Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Meteorological Conditions and Fraction of Available Soil Water
3.2. Aboveground Biomass, Seed Yield, Harvest Index, and Yield Components
3.3. Phenological Development
3.4. Canopy Cover, Dry Matter Production, Radiation Interception, and Use Efficiency
3.5. Correlations of Seed Yield, Yield Components, and Growth Parameters with Temperature and Fraction of Available Soil Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MAFF. The Statistical Yearbook of Ministry of Agriculture, Forestry and Fisheries; Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2018. Available online: http://ww.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_kome/index.html (accessed on 2 December 2019).
- Robinson, A.P.; Conley, S.P.; Volenec, J.J.; Santini, J.B. Analysis of high yielding, early-planted soybean in Indiana. Agron. J. 2009, 101, 131–139. [Google Scholar] [CrossRef]
- Chen, G.; Wiatrak, P. Soybean development and yield are influenced by planting date and environmental conditions in the southeastern coastal plain, United States. Agron. J. 2010, 102, 1731–1737. [Google Scholar] [CrossRef]
- Salmerόn, M.; Gbur, E.E.; Bourland, F.M.; Golden, B.R.; Earnest, L.; Purcell, L.C. Soybean maturity group choices for maximizing light interception across planting dates in the U.S. Midsouth. Agron. J. 2015, 107, 2132–2142. [Google Scholar] [CrossRef]
- Mochida, H. Effects of sowing time and plating pattern on soybean yield and seed quality in locations along the Sea of Japan at Tohoku region. Bull. Tohoku Agric. Res. Center 2016, 118, 69–77. [Google Scholar]
- Tada, H.; Anamizu, K.; Kimura, S. The growth response of soybean plant to meteorological factors in Aomori prefecture. I. The effect of seeding date on the growth and yield. Tohoku J. Crop Sci. 1984, 27, 96–97. [Google Scholar]
- Egli, D.B.; Cornelius, P.L. A regional analysis of the response of soybean yield to planting date. Agron. J. 2009, 101, 330–335. [Google Scholar] [CrossRef]
- Kumagai, E. Effect of early sowing on growth and yield of determinate and indeterminate soybean (Glycine max (L.) Merr.) cultivars in a cool region of northern Japan. J. Agric. Meteorol. 2018, 74, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Bajgain, R.; Kawasaki, Y.; Akamatsu, Y.; Tanaka, Y.; Kawamura, H.; Katsura, K.; Shiraiwa, T. Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage. Field Crops Res. 2015, 180, 221–227. [Google Scholar] [CrossRef]
- Hirasawa, T.; Nakahara, M.; Izumi, T.; Iwamoto, Y.; Ishihara, K. Effects of pre-flowering soil moisture deficits on dry matter production and ecophysiological characteristics in soybean plants under well irrigated conditions during grain filling. Plant Prod. Sci. 1998, 1, 8–17. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines For Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No 56; Food and Agriculture Organization, Land and Water: Rome, Italy, 1998. [Google Scholar]
- Kumagai, E.; Takahashi, T.; Nakano, S.; Matsuo, N. Relationship between soybean yield and drought in long-term continuous performance test at Tohoku agricultural research center, NARO: Analysis by using agrometeorological grid square data and FAO56 evapotranspiration model. Jpn. J. Crop Sci. 2018, 87, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Evans, L.T.; Fischer, R.A. Yield potential: Its definition, measurement, and significance. Crop Sci. 1999, 39, 1544–1551. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. B 1997, 281, 277–294. [Google Scholar] [CrossRef]
