef]
- Sun, H.; Lü, J.; Fan, Y.; Zhao, Y.; Kong, F.; Li, R.; Wang, H.; Li, S. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog. Nat. Sci. 2008, 18, 825–831. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Zhou, R.; Branlard, G.; Jia, J. Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breed. 2009, 128, 235–243. [Google Scholar] [CrossRef]
- Mann, G.; Diffey, S.; Cullis, B.; Azanza, F.; Martin, D.; Kelly, A.; McIntyre, L.; Schmidt, A.; Ma, W.; Nath, Z.; et al. Genetic control of wheat quality: Interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor. Appl. Genet. 2009, 118, 1519–1537. [Google Scholar] [CrossRef]
- Patil, R.M.; Oak, M.D.; Tamhankar, S.A.; Rao, V.S. Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp durum). J. Cereal Sci. 2009, 49, 378–386. [Google Scholar] [CrossRef]
- Peleg, Z.; Cakmak, I.; Ozturk, L.; Yazici, A.; Jun, Y.; Budak, H.; Korol, A.B.; Fahima, T.; Saranga, Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor. Appl. Genet. 2009, 119, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Raman, R.; Allen, H.; Diffey, S.; Raman, H.; Martin, P.; McKelvie, K. Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.). Genome 2009, 52, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Suprayogi, Y.; Pozniak, C.J.; Clarke, F.R.; Clarke, J.M.; Knox, R.E.; Singh, A.K. Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theor. Appl. Genet. 2009, 119, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Marza, F.; Ma, H.; Carver, B.F.; Bai, G. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor. Appl. Genet. 2010, 120, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Tsilo, T.J.; Hareland, G.A.; Simsek, S.; Chao, S.; Anderson, J.A. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor. Appl. Genet. 2010, 121, 717–730. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, K.P.; Liu, B.; Deng, Z.Y.; Qu, H.L.; Tian, J.C. A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat. Euphytica 2010, 174, 325–335. [Google Scholar] [CrossRef]
- Conti, V.; Roncallo, P.F.; Beaufort, V.; Cervigni, G.L.; Miranda, R.; Jensen, C.A.; Echenique, V.C. Mapping of main and epistatic effect QTLs associated to grain protein and gluten strength using a RIL population of durum wheat. J. Appl. Genet. 2011, 52, 287–298. [Google Scholar] [CrossRef]
- Blanco, A.; Mangini, G.; Giancaspro, A.; Giove, S.; Colasuonno, P.; Simeone, R.; Signorile, A.; De Vita, P.; Mastrangelo, A.M.; Cattivelli, L.; et al. Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol. Breed. 2012, 30, 79–92. [Google Scholar] [CrossRef]
- Golabadi, M.; Arzani, A.; Mirmohammadi Maibody, S. Identification of microsatellite markers associated with grain protein content in durum wheat grown under drought stress at terminal growth stages. Cereal Res. Commun. 2012, 40, 215–224. [Google Scholar] [CrossRef]
- Li, J.; Cui, F.; Ding, A.M.; Zhao, C.H.; Wang, X.Q.; Wang, L.; Bao, Y.G.; Qi, X.L.; Li, X.F.; Gao, J.R.; et al. QTL detection of seven quality traits in wheat using two related recombinant inbred line populations. Euphytica 2012, 183, 207–226. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, R.; Wang, J.; Liao, X.; Branlard, G.; Jia, J. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol. Breed. 2012, 29, 627–643. [Google Scholar] [CrossRef]
- Simons, K.; Anderson, J.A.; Mergoum, M.; Faris, J.D.; Klindworth, D.L.; Xu, S.S.; Sneller, C.; Ohm, J.B.; Hareland, G.A.; Edwards, M.C.; et al. Genetic mapping analysis of bread-making quality traits in spring wheat. Crop Sci. 2012, 52, 2182–2197. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.I.N.; Cui, F.A.; Wang, J.; Jun, L.I.; Ding, A.; Zhao, C.; Li, X.; Feng, D.; Gao, J.; Wang, H. Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. J. Genet. 2012, 91, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; An, D.; Liu, D.; Zhang, A.; Xu, H.; Li, B. Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crops Res. 2012, 138, 57–62. [Google Scholar] [CrossRef]
- El-Feki, W.M.; Byrne, P.F.; Reid, S.D.; Lapitan, N.L.; Haley, S.D. Quantitative trait locus mapping for end-use quality traits in hard winter wheat under contrasting soil moisture levels. Crop Sci. 2013, 53, 1953–1967. [Google Scholar] [CrossRef]
- Heo, H.; Sherman, J. Identification of QTL for grain protein content and grain hardness from winter wheat for genetic improvement of spring wheat. Plant Breed. Biotechnol. 2013, 1, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Hu, S.; Chen, F.; Li, W.; Chen, J.; Sun, C.; Zhang, Y.; Wang, S.; Song, X.; Tian, J. Genetic dissection of interaction between wheat protein and starch using three mapping populations. Mol. Breed. 2015, 35, 12. [Google Scholar] [CrossRef]
- Maphosa, L.; Langridge, P.; Taylor, H.; Emebiri, L.C.; Mather, D.E. Genetic control of grain protein, dough rheology traits and loaf traits in a bread wheat population grown in three environments. J. Cereal Sci. 2015, 64, 147–152. [Google Scholar] [CrossRef]
- Moore, C.M.; Richards, R.A.; Rebetzke, G.J. Phenotypic variation and QTL analysis for oil content and protein concentration in bread wheat (Triticum aestivum L.). Euphytica 2015, 204, 371–382. [Google Scholar] [CrossRef]
- Echeverry-Solarte, M.; Kumar, A.; Kianian, S.; Simsek, S.; Alamri, M.S.; Mantovani, E.E.; McClean, P.E.; Deckard, E.L.; Elias, E.; Schatz, B.; et al. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes. Theor. Appl. Genet. 2015, 128, 893–912. [Google Scholar] [CrossRef]
- Li, C.; Bai, G.; Chao, S.; Carver, B.; Wang, Z. Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat. Crop J. 2016, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mahjourimajd, S.; Taylor, J.; Rengel, Z.; Khabaz-Saberi, H.; Kuchel, H.; Okamoto, M.; Langridge, P. The genetic control of grain protein content under variable nitrogen supply in an Australian wheat mapping population. PLoS ONE 2016, 11, e0159371. [Google Scholar] [CrossRef] [PubMed]
