Assessing the Impacts of Tillage and Mulch on Soil Erosion and Corn Yield
Abstract
:1. Introduction
- Evaluate the impacts of no-till, mulch, and the presence of corn on soil erosion across diverse seasons during two consecutive years, and
- Determine the interactive effects of no-till and mulch on corn yield during two consecutive years.
2. Materials and Methods
2.1. Study Area
2.2. Plot Size and Experimental Design
2.3. Rainfall Measurements
2.4. Measurements of Surface Runoff and Laboratory Analysis
2.5. Agronomic Practices
2.6. Measurement of Crop Parameters
2.7. Statistical Analyses
3. Results
3.1. Rainfall at Experimental Site
3.2. Soil Losses
3.3. SOM Losses
3.4. Soil Nutrient Losses
3.5. Corn Height and Yield
4. Discussion
4.1. Impacts of Tillage, Mulch, and Presence of Corn on Soil and Soil Nutrient Losses across Diverse Seasons
4.2. Impacts of Tillage and Mulch on Corn Yield and Height
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atreya, K.; Sharma, S.; Bajracharya, R.M.; Rajbhandari, N.P. Applications of reduced tillage in hills of central Nepal. Soil Tillage Res. 2006, 88, 16–29. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations. Status of the World’s Soil Resources (SWSR)—Main Report; FAO: Rome, Italy, 2015; Volume 650. [Google Scholar]
- Chalise, S.; Khanal, N. Erosion processes and their implications in sustainable management of watersheds in Nepal Himalayas. In Proceedings of Regional Hydrology: Concepts and Models for Sustainable Water Resource Management; IAHS Pub.: Wallingford, UK, 1997; pp. 325–334. [Google Scholar]
- Bajracharya, R.M.; Sherchan, D.P. Fertility status and dynamics of soils in the Nepal Himalaya: A review and analysis. In Soil Fertility; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2009; pp. 111–135. [Google Scholar]
- Chalise, D.; Kumar, L.; Shriwastav, C.P.; Lamichhane, S. Spatial assessment of soil erosion in a hilly watershed of Western Nepal. Environ. Earth Sci. 2018, 77, 685. [Google Scholar] [CrossRef]
- Chalise, D.; Kumar, L.; Spalevic, V.; Skataric, G. Estimation of sediment yield and maximum outflow using the IntErO model in the Sarada river basin of Nepal. Water 2019, 11, 952. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agricultural Development. Statistical Information on Nepalese Agriculture; Government of Nepal, Ministry of Agricultural Development, Agri-Business Promotion and Statistics Division, Agri Statistics Section: Singha Durbar, Kathmandu, 2015.
- Shao, Y.; Xie, Y.; Wang, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Kiboi, M.; Ngetich, K.; Diels, J.; Mucheru-Muna, M.; Mugwe, J.; Mugendi, D.N. Minimum tillage, tied ridging and mulching for better maize yield and yield stability in the Central Highlands of Kenya. Soil Tillage Res. 2017, 170, 157–166. [Google Scholar] [CrossRef]
- Atreya, K.; Sharma, S.; Bajracharya, R.M.; Rajbhandari, N.P. Developing a sustainable agro-system for central Nepal using reduced tillage and straw mulching. J. Environ. Manag. 2008, 88, 547–555. [Google Scholar] [CrossRef]
- Thapa, G.; Paudel, G. Farmland degradation in the mountains of Nepal: A study of watersheds with and without external intervention. Land Degrad. Dev. 2002, 13, 479–493. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Chalise, D.; Kumar, L.; Kristiansen, P. Land Degradation by Soil Erosion in Nepal: A Review. Soil Syst. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agricultural Development. Soil Fertility Map Preparation of Tehrathum, Taplejung, Salyan and Rolpa; Irrigation and Water Resource Management Project: Lalitpur, Nepal, 2013; Volume I.
- Jones, J. Kjeldahl Method for Nitrogen; Determination; Micro-Macro Publisher: Athens, GA, USA, 1991. [Google Scholar]
- Olsen, S.; Cole, C.; Watanabe, F.; Dean, L. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954.