- Soltani, A.; Sinclair, T.R. Phenology—Temperature and photoperiod. In Modeling Physiology of Crop Developments, Growth and Yield; Soltani, A., Sinclair, T.R., Eds.; CABI: Cambridge, MA, USA, 2012; pp. 73–87. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Van Roekel, R.J.; Purcell, L.C.; Salmerón, M. Physiological and management factors contributing to soybean potential yield. Field Crops Res. 2015, 182, 86–97. [Google Scholar] [CrossRef]
- Calviño, P.A.; Sadras, V.O.; Andrade, F.H. Development, growth and yield of late-sown soybean in the southern Pampas. Eur. J. Agron. 2003, 19, 265–275. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Yamazaki, R.; Katayama, K. Effects of late sowing on soybean yields and yield components in southwestern Japan. Plant Prod. Sci. 2018, 21, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Egli, D.B.; Guffy, R.D.; Heitholt, J.J. Factors associated with reduced yields of delayed planings of soybean. J. Agron. Crop Sci. 1987, 159, 176–185. [Google Scholar] [CrossRef]
- Egli, D.B.; Bruening, W.P. Potential of early-maturing soybean cultivars in late plantings. Agron. J. 2000, 92, 532–537. [Google Scholar] [CrossRef]
- Kikuchi, A.; Kono, Y.; Kato, S.; Yumoto, S.; Takada, Y.; Shimada, S.; Sakai, T.; Shimada, H.; Takahashi, K.; Adachi, T.; et al. A new soybean cultivar, “Satonohohoemi”, with high protein content, lodging resistance, large seed size and good quality. Bull. Natl. Agric. Res. Cent. Tohoku Reg. 2011, 113, 1–15. [Google Scholar]
- Sato, Y.; Inoue, K.; Suzuki, M.; Igarashi, H.; Fujimoto, J.; Okada, K. Studies on the new recommended soybean variety ‘RYUHOU’. Res. Rep. Akita Agric. Res. Cent. 1998, 38, 80–93. [Google Scholar]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Iowa Agriculture and Home Economics Experiment Station. Cooperative Extension Service; Iowa State University Digital Press: Ames, IA, USA, 1977; p. 80. [Google Scholar]
- Bastidas, A.M.; Setiyono, T.D.; Dobermann, A.; Cassman, K.G.; Elmore, R.W.; Graef, G.L.; Specht, J.E. Soybean Sowing Date: The Vegetative, Reproductive, and Agronomic Impacts. Crop Sci. 2008, 48, 727–740. [Google Scholar] [CrossRef] [Green Version]
- De Bruin, J.L.; Pedersen, P. Soybean seed yield response to planting date and seeding rate in the upper Midwest. Agron. J. 2008, 100, 696–703. [Google Scholar] [CrossRef]
- Steele, C.C.; Grabau, L.J. Planting dates for early-maturing soybean cultivars. Agron. J. 1997, 89, 449–453. [Google Scholar] [CrossRef]
- Board, J.E.; Harville, B.G. Soybean yield component responses to a light interception gradient during the reproductive period. Crop Sci. 1993, 33, 772–777. [Google Scholar] [CrossRef]
- Jiang, H.; Egli, D.B. Soybean seed number and crop growth rate during flowering. Agron. J. 1995, 87, 264–267. [Google Scholar] [CrossRef]
- Shiraiwa, T.; Ueno, N.; Shimada, S.; Horie, T. Correlation between yielding ability and dry matter productivity during initial seed filling stage in various soybean genotypes. Plant Prod. Sci. 2004, 7, 138–142. [Google Scholar] [CrossRef]