- Terasawa, Y.; Ito, M.; Tabiki, T.; Nagasawa, K.; Hatta, K.; Nishio, Z. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.). Breed. Sci. 2016, 66, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, C.; Wallwork, H.; Arun, B.; Mishra, V.K.; Velu, G.; Stangoulis, J.; Kumar, U.; Joshi, A.K. Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 2016, 207, 563–570. [Google Scholar] [CrossRef]
- Sun, X.; Wu, K.; Zhao, Y.; Qian, Z.; Kong, F.; Guo, Y.; Wang, Y.; Li, S. Molecular genetic analysis of grain protein content and flour whiteness degree using RILs in common wheat. J. Genet. 2016, 95, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Marcotuli, I.; Gadaleta, A.; Mangini, G.; Signorile, A.; Zacheo, S.; Blanco, A.; Simeone, R.; Colasuonno, P. Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat. Int. J. Mol. Sci. 2017, 18, 1329. [Google Scholar] [CrossRef]
- Fatiukha, A.; Lupo, I.; Lidzbarsky, G.; Klymiuk, V.; Korol, A.B.; Pozniak, C.; Fahima, T.; Krugman, T. Grain Protein Content QTLs Identified in a Durum × Wild Emmer Wheat Mapping Population Tested in Five Environments. bioRxiv 2019. [Google Scholar] [CrossRef]
- Patil, R.; Oak, M.; Deshpande, A.; Tamhankar, S. Development of a robust marker for Psy-1 homoeologs and its application in improvement of yellow pigment content in durum wheat. Mol. Breed. 2018, 38, 136. [Google Scholar] [CrossRef]
- Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
- Gordeeva, E.I.; Shoeva, O.Y.; Khlestkina, E.K. Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica 2015, 203, 469–476. [Google Scholar] [CrossRef]
- Gupta, P.K.; Kulwal, P.L.; Jaiswal, V. Association mapping in crop plants: Opportunities and challenges. Adv. Genet. 2014, 85, 109–147. [Google Scholar]
- Meuwissen, T.H.E.; Hayes, B.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [PubMed]
- Heffner, E.L.; Jannink, J.L.; Iwata, H.; Souza, E.; Sorrells, M.E. Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci. 2011, 51, 2597–2606. [Google Scholar] [CrossRef] [Green Version]
- Michel, S.; Kummer, C.; Gallee, M.; Hellinger, J.; Ametz, C.; Akgöl, B.; Epure, D.; Löschenberger, F.; Buerstmayr, H. Improving the baking quality of bread wheat by genomic selection in early generations. Theor. Appl. Genet. 2018, 131, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, P.S.; ed Jahoor, A.; Andersen, J.R.; ad Orabi, J.; Janss, L.; Jensen, J. Multi-Trait and Trait-Assisted Genomic Prediction of Winter Wheat Quality Traits Using Advanced Lines from Four Breeding Cycles. Crop Breed. Genet. Genom. 2019, 1. [Google Scholar] [CrossRef]
- Bassi, F.M.; Bentley, A.R.; Charmet, G.; Ortiz, R.; Crossa, J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 2016, 242, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic selection in plant breeding: Methods, models, and perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Balyan, H.S.; Gupta, P.K.; Kumar, S.; Dhariwal, R.; Jaiswal, V.; Tyagi, S.; Agarwal, P.; Gahlaut, V.; Kumari, S. Genetic improvement of grain protein content and other health-related constituents of wheat grain. Plant Breed. 2013, 132, 446–457. [Google Scholar] [CrossRef]
- Avivi, L. High protein content in wild tetraploid Triticum dicoccoides Korn. In Proceedings of the 5th International Wheat Genetics Symposium, New Delhi, India, 23–28 February 1978; Ramanujam, S., Ed.; Indian Society of Genetics and Plant Breeding (ISGPB): New Delhi, India, 1978; pp. 372–380. [Google Scholar]
- Joppa, L.R.; Cantrell, R.G. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci. 1990, 30, 1059–1064. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef] [Green Version]
- Tabbita, F.; Pearce, S.; Barneix, A.J. Breeding for increased grain protein and micronutrient content in wheat: Ten years of the GPC-B1 gene. J. Cereal Sci. 2017, 73, 183–191. [Google Scholar] [CrossRef]
- Wang, D.L.; Zhu, J.; Li, Z.K.L.; Paterson, A.H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor. Appl. Genet. 1999, 99, 1255–1264. [Google Scholar] [CrossRef]
- Yang, J.; Hu, C.; Hu, H.; Yu, R.; Xia, Z.; Ye, X.; Zhu, J. QTL Network: Mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 2008, 24, 721–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Paran, I.; Zamir, D. Quantitative traits in plants: Beyond the QTL. Trends Genet. 2003, 19, 303–306. [Google Scholar] [CrossRef]
- Morgante, M.; Salamini, F. From plant genomics to practice. Curr. Opin. Biotechnol. 2013, 14, 214–219. [Google Scholar] [CrossRef]
- Guillaumie, S.; Charmet, G.; Linossier, L.; Torney, V.; Robert, N.; Ravel, C. Colocation between a gene encoding the bZipfactor SPA and an eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome 2004, 47, 705–713. [Google Scholar] [CrossRef]
- Heffner, E.L.; Jannink, J.L.; Sorrells, M.E. Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 2011, 4, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Michel, S.; Löschenberger, F.; Ametz, C.; Pachler, B.; Sparry, E.; Bürstmayr, H. Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding. Theor. Appl. Genet. 2019, 132, 1745–1760. [Google Scholar] [CrossRef]
- Battenfield, S.D.; Guzmán, C.; Gaynor, R.C.; Singh, R.P.; Peña, R.J.; Dreisigacker, S.; Fritz, A.K.; Poland, J.A. Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 2016, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Burgueño, J.; de los Campos, G.; Weigel, K.; Crossa, J. Genomic prediction of breeding values when modeling genotype× environment interaction using pedigree and dense molecular markers. Crop Sci. 2012, 52, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Cruz, M.; Crossa, J.; Bonnett, D.; Dreisigacker, S.; Poland, J.; Jannink, J.L.; Singh, R.P.; Autrique, E.; de los Campos, G. Increased prediction accuracy in wheat breeding trials using a marker× environment interaction genomic selection model. G3 Genes Genomes Genet. 2015, 5, 569–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossa, J.; Perez, P.; Hickey, J.; Burgueno, J.; Ornella, L.; Cerón-Rojas, J.; Zhang, X.; Dreisigacker, S.; Babu, R.; Li, Y.; et al. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 2014, 112, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, B.J.; Panozzo, J.; Walker, C.K.; Choy, A.L.; Kant, S.; Wong, D.; Tibbits, J.; Daetwyler, H.D.; Rochfort, S.; Hayden, M.J.; et al. Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes. Theor. Appl. Genet. 2017, 130, 2505–2519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Sun, Y.X.; Ye, Y.L. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Res. 2012, 125, 1–7. [Google Scholar] [CrossRef]
