AquaCrop-Simulated Response of Sorghum Biomass and Grain Yield to Biochar Amendment in South Sudan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Experiment
2.2. The AquaCrop Model
2.3. AquaCrop-Simulated Effect of Biochar on Sorghum Production and Yield
2.3.1. Model Input Data and Parameters
2.3.2. Climate Data
2.3.3. Crop Growth and Development Parameters
2.3.4. Field Management
2.3.5. Soil Profile Properties and Biochar Amendment Treatments
3. Results
3.1. Climate and the Water Balance
3.2. Simulated Rooting Zone Soil Water Contents and Transpiration
3.3. Simulated Sorghum Biomass and Grain Yields
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bantilan, M.C.S.; Anand Babu, P.; Anupama, G.V.; Deepthi, H.; Padmaja, R. Dryland Agriculture: Dynamics, Challenges and Priorities; Research Bulletin No. 20; International Crops Research Institute for the Semi-Arid Tropics: Andhra Pradesh, India, 2006; p. 32. ISBN 92-9066-496-7. [Google Scholar