- Ohnishi, S.; Miyoshi, T.; Shirai, S. Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environ. Exp. Bot. 2010, 69, 56–62. [Google Scholar] [CrossRef]
- Kumagai, E.; Yamada, T.; Hasegawa, T. Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus. Food Energy Secur. 2019, e186. [Google Scholar] [CrossRef]
- Kurosaki, H.; Yumoto, S. Effects of low temperature and shading during flowering on the yield components in soybeans. Plant Prod. Sci. 2006, 6, 17–23. [Google Scholar] [CrossRef]
- Desclaux, D.; Roumet, P. Impact of drought stress on the phenology of two soybean (Glycine max L. Merr.) cultivars. Field Crops Res. 1996, 46, 61–70. [Google Scholar] [CrossRef]
- Westgate, M.E.; Schussler, J.R.; Reicosky, D.C.; Brenner, M.L. Effect of water deficits on seed development in soybean. 2. Conservation of seed growth-rate. Plant Physiol. 1989, 91, 980–985. [Google Scholar] [CrossRef] [PubMed]
- DeSouza, P.I.; Egli, D.B.; Bruening, W.P. Water stress during seed filling and leaf senescence in soybean. Agron. J. 1997, 89, 807–812. [Google Scholar] [CrossRef]
- Frederick, J.R.; Camp, C.R.; Bauer, P.J. Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci. 2001, 41, 759–763. [Google Scholar] [CrossRef]
- Brevedan, R.E.; Egli, D.B. Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci. 2003, 43, 2083–2088. [Google Scholar] [CrossRef]
- Wani, S.P.; Heng, L.K. Crop Yield Response to Water. FAO Irrigation and Drainage Paper No 66; Food and Agriculture Organization of the United Nation, Land and Water: Rome, Italy, 2013; pp. 24–131. [Google Scholar]
- Takahashi, T.; Mochida, H.; Sakakibara, M.; Morimoto, S.; Kobayashi, H.; Aiba, S. Investigation of the Factors Reducing Soybean Productivity in the Tohoku Region of Japan. Bull. Tohoku Agric. Res. Cent. 2014, 116, 89–118. [Google Scholar]
- Takahashi, T. Soil Moisture Model for Irrigation of Soybean. 2020; in preparation. [Google Scholar]
June | July | August | September | October | Five-Month Mean | ||
---|---|---|---|---|---|---|---|
Temperature (°C) | 2015 | 18.5 | 23.4 | 22.7 | 17.9 | 10.8 | 18.7 |
2016 | 18.1 | 21.6 | 24.1 | 20.3 | 11.2 | 19.0 | |
30-year mean | 17.8 | 21.3 | 22.9 | 18.2 | 11.5 | 18.3 | |
Solar radiation (MJ m−2 day−1) | 2015 | 19.2 | 17.8 | 15.6 | 13.2 | 11.1 | 15.4 |
2016 | 16.4 | 16.9 | 18.2 | 12.5 | 11.6 | 15.1 | |
30-year mean | 17.1 | 15.1 | 15.1 | 11.9 | 9.9 | 13.8 | |
Precipitation (mm)A | 2015 | 123.5 | 108.5 | 145.5 | 104.5 | 124.0 | 121.2 |
2016 | 160.0 | 131.0 | 258.5 | 160.5 | 185.0 | 179.0 | |
30-year mean | 108.1 | 196.4 | 181.9 | 155.9 | 92.5 | 147.0 |
Above-Ground Biomass (g m−2) | Seed Yield (g m−2) | HI | Number of Pods (Per Plant) | Seeds Per Pod | Number of Nodes (Per Plant) | Number of Pods Per Node | 100-Seed Weight (g) | ||
---|---|---|---|---|---|---|---|---|---|
Year (Y) | 2015 | 447 | 237 | 0.53 | 53.4 | 1.42 | 40.0 | 1.34 | 31.0 |
2016 | 512 | 277 | 0.54 | 76.9 | 1.23 | 49.2 | 1.57 | 30.8 | |
Sowing date (S) | Normal | 542 | 300 | 0.55 | 69.0 | 1.44 | 48.3 | 1.43 | 32.3 |
Late | 416 | 214 | 0.51 | 61.3 | 1.20 | 40.9 | 1.48 | 29.4 | |
Cultivar (Cv) | Ryuhou | 459 | 274 | 0.59a | 64.9 | 1.51a | 41.7b | 1.54a | 30.0b |
Enrei | 460 | 246 | 0.52b | 61.9 | 1.41b | 45.6a | 1.34b | 28.6b | |