- Zou, C.Q.; Zhang, Y.Q.; Rashid, A.; Ram, H.; Savasli, E.; Arisoy, R.Z.; Ortiz-Monasterio, I.; Simunji, S.; Wang, Z.H.; Sohu, V.; et al. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 2012, 361, 119–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, R.; Rezaul, K.M.; Zhang, F.; Zou, C. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. J. Agric. Food Chem. 2010, 58, 12268–12274. [Google Scholar] [CrossRef]
- Aciksoz, S.B.; Yazici, A.; Ozturk, L.; Cakmak, I. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 2011, 349, 215–225. [Google Scholar] [CrossRef]
- Singh, R.; Govindan, V.; Andersson, M.S. Zinc-Biofortified Wheat: Harnessing Genetic Diversity for Improved Nutritional Quality. Sci. Br. Biofortif. Ser. 2017, 1, 1–4. [Google Scholar]
- Lowe, N.M.; Khan, M.J.; Broadley, M.R.; Zia, M.H.; McArdle, H.J.; Joy, E.J.; Ohly, H.; Shahzad, B.; Ullah, U.; Kabana, G.; et al. Examining the effectiveness of consuming flour made from agronomically biofortified wheat (Zincol-2016/NR-421) for improving Zn status in women in a low-resource setting in Pakistan: Study protocol for a randomised, double-blind, controlled cross-over trial (BiZiFED). BMJ Open 2018, 8, e021364. [Google Scholar]
- Shi, R.; Li, H.; Tong, Y.; Jing, R.; Zhang, F.; Zou, C. Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 2008, 306, 95–104. [Google Scholar] [CrossRef]
- Genc, Y.; Verbyla, A.P.; Torun, A.A.; Cakmak, I.; Willsmore, K.; Wallwork, H.; McDonald, G.K. Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 2009, 314, 49. [Google Scholar] [CrossRef]
- Tiwari, V.K.; Rawat, N.; Chhuneja, P.; Neelam, K.; Aggarwal, R.; Randhawa, G.S.; Dhaliwal, H.S.; Keller, B.; Singh, K. Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J. Hered. 2009, 100, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, R.L.; Tong, Y.P.; Jing, R.L.; Zhang, F.S.; Zou, C.Q. Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J. Integr. Agric. 2013, 12, 1512–1521. [Google Scholar] [CrossRef]
- Roshanzamir, H.; Kordenaeej, A.; Bostani, A. Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers. Iran. J. Genet. Plant Breed. 2013, 2, 10–17. [Google Scholar]
- Hao, Y.; Velu, G.; Peña, R.J.; Singh, S.; Singh, R.P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol. Breed. 2014, 34, 1893–1902. [Google Scholar] [CrossRef]
- Crespo-Herrera, L.A.; Govindan, V.; Stangoulis, J.; Hao, Y.; Singh, R.P. QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Front. Plant Sci. 2017, 8, 1800. [Google Scholar] [CrossRef] [Green Version]
- Srinivasa, J.; Arun, B.; Mishra, V.K.; Singh, G.P.; Velu, G.; Babu, R.; Vasistha, N.K.; Joshi, A.K. Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor. Appl. Genet. 2014, 127, 1643–1651. [Google Scholar] [CrossRef]
- Velu, G.; Tutus, Y.; Gomez-Becerra, H.F.; Hao, Y.; Demir, L.; Kara, R.; Crespo-Herrera, L.A.; Orhan, S.; Yazici, A.; Singh, R.P.; et al. QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant Soil 2017, 411, 81–99. [Google Scholar] [CrossRef]
- Pu, Z.E.; Ma, Y.U.; He, Q.Y.; Chen, G.Y.; Wang, J.R.; Liu, Y.X.; Jiang, Q.T.; Wei, L.I.; Dai, S.F.; Wei, Y.M.; et al. Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J. Integr. Agric. 2014, 13, 2322–2329. [Google Scholar] [CrossRef]
- Krishnappa, G.; Singh, A.M.; Chaudhary, S.; Ahlawat, A.K.; Singh, S.K.; Shukla, R.B.; Jaiswal, J.P.; Singh, G.P.; Solanki, I.S. Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS ONE 2017, 12, e0174972. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Herrera, L.A.; Velu, G.; Singh, R.P. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann. Appl. Biol. 2016, 169, 27–35. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Liu, Q.; Tian, X.; Shi, Y.; Zhang, X. QTL mapping of selenium content using a RIL population in wheat. PLoS ONE 2017, 12, e0184351. [Google Scholar] [CrossRef]
- Pu, Z.; Pei, Y.; Yang, J.; Ma, J.; Li, W.; Liu, D.; Wang, J.; Wei, Y.; Zheng, Y. A QTL located on chromosome 3D enhances the selenium concentration of wheat grain by improving phytoavailability and root structure. Plant Soil 2018, 425, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Xue, W.T.; Yang, R.Z.; Qin, H.B.; Zhao, G.; Tzion, F.; Cheng, J.P. Quantitative trait loci conferring grain selenium nutrient in durum wheat× wild emmer wheat RIL population. Czech J. Genet. Plant Breed. 2018, 54, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Gorafi, Y.S.; Ishii, T.; Kim, J.S.; Elbashir, A.A.E.; Tsujimoto, H. Genetic variation and association mapping of grain iron and zinc contents in synthetic hexaploid wheat germplasm. Plant Genet. Resour. 2018, 16, 9–17. [Google Scholar] [CrossRef]
- Magallanes-López, A.M.; Hernandez-Espinosa, N.; Velu, G.; Posadas-Romano, G.; Ordoñez-Villegas, V.M.G.; Crossa, J.; Ammar, K.; Guzmán, C. Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits. Food Chem. 2017, 237, 499–505. [Google Scholar] [CrossRef]
- Amiri, R.; Bahraminejad, S.; Cheghamirza, K. Estimating genetic variation and genetic parameters for grain iron, zinc and protein concentrations in bread wheat genotypes grown in Iran. J. Cereal Sci. 2018, 80, 16–23. [Google Scholar] [CrossRef]