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- National Maize Research Program (NMRP). Instruction Book on Maize Experimentation and Data Collection; NMRP/NARC: Chitwan, Nepal, 1999.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing Vienna: Vienna, Austria, 2016. [Google Scholar]
- Afshartous, D.; Preston, R.A. Confidence intervals for dependent data: Equating non-overlap with statistical significance. Comput. Stat. Data Anal. 2010, 54, 2296–2305. [Google Scholar] [CrossRef]
- Department of Hydrology and Meteorology. Rainfall in Salyan Bazaar; Government of Nepal, Ministry of Energy, Water Resources and Irrigation: Singha Durbar, Kathmandu, 2016.
- Kaur, R.; Arora, V. Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India. Agric. Water Manag. 2019, 213, 724–731. [Google Scholar] [CrossRef]
- Havlin, J.; Kissel, D.; Maddux, L.; Claassen, M.; Long, J. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Am. J. 1990, 54, 448–452. [Google Scholar] [CrossRef]
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Wang, J.; Lü, G.; Guo, X.; Wang, Y.; Ding, S.; Wang, D. Conservation tillage and optimized fertilization reduce winter runoff losses of nitrogen and phosphorus from farmland in the Chaohu Lake region, China. Nutr. Cycl. Agroecosyst. 2015, 101, 93–106. [Google Scholar] [CrossRef]
- Issaka, F.; Zhang, Z.; Zhao, Z.Q.; Asenso, E.; Li, J.H.; Li, Y.T.; Wang, J.J. Sustainable Conservation Tillage Improves Soil Nutrients and Reduces Nitrogen and Phosphorous Losses in Maize Farmland in Southern China. Sustainability 2019, 11, 2397. [Google Scholar] [CrossRef] [Green Version]
- Adimassu, Z.; Alemu, G.; Tamene, L. Effects of tillage and crop residue management on runoff, soil loss and crop yield in the Humid Highlands of Ethiopia. Agric. Syst. 2019, 168, 11–18. [Google Scholar] [CrossRef]
- Zhang, G.; Chan, K.; Oates, A.; Heenan, D.; Huang, G. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res. 2007, 92, 122–128. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. Earth Environ. 2005, 29, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Zuazo, V.H.; Pleguezuelo, C.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 785–811. [Google Scholar]
- Shan, Y.H.; Johnson-Beebout, S.E.; Buresh, R.J. Crop Residue Management for Lowland Rice-Based Cropping Systems in Asia. Adv. Agron. 2008, 98, 117–199. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Ma, P.; Meng, Y.; Zhou, J. Effects of tillage, mulching and N management on yield, water productivity, N uptake and residual soil nitrate in a long-term wheat-summer maize cropping system. Field Crop. Res. 2017, 213, 154–164. [Google Scholar] [CrossRef]
- Sow, A.A.; Hossner, L.; Unger, P.W.; Stewart, B.A. Tillage and residue effects on root growth and yields of grain sorghum following wheat. Soil Tillage Res. 1997, 44, 121–129. [Google Scholar] [CrossRef]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Addiscott, T.; Thomas, D. Tillage, mineralization and leaching: Phosphate. Soil Tillage Res. 2000, 53, 255–273. [Google Scholar] [CrossRef]
- Arif, M.; Marwat, K.; Khan, M. Effect of tillage and zinc application methods on weeds and yield of maize. Pak. J. Bot. 2007, 39, 1583–1591. [Google Scholar]
- Sastre, B.; Barbero-Sierra, C.; Bienes, R.; Marques, M.J.; García-Díaz, A. Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. J. Soils Sediments 2017, 17, 873–888. [Google Scholar] [CrossRef]