Satonohohoemi | 519 | 252 | 0.47c | 68.6 | 1.04c | 46.3a | 1.48a | 34.0a | |
ANOVA | Y | ns | ns | ns | ** | ** | ** | ** | ns |
S | ** | *** | ** | * | *** | ** | ns | ** | |
Cv | ns | ns | *** | ns | *** | * | *** | *** | |
Y × S | ns | ns | * | ns | ** | ns | ns | ns | |
Y × Cv | ns | ns | *** | ns | ns | ns | ** | ns | |
S × Cv | ns | ns | ** | ns | ns | ns | *** | ns | |
Y × S × Cv | ns | ns | *** | ns | * | ns | ns | ns |
Days from VE to R2 | Days from R2 to R5 | Days from R5 to R7 | Days from VE to R7 | ||
---|---|---|---|---|---|
Year (Y) | 2015 | 46 | 20 | 46 | 112 |
2016 | 48 | 19 | 50 | 116 | |
Sowing date (S) | Normal | 53 | 20 | 48 | 121 |
Late | 41 | 19 | 48 | 108 | |
Cultivar (Cv) | Ryuhou | 45c | 18b | 45b | 107c |
Enrei | 47b | 20a | 45b | 113b | |
Satonohohoemi | 49a | 20a | 54a | 123a | |
ANOVA | Y | ** | ** | *** | *** |
S | *** | * | ns | *** | |
Cv | *** | *** | *** | *** | |
Y × S | * | ns | ns | ** | |
Y × Cv | ns | ** | ns | ** | |
S × Cv | ** | ** | *** | *** | |
Y × S × Cv | ** | ns | *** | ** |
ΔAGB | CumIR | RUE | |||||
---|---|---|---|---|---|---|---|
(g m−2) | (MJ m−2) | (g MJ−1) | |||||
R2–R5 | R5–R5 + 20 d | R2–R5 | R5–R5 + 20 d | R2–R5 | R5–R5 + 20 d | ||
Year (Y) | 2015 | 217 | 212 | 255 | 203 | 0.86 | 1.06 |
2016 | 231 | 271 | 256 | 273 | 0.89 | 0.99 | |
Sowing date (S) | Normal | 264 | 247 | 303 | 234 | 0.87 | 1.08 |
Late | 184 | 235 | 207 | 242 | 0.89 | 0.97 | |
Cultivar (Cv) | Ryuhou | 191b | 252 | 235b | 247a | 0.82 | 1.03 |
Enrei | 241a | 239 | 269a | 232b | 0.91 | 1.06 | |
Satonohohoemi | 240a | 233 | 261a | 233b | 0.90 | 0.99 | |
ANOVA | Y | ns | ns | ns | *** | ns | ns |
S | *** | ns | *** | ** | ns | ns | |
Cv | ** | ns | *** | *** | ns | ns | |
Y × S | ns | ns | ** | *** | * | ns | |
Y × Cv | ns | ns | ns | *** | ns | ns | |
S × Cv | * | ns | *** | *** | ns | ns | |
Y × S × Cv | ns | ns | ns | *** | ns | ns |
Seed Yield | Number of Nodes | Pods Per Node | Seeds Per Pod | 100-Seed Weight | |
---|---|---|---|---|---|
ΔAGB R2–R5 | 0.639 | 0.606 | −0.276 | 0.282 | 0.415 |
Significance | *** | *** | ns | ns | * |
ΔAGB R5–R5 + 20 d | 0.174 | 0.239 | 0.214 | −0.035 | 0.043 |
Significance | ns | ns | ns | ns | ns |
Number of Nodes | Pods Per Node | Seeds Per Pod | 100-Seed Weight | ΔAGB | RUE | CumIR | |
---|---|---|---|---|---|---|---|
Temperature R2–R5 | 0.544 | 0.557 | −0.530 | 0.207 | 0.108 | 0.259 | −0.094 |
Significance | ns | ns | ns | ns | ns | ns | ns |
Temperature R5–R5 + 20 d | −0.401 | −0.329 | 0.864 | −0.290 | 0.101 | −0.133 | 0.226 |
Significance | ns | ns | *** | ns | ns | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumagai, E.; Takahashi, T. Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan. Agronomy 2020, 10, 66. https://doi.org/10.3390/agronomy10010066
Kumagai E, Takahashi T. Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan. Agronomy. 2020; 10(1):66. https://doi.org/10.3390/agronomy10010066
Chicago/Turabian StyleKumagai, Etsushi, and Tomoki Takahashi. 2020. "Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan" Agronomy 10, no. 1: 66. https://doi.org/10.3390/agronomy10010066
APA StyleKumagai, E., & Takahashi, T. (2020). Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan. Agronomy, 10(1), 66. https://doi.org/10.3390/agronomy10010066