- Velu, G.; Crossa, J.; Singh, R.P.; Hao, Y.; Dreisigacker, S.; Perez-Rodriguez, P.; Joshi, A.K.; Chatrath, R.; Gupta, V.; Balasubramaniam, A.; et al. Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor. Appl. Genet. 2016, 129, 1595–1605. [Google Scholar] [CrossRef]
- Manickavelu, A.; Hattori, T.; Yamaoka, S.; Yoshimura, K.; Kondou, Y.; Onogi, A.; Matsui, M.; Iwata, H.; Ban, T. Genetic nature of elemental contents in wheat grains and its genomic prediction: Toward the effective use of wheat landraces from Afghanistan. PLoS ONE 2017, 12, 0169416. [Google Scholar] [CrossRef]
- Alomari, D.; Eggert, K.; von Wirén, N.; Polley, A.; Plieske, J.; Ganal, M.; Liu, F.; Pillen, K.; Röder, M. Whole-genome association mapping and genomic prediction for iron concentration in wheat grains. Int. J. Mol. Sci. 2019, 20, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.X.; Xing, H.J.; Liu, C.P.; Zhang, Z.W.; Xu, S.W. Effect of Selenium Deficiency on Nitric Oxide and Heat Shock Proteins in Chicken Erythrocytes. Biol. Trace Elem. Res. 2016, 171, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.M.; Barry, G.A. Survey of selenium concentrations in wheat, sorghum and soybean grains, prepared poultry feeds and feed ingredients from Queensland. Qld. J. Agric. Anim. Sci. 1982, 39, 1–8. [Google Scholar]
- Tveitnes, S.; Singh, B.R.; Ruud, L. Selenium concentration in spring wheat as influenced by basal application and top dressing of selenium-enriched fertilizers. Fertil. Res. 1995, 45, 163–167. [Google Scholar] [CrossRef]
- Piergiovanni, A.R.; Rizzi, R.; Pannacciulli, E.; Gatta, C.D. Mineral composition in hulled wheat grains: A comparison between emmer (Triticum dicoccon Schrank) and spelt (T. spelta L.) accessions. Int. J. Food Sci. Nutr. 1997, 48, 381–386. [Google Scholar] [CrossRef]
- Lyons, G.; Ortiz-Monasterio, I.; Stangoulis, J.; Graham, R. Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant Soil 2005, 269, 369–380. [Google Scholar] [CrossRef]
- Yeum, K.J.; Russell, R.M. Carotenoid bioavailability and bioconversion. Annu. Rev. Nutr. 2002, 22, 483–504. [Google Scholar] [CrossRef]
- Parker, G.D.; Chalmers, K.J.; Rathjen, A.J.; Langridge, P. Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor. Appl. Genet. 1998, 97, 238–245. [Google Scholar] [CrossRef]
- Elouafi, I.; Nachit, M.M.; Martin, L.M. Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 2001, 135, 255–261. [Google Scholar] [CrossRef]
- Pozniak, C.J.; Knox, R.E.; Clarke, F.R.; Clarke, J.M. Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor. Appl. Genet. 2007, 114, 525–537. [Google Scholar] [CrossRef]
- Patil, R.M.; Oak, M.D.; Tamhankar, S.A.; Sourdille, P.; Rao, V.S. Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Mol. Breed. 2008, 21, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Dubcovsky, J. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor. Appl. Genet. 2008, 116, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wu, Y.; Xiao, Y.; He, Z.; Zhang, Y.; Yan, J.; Zhang, Y.; Xia, X.; Ma, C. QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica 2009, 165, 435. [Google Scholar] [CrossRef]
- Blanco, A.; Colasuonno, P.; Gadaleta, A.; Mangini, G.; Schiavulli, A.; Simeone, R.; Digesù, A.M.; De Vita, P.; Mastrangelo, A.M.; Cattivelli, L. Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. J. Cereal Sci. 2011, 54, 255–264. [Google Scholar] [CrossRef]
- Crawford, A.C.; Stefanova, K.; Lambe, W.; McLean, R.; Wilson, R.; Barclay, I.; Francki, M.G. Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. Theor. Appl. Genet. 2011, 123, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Roncallo, P.F.; Cervigni, G.L.; Jensen, C.; Miranda, R.; Carrera, A.D.; Helguera, M.; Echenique, V. QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica 2012, 185, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Sun, H.Y.; Wang, Y.Y.; Pu, Y.Y.; Kong, F.M.; Li, S.S. QTL mapping for the color, carotenoids and polyphenol oxidase activity of flour in recombinant inbred lines of wheat. Aust. J. Crop Sci. 2013, 7, 328–337. [Google Scholar]
- Colasuonno, P.; Gadaleta, A.; Giancaspro, A.; Nigro, D.; Giove, S.; Incerti, O.; Mangini, G.; Signorile, A.; Simeone, R.; Blanco, A. Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol. Breed. 2014, 34, 1563–1578. [Google Scholar] [CrossRef]
- Kuchel, H.; Langridge, P.; Mosionek, L.; Williams, K.; Jefferies, S.P. The genetic control of milling yield, dough rheology and baking quality of wheat. Theor. Appl. Genet. 2006, 112, 1487. [Google Scholar] [CrossRef]
- Zhai, S.; He, Z.; Wen, W.; Jin, H.; Liu, J.; Zhang, Y.; Liu, Z.; Xia, X. Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. Theor. Appl. Genet. 2016, 129, 377–394. [Google Scholar] [CrossRef]
- He, X.Y.; Zhang, Y.L.; He, Z.H.; Wu, Y.P.; Xiao, Y.G.; Ma, C.X.; Xia, X.C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor. Appl. Genet. 2008, 116, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Ficco, D.B.; Mastrangelo, A.M.; Trono, D.; Borrelli, G.M.; De Vita, P.; Fares, C.; Beleggia, R.; Platani, C.; Papa, R. The colours of durum wheat: A review. Crop Pasture Sci. 2014, 65, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; He, X.; He, Z.; Wang, H.; Xia, X. Cloning and phylogenetic analysis of phytoene synthase 1 (Psy1) genes in common wheat and related species. Hereditas 2009, 146, 208–256. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Reimer, S.; Pozniak, C.J.; Clarke, F.R.; Clarke, J.M.; Knox, R.E.; Singh, A.K. Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor. Appl. Genet. 2009, 118, 1539–1548. [Google Scholar] [CrossRef]