- Yeboah, S.; Zhang, R.; Cai, L.; Li, L.; Xie, J.; Luo, Z.; Liu, J.; Wu, J. Tillage effect on soil organic carbon, microbial biomass carbon and crop yield in spring wheat-field pea rotation. Plant Soil Environ. 2016, 62, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Gathala, M.K.; Timsina, J.; Islam, M.S.; Rahman, M.M.; Hossain, M.I.; Harun-Ar-Rashid, M.; Ghosh, A.K.; Krupnik, T.J.; Tiwari, T.P.; McDonald, A. Conservation agriculture based tillage and crop establishment options can maintain farmers’ yields and increase profits in South Asia’s rice–maize systems: Evidence from Bangladesh. Field Crop. Res. 2015, 172, 85–98. [Google Scholar] [CrossRef]
- Khadka, S.R.; Shah, S.C. Effect of different tillage practices on spring maize production. J. Inst. Agric. Anim. Sci. 1987, 9, 91–95. [Google Scholar]
- Maskey, R.B.; Joshi, D.; Maharjan, P.L. Management of Sloping Lands for Sustainable Agriculture in Nepal; Technical Report on the Management of Slopping Lands for Sustainable Agriculture in Asia, Phase I, 1988–1991; Network Document No. 2; International Board for Soil Research and Management (IBSRAM): Bangkok, Thailand, 1992. [Google Scholar]
- Gruber, S.; Pekrun, C.; Möhring, J.; Claupein, W. Long-term yield and weed response to conservation and stubble tillage in SW Germany. Soil Tillage Res. 2012, 121, 49–56. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Sime, G.; Aune, J.; Mohammed, H. Agronomic and economic response of tillage and water conservation management in maize, central rift valley in Ethiopia. Soil Tillage Res. 2015, 148, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Ning, T.; Wang, Y.; Liu, Z.; Li, G.; Li, Z.; Lal, R. Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res. 2016, 163, 207–213. [Google Scholar] [CrossRef]
- Manna, M.; Swarup, A.; Wanjari, R.; Mishra, B.; Shahi, D. Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res. 2007, 94, 397–409. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Lemaire, G.; Gastal, F. Nitrogen, plant growth and crop yield. In Plant Nitrogen; Springer: Berlin/Heidelberg, Germany, 2001; pp. 343–367. [Google Scholar]
Crop Growth Variables | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|
−T+M | −T−M | +T+M | +T−M | −T+M | −T−M | +T+M | +T−M | |
Plant height (cm) | 224.2 ± 4.7 | 227 ± 25 | 221.8 ± 15.9 | 231 ± 17 | 256.8 ± 36.9 | 254.1 ± 12.6 | 236.8 ± 20.2 | 238 ± 14.9 |
Cob height (cm) | 123 ± 7.8 | 128.8 ± 9.7 | 129.8 ± 16.4 | 132.8 ± 9 | 135 ± 26 | 133.5 ± 20.3 | 128 ± 12.3 | 132.2 ± 11.9 |
Grain yield (Mg ha−1) | 5.18 ± 1.27 | 5.98 ± 1.28 | 5.51 ± 1.3 | 7.2 ± 1.7 | 5.74 ± 2.24 | 4.8 ± 2.2 | 3.86 ± 2.04 | 3.46 ± 0.51 |
Stover yield (Mg ha−1) | 8.7 ± 3.1 | 9.0 ± 3.68 | 9.2 ± 2.42 | 10.4 ± 4.4 | 8.9 ± 3.1 | 7.5 ± 4.15 | 6.7 ± 2.79 | 6.3 ± 2.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalise, D.; Kumar, L.; Sharma, R.; Kristiansen, P. Assessing the Impacts of Tillage and Mulch on Soil Erosion and Corn Yield. Agronomy 2020, 10, 63. https://doi.org/10.3390/agronomy10010063
Chalise D, Kumar L, Sharma R, Kristiansen P. Assessing the Impacts of Tillage and Mulch on Soil Erosion and Corn Yield. Agronomy. 2020; 10(1):63. https://doi.org/10.3390/agronomy10010063
Chicago/Turabian StyleChalise, Devraj, Lalit Kumar, Reena Sharma, and Paul Kristiansen. 2020. "Assessing the Impacts of Tillage and Mulch on Soil Erosion and Corn Yield" Agronomy 10, no. 1: 63. https://doi.org/10.3390/agronomy10010063
APA StyleChalise, D., Kumar, L., Sharma, R., & Kristiansen, P. (2020). Assessing the Impacts of Tillage and Mulch on Soil Erosion and Corn Yield. Agronomy, 10(1), 63. https://doi.org/10.3390/agronomy10010063