- Zhai, S.; Xia, X.; He, Z. Carotenoids in staple cereals: Metabolism, regulation, and genetic manipulation. Front. Plant Sci. 2016, 7, 1197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lukaszewski, A.J.; Kolmer, J.; Soria, M.A.; Goyal, S.; Dubcovsky, J. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor. Appl. Genet. 2005, 111, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Mérida-García, R.; Liu, G.; He, S.; Gonzalez-Dugo, V.; Dorado, G.; Gálvez, S.; Solís, I.; Zarco-Tejada, P.J.; Reif, J.C.; Hernandez, P. Genetic dissection of agronomic and quality traits based on association mapping and genomic selection approaches in durum wheat grown in Southern Spain. PLoS ONE 2019, 14, 0211718. [Google Scholar] [CrossRef] [Green Version]
- Lolas, G.M.; Palmidis, N.; Markakis, P. The Phytic Acid-Total Phosphorus Relationship in Barley, Oats, Soybeans, and Wheat. Cereal Chem. 1976, 53, 867–871. [Google Scholar]
- Raboy, V.; Noaman, M.W.; Taylor, G.A.; Pickett, S.G. Grain phytic acid and protein are highly correlated in winter wheat. Crop Sci. 1991, 31, 631–635. [Google Scholar] [CrossRef]
- Reddy, N.R.; Pierson, M.D. Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res. Int. 1994, 27, 281–290. [Google Scholar] [CrossRef]
- Cook, J.D.; Reddy, M.B.; Burri, J.; Juillerat, M.A.; Hurrell, R.F. The influence of different cereal grains on iron absorption from infant cereal foods. Am. J. Clin. Nutr. 1997, 65, 964–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbro, N.; Brittmarie, S.; Cederblad, Å.K.E. Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. Br. J. Nutr. 1985, 53, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ram, S.; Verma, A.; Sharma, S. Large variability exits in phytase levels among Indian wheat varieties and synthetic hexaploids. J. Cereal Sci. 2010, 52, 486–490. [Google Scholar] [CrossRef]
- Shitre, A.S.; Gadekar, D.A.; Vikas, V.R.; Bakshi, S.; Kumar, V.; Vishwakarma, G.; Das, B.K. Genotypic variation for phytic acid, inorganic phosphate and mineral contents in advanced breeding lines of wheat (Triticum aestivum L.). Electron. J. Plant Breed. 2015, 6, 395–402. [Google Scholar]
- Bhati, K.K.; Aggarwal, S.; Sharma, S.; Mantri, S.; Singh, S.P.; Bhalla, S.; Kaur, J.; Tiwari, S.; Roy, J.K.; Tuli, R.; et al. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.). Plant Sci. 2014, 224, 74–85. [Google Scholar] [CrossRef]
- Bhati, K.K.; Alok, A.; Kumar, A.; Kaur, J.; Tiwari, S.; Pandey, A.K. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J. Exp. Bot. 2016, 67, 4379–4389. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, R.; Watson, G.M.F.; Derera, J.; Tongoona, P.; Laing, M.D. Marker-assisted selection for low phytic acid (lpa1-1) with single nucleotide polymorphism marker and amplified fragment length polymorphisms for background selection in a maize backcross breeding programme. Mol. Breed. 2012, 30, 1207–1217. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Lefevre, M.; Beecher, G.R.; Gross, M.D.; Keen, C.L.; Etherton, T.D. Bioactive compounds in nutrition and health-research methodologies for establishing biological function: The antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu. Rev. Nutr. 2004, 24, 511–538. [Google Scholar] [CrossRef]
- Patel, K.; Jain, A.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. J. Acute Dis. 2013, 2, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 2003, 133, 2125–2130. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolskaya, O.; Arbuzova, V.S.; Lohwasser, U.; Röder, M.S.; Börner, A. Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum) L. Euphytica 2006, 150, 355–364. [Google Scholar] [CrossRef]
- Khlestkina, E.K.; Röder, M.S.; Börner, A. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 2010, 171, 65–69. [Google Scholar] [CrossRef]
- Tereshchenko, O.; Gordeeva, E.; Arbuzova, V.; Börner, A.; Khlestkina, E. The D genome carries a gene determining purple grain colour in wheat. Cereal Res. Commun. 2012, 40, 334–341. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Chen, W.; Zhang, B.; Liu, D.; Liu, B.; Zhang, H. Transcriptome analysis of purple pericarps in common wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0155428. [Google Scholar] [CrossRef] [Green Version]
- Shoeva, O.; Gordeeva, E.; Khlestkina, E. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules 2014, 19, 20266–20279. [Google Scholar] [CrossRef] [Green Version]
- Zong, Y.; Xi, X.; Li, S.; Chen, W.; Zhang, B.; Liu, D.; Liu, B.; Wang, D.; Zhang, H. Allelic variation and transcriptional isoforms of wheat TaMYC1 gene regulating anthocyanin synthesis in pericarp. Front. Plant Sci. 2017, 8, 1645. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Zong, Y.; Liu, B.L.; Chen, W.J.; Zhang, B. TaMYB3, encoding a functional MYB transcriptor, isolated from the purple pericarp of Triticum aestivum. Cereal Res. Commun. 2017, 45, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Liu, T.; Nan, W.; Jeewani, D.C.; Niu, Y.; Li, C.; Wang, Y.; Shi, X.; Wang, C.; Wang, J.; et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. J. Exp. Bot. 2018, 69, 2555–2567. [Google Scholar] [CrossRef] [Green Version]
- Burešová, V.; Kopecký, D.; Bartoš, J.; Martinek, P.; Watanabe, N.; Vyhnánek, T.; Doležel, J. Variation in genome composition of blue-aleurone wheat. Theor. Appl. Genet. 2015, 128, 273–282. [Google Scholar] [CrossRef]
- Martinek, P.; Jirsa, O.; Vaculová, K.; Chrpová, J.; Watanabe, N.; Burešová, V.; Kopecký, D.; Štiasna, K.; Vyhnánek, T.; Trojan, V. Use of wheat gene resources with different grain colour in breeding. In Proceedings of the Tagungsband der 64, Raumberg-Gumpenstein, Austria, 25–26 November 2013. [Google Scholar]
- Neeraja, C.N.; Ravindra, B.V.; Ram, S.; Hossain, F.; Hariprasanna, K.; Rajpurohit, B.S.; Prabhakar, T.L.; Prasad, K.S.; Sandhu, J.S.; Datta, S.K. Biofortification in cereals—Progress and prospects. Curr. Sci. 2017, 113, 1050–1057. [Google Scholar] [CrossRef]
- PTI. M S Swaminathan: India Must Focus on Nutrition Security. Available online: https://www.thehindubusinessline.com/economy/agri-business/m-s-swaminathanindia-must-focus-onnutrition-security/article24739207.ece (accessed on 12 October 2018).
Iron (in mg) | Zinc (in mg) | Selenium (in Micrograms) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | M | F | P | L | M | F | P | L | M | F | P | L |
Birth to 6 months | 0.27 | 0.27 | 4 | 4 | 15 | 15 | ||||||
7 months to 3 years | 11 | 11 | 5 | 5 | 20 | 20 | ||||||
4–8 years | 10 | 10 | 12 | 12 | 30 | 30 | ||||||
9–13 years | 8 | 8 | 23 | 23 | 40 | 40 | ||||||
14–18 years | 11 | 15 | 27 | 10 | 34 | 34 | 34 | 34 | 55 | 55 | 60 | 70 |
19 + years | 8 | 18 | 27 | 9 | 40 | 40 | 40 | 40 | 55 | 55 | 60 | 70 |
Cross | Population Type and Size | No. of Total QTLs | PVE Range (Additive Effect of QTLs) | Chromosomes/Chromosome Arms | References |
---|---|---|---|---|---|
Durum wheat (‘Messapia) × T. turgidum L. var. dicoccoides (MG4343) | RILs (65) | 6 | 6.0–23.5 | 4BS, 5AL, 6AS, 6BS, 7BS | [46] |
T. turgidum (L.) var. dicoccoides chromosome 6B | RICLs (85) | 1 | 66 | 6BS | [43] |
T. aestivum (PH132) × T. aestivum (WL711) | RILs (100) | 1 | 18.73 | 2DL | [47] |
T. aestivum (Courtot) × T. aestivum (Chinese Spring) | DH lines (187) | 2 | 7.0–17.0 | 1B, 6A | [48] |
T. aestivum (PH132) × T. aestivum (WL711) | RILs (106) | 9 | 2.9–7.2 | 2BL, 7AS | [49] |
T. aestivum (PH132) × T. aestivum (WL711) | RILs (100) and NILs (10) | 1 | 6.2 | 5AL | [50] |
Durum wheat (Messapia) × T. turgidum var. dicoccoides (MG4343) | RILs (65) | 7 | 6.5–31.7 | 4BS, 6AS, 5AL, 7AS, 7BS, 6BS | [51] |
T. aestivum (Opata 85) × synthetic hexaploid wheat (W7984) | RILs (114) | 2 | 2DS, 7AS | [52] | |
T. aestivum (Renan) × T. aestivum (Récital) | RILs (194) | 10 | 4.1–10.4 | 1A, 2AS, 3AL, 3BS, 4AS, 4DL, 5BL, 6AL, 7AS, 7DL | [53] |
T. aestivum (WL711) × T. aestivum (PH132) | RILs (100) | 13 | 2.95–32.44 | 7AS, 2AS, 2DL, 2BL, 3DS, 4AL, 6BS, 7DS | [54] |
T. turgidum (L.) var. dicoccoides (LDN(Dic-5B) × LDN | RICLs (133) | 3 | 10.0–33.0 | 5B | [44] |
T. aestivum (Renan) × T. aestivum (Récital) | RILs (194) | 3 | 6.2–9.6 | 3A, 4D, 7D | [55] |
T. aestivum (WL711) × T. aestivum (PH132) | RILs (110) | 7 | 8.38–16.58 | 2DS, 3AL, 2AS, 1DL, 5AL, 7DL | [56] |
Canadian Spring wheat (AC Karma) × T. aestivum (87E03-S2B1) | DH lines (185) | 2 | 12.6–32.7 | 4D, 7B | [57] |
T. aestivum (Opata85) × Synthetic hexaploid wheat (W7984) | 114 RILs | 4 | 15.0–32.0 | 2DS,5AL,6DS | [58] |
T. aestivum (Arche) × T. aestivum (Recital) | DH lines (222) | 13 | 5.5–24.7 | 2D, 4B, 2A, 1B, 3B, 3D, 5A, 5B, 7D | [59] |
T. aestivum (Chuan 35050) × T. aestivum (Shannong 483) | RILs (131) | 3 | 8.64–21.23 | 5AL, 3BL, 6AS | [60] |
T. aestivum (Neixiang188) × T. aestivum (Yanzhan) | RILs (198) | 16 | 3.2–14.5 | 3B, 2B, 1B, 2A, 2B, 3A, 4D, 5B, 5D, 7B, 7D | [61] |
T. aestivum (kukri) × T. aestivum (Janz) | DH lines (160) | 13 | 1B, 2A, 3AS, 3B, 4B, 4D, 5A,5B,7AL, 7D | [62] | |
Indian durum wheat (PDW 233) × Bhalegaon 4 (a landrace) | RILs (140) | 1 | 9.64 | 7B | [63] |
Durum wheat (Langdon) × Wild emmer accession (G18–16) | RILs (152) | 10 | 2.8–9.7 | 2AL, 2BL, 3BL, 4AL, 5AS, 5BL, 6AS, 6BL, 7AL, 7BS | [64] |
T. aestivum (Chara) × an advanced breeding line (WW2449) | DH lines (190) | 1 | 20 | 4A | [65] |
Durum breeding line (DT695) × Durum wheat cultivar (Strongfield) | DH lines (185) | 9 | 16–46 | 2B, 7A, 1A, 1B, 2A, 5B, 6B, 7A | [66] |
Chinese hard wheat line (Ning7840) × Soft wheat cultivar (Clark) | RILs (132) | 2 | 11.2–16.8 | 3AS, 4B | [67] |
T. aestivum (MN98550) × T. aestivum (MN99394) | RILs (139) | 3 | 4.5–16.8 | 5AL, 2BS, 6DL | [68] |
T. aestivum (Huapei 3) × T. aestivum (Yumai 57) | DH lines (168) | 4 | 3.09–8.40 | 3A, 3B, 5D, 6D | [69] |
Durum breeding line (C1113) × Durum cultivar (Kofa) | RILs (93) | 10 | 9.3–21.6 | 3BS, 7BL, 5AS, 2BS, 4AL, 5BL, 2AL, 1BS, 7AS, 3BL | [70] |
Svevo × Ciccio (both elite durum wheat cultivars) | RILs (120) | 10 | 7.8–40.2 | 3BS, 2BL, 1AL, 4AL, 2AS, 4BL, 1AS, 6BS, 5AL, 7BL | [71] |
Oste-Gata × Massara-1 (durum wheat genotypes) | F2 derived F3 and F4 lines (151) | 2 | 5.31–9.44 | 1A, 5BL | [72] |
T. aestivum (Weimai 8) × T. aestivum (Jimai 20) | RILs (485) | 9 | 3.06–9.79 | 2B, 3A, 4A, 4D, 5B, 7A, 7B | [73] |
T. aestivum (Weimai 8) × T. aestivum (Yannong 19) | RILs (229) | 10 | 6.29–53.04 | 5A, 1A, 2D, 1B, 4B, 2A, 3A, 5D, 6B, 7D | [73] |
Synthetic wheat (Am3) × Synthetic wheat (Laizhou953) | BC5F2:F6 families (82) | 9 | 2.2–11.5 | 6A, 1A, 2D, 3A, 4B, 5D, 6B, 6D, 7B | [74] |
T. aestivum (BR34) × T. aestivum (Grandin) | RILs (118) | 1 | 16.3 | 5BL | [75] |
T. aestivum (Weimai 8) × T. aestivum (Luohan 2) | RILs (302) | 7 | 4.15–9.73 | [76] | |
T. aestivum (Xiaoyan 54) × T. aestivum (Jing 411) | RILs (182) | 5 | 1.14–9.25 | [77] | |
T. aestivum (CO940610) × T. aestivum (Platte) | DH lines (185) | 5 | 5.6–12.3 | 5BS, 6AL, 6BS, 7BS, 7DL | [78] |
T. aestivum (Choteau) × T. aestivum (Yellowstone) | RILs (97) | 2 | 17–19 | 3B, 5B | [79] |
T. aestivum (Huapei 3 × Yumai 57; Nuomai 1× Gaocheng 8901; Shannong 01–35 × Gaocheng 9411) | DH lines (68), RILs (256), RILs (182) | 13 | 0.84–10.51 | 2A, 1B, 1D, 2B, 2D, 3B, 4B, 5B, 6D, 7A | [80] |
T. aestivum (Drysdale) × T. aestivum (gladius) | RILs (155) | 4 | 2B, 2D, 3D, 5A | [81] | |
T. aestivum (CD87) × T. aestivum (Katepwa) | DH lines (180) | 12 | 1D, 2A, 2B, 2D, 4A, 4B, 5A, 5B, 5D, 6A, 6B, 6D, 7A | [82] | |
T. aestivum (WCB414) × T. aestivum (WCB617) | RILs (163) | 11 | 4.7–16.5 | 6B, 1A, 5B, 2B. 7B, 1B, 2D, 3D, 4B, | [83] |
T. aestivum (Ning7840) × T. aestivum (Clark) | RILs (127) | 4 | 11.5–22 | 4BS, 5AL, 5BL, 3A | [84] |
T. aestivum (RAC875) × T. aestivum (Kukri) | DH lines (156) | 12 | 7.00–17.00 | 7A, 6A, 3D,1B, 2D, 4B, 5A, 5B, 5D | [85] |
T. aestivum (Kitami 81) × T. aestivum (Kachikei 63) | DH lines (94) | 1 | 32.1 | 2BS | [86] |
T. aestivum (Berkut) × T. aestivum (Krichauff) | DH lines (138) | 1 | 17.7 | 1A | [87] |
T. aestivum (Chuan 35050) × T. aestivum (Shannong 483) | RILs (131) | 9 | 4.1–32.7 | 7D, 4A, 4B, 5D, 1A, 1D, 2A, 2D, | [88] |
T. turgidum (Duilio) × T. turgidum (Avonlea) | RILs (134) | 8 | 10–14 | 5A, 3B, 4A, 7B, 1B, 2B, 7A | [89] |
T. durum var. Svevo × T. turgidum ssp. dicoccoides acc. Y12-3 | RILs (208) | 12 | 2.6–26.6 | 4B, 5A, 6B, 1A, 1B, 2A, 3A, 4A, 6A, 7B | [90] |
Cross | Population Type and Size | No. of Total QTLs | PVE Range | Chromosomes | References |
---|---|---|---|---|---|
T. aestivum Hanxuan10 × T. aestivum Lumai 14 | DH (119) | Zinc conc.-4 and Zn content-7 | 5.3–11.9; 4.6–14.6 | 4D, 5A, 4A, 7A and 7A, 2D, 1A, 3A, 4A, 4D, 5A, | [126] |
T. aestivum (RAC875-2) × T. aestivum (cascades) | DH (90) | GZn-4; GFe-1 | 3D, 4B, 6B, 7A, 3D | [127] | |
T. boeoticum (Tb5088) × T. monococcum (Tm14087) | RIL (93) | GZn-2; GFe-3 | 7.0–12.6; 9.0–18.8 | 7A, 2A, 7A | [128] |
Durum wheat (cv. Langdon) and wild emmer (accession G18-16) | RIL (152) | GZn-6; GFe-11 | 1.3–23.5; 0.8–17.8 | 2A, 7A, 5A, 6B, 7B, 5A, 7A, 2A, 2B, 3A, 3B, 4B, 5A, 6A, 6B, 7B | [64] |
T. aestivum (Xiaoyan 54) × T. aestivum (Jing 411) | RIL (182) | GZn-2; GFe-2 | 4.23–6.88; 3.27–3.43 | 4B, 5A, 5A | [77] |
T. aestivum (Hanxuan 10) × T. aestivum (Lumai 14) | DH (120) | GFe-4 | 6.1–14.6 | 5A, 4D, 7A, 7B | [129] |
T. aestivum (Tabassi) × T. aestivum (Taifun) | RIL (118) | GZn-2; GFe-6 | 40.22–50.79; 8.94–47 | 4A, 1A, 7B, 3D, 4D, 2A, 7D | [130] |
T. aestivum (PBW343) × T. aestivum (Kenya Swara) | RIL (177) | GZn-3 | 10-15 | 1BS, 2B, 3AL | [131] |
Synthetic hexaploid (SHW-L1) × T. aestivum (Chuanmai 32) | RIL (171) | GZn-4; GFe-4 | 5.5–8.6; 5.4–9.5 | 2D, 3D, 4D, 5D, 2B, 5B, 5D, 7D | [132] |
T. aestivum (Chuanmai 42) × T. aestivum (Chuannong 16) | RIL (127) | GZn-3; GFe-4 | 13.8–15.9; 9.2–19.1 | 5B, 3D, 4D, 4A, 5A, 4D, 5B | [132] |
T. spelta (PI348449) × T. aestivum (HUW 234) | RIL (185) | GZn-5; GFe-5 | 4.25–16.46; 5.6–25.95 | 2B, 2A, 3D, 6A, 6B, 1A, 3B, 2A | [133] |
T. aestivum (Berkut) × T. aestivum (Krichauff) | DH (138) | GZn-2; GFe-1 | 23.1–35.9; 22.2 | 1B, 2B, 2B | [87] |
T. aestivum (SeriM82) × T. dicoccoides/Ae. Tauschii (SHW CWI76364) | RIL (140) | GZn-3; GFe-5 | 8.3–17.3; 7.5–14.5 | 4BS, 6AL, 6BL, 4BS, 7DS, 2BL, 2DS, 6AL, | [134] |
T.aestivum (Adana99) × T. sphaerococum (70711) | RIL (127) | GZn-10; GFe-7 | 9–31; 9–18 | 1D, 6B, 7B, 7A, 3A, 1B, 2B, 3D, 6A, 6B, 7B, 6B, 2B, 7B, 1B, 2A, 2B, 3A, | [135] |
T. spelta (Bubo) × resynthesized hexaploid wheat (Turtur) | RIL (188) | GZn-4; GFe-3 | 2.86–16.75; 5.49–10.35 | 1B, 7B, 6A, 3A, 4B, 5B | [136] |
Synthetic hexaploid wheat (Louries) × T. spelta (Bateleur) | RIL (188) | GZn-12; GFe-7 | 3.30–32.79; 5.79–21.14 | 1A, 1B, 3B, 7B, 3D, 4A, 5B, 6A, 7D, 5B, 2A, 4D, 4A, 2B, 3B, 5B | [136] |
T. aestivum (WH542) × synthetic derivative (Triticum dicoccon PI94624/Aegilops sqarrosa [409]/BCN) | RIL (286) | GZn-5; GFe-4 | 3.2–14.4; 2.3–6.8 | 2A, 4A, 5A, 7A, 7B; 2A, 5A, 7A, 7B | [137] |
T. aestivum (SHW-L1) × T. aestivum (Chuanmai 32), | RILs (171) | 4 | 6.4–28.5 | 5B, 3D, 7D | [132] |
T. aestivum (Chuanmai 42) × T. aestivum (Chuannong 16) | RILs (127) | 1 | 35.1 | 4D | [132] |
T. aestivum (TN18) × T. aestivum (LM6) | RILs (184) | 7 | 7.44–15.57 | 2B, 5B | [138] |
Synthetic wheat (SHW-L1) × T. aestivum (Chuanmai32) | RILs (171) | 6 | 8.17–28.38 | 3D, 5A | [139] |
Triticum dicoccoides (Langdon) × Wild emmer wheat (acc. G18-16) | RILs (152) | 7 | 1.4–18.6 | 7A, 5A, 7B, 1A, 1B, 3A | [140] |
Cross | Population Type and Size | No. of Total QTLs | PVE Range (Additive Effect QTLs) | Chromosomes/Chromosome Arms | References |
---|---|---|---|---|---|
T. aestivum (Schomburgk) × T. aestivum (Yarralinka) | SSD lines (150) | 2 | 13–41 | 3A, 7A | [153] |
T. turgidum L. var. durum (Omrabi5) × T. dicoccoides (acc.600545) | RILs (114) | 3 | 6.0–53.0 | 7AL, 7BL | [154] |
T. aestivum (Trident) × T. aestivum (Molineux) | DH lines (182) | 1 | 48–77 | 7B | [164] |
T. turgidum L. var durum (W9262-260D3) × T. turgidum L. var. duram (Kofa) | DH lines (155) | 4 | 14–23 | 4B, 2A, 6B, 7B | [155] |
T. aestivum (PH82-2) × T. aestivum (Neixing 188) | RILs (240) | 1 | 20–28 | 7AS | [166] |
T. turgidum L. var durum (PDW 233) × T. turgidum L. var durum (Bhalegaon 4) | RILs (140) | 5 | 5–55.22 | 7A, 1A, 3B, 5B, 7B | [156] |
T. turgidum L. var durum (UC1113) × T. turgidum L. var durum (Kofa) | RILs (93) | 1 | 7A | [157] | |
T. aestivum (PH82-2) × T. aestivum (Neixiang 188) | RILs (240) | 4 | 1.5–33.9 | 1B, 7A, 1A, 4A, | [158] |
T. turgidum L. var durum (Latino) × T. turgidum L. var durum (Primadur) | F2:F3 families (121) | 5 | 9.4–53.2 | 2A, 3B, 5A, 7A | [159] |
Ajana × WAWHT2074; Carnamah × WAWHT2046; Ajana × WAWHT2046 (all T. aestivum) | DH lines (179, 121, 127) | 6 | 4.0–36.0 | 7B, 2D, 3A, 7A, 4D, 5B, 7B | [160] |
T. turgidum L. var durum (UC1113) × T. turgidum L. var durum (Kofa) | RILs (93) | 15 | 6–42.7 | 1BL, 4AL, 7BL, 6AL, 2AS, 5AS, 5AL, 5BL, 7AS, 7AL, 7BS | [161] |
T. aestivum (Chuan 35050) × T. aestivum (Shannong 483) | RILs (131) | 13 | 4.1–16.5 | 5B, 6A, 1A, 1B, 2D, 4A, 4D, 5D, 6D, 7B | [162] |
T. turgidum L. var durum (Svevo) × T. turgidum L. var durum (Ciccio) | RILs | 7 | 19.3–51.6 | 1B, 5B, 7A, 2A, 2B, 5A, 7B | [163] |
T. aestivum (Gaocheng 8901) × T. aestivum (Zhoumai 16) | RILs (176) | 16 | 5.7–30.8 | 5AL, 2DL, 5BS, 1B.1R, 2AL, 2B-1, 5AS, 5BL, 6BL, 7AS, 7BL | [165] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, D.K.; Devi, P.; Kaushik, P. Advances in Genomic Interventions for Wheat Biofortification: A Review. Agronomy 2020, 10, 62. https://doi.org/10.3390/agronomy10010062
Saini DK, Devi P, Kaushik P. Advances in Genomic Interventions for Wheat Biofortification: A Review. Agronomy. 2020; 10(1):62. https://doi.org/10.3390/agronomy10010062
Chicago/Turabian StyleSaini, Dinesh Kumar, Pooja Devi, and Prashant Kaushik. 2020. "Advances in Genomic Interventions for Wheat Biofortification: A Review" Agronomy 10, no. 1: 62. https://doi.org/10.3390/agronomy10010062
APA StyleSaini, D. K., Devi, P., & Kaushik, P. (2020). Advances in Genomic Interventions for Wheat Biofortification: A Review. Agronomy, 10(1), 62. https://doi.org/10.3390/agronomy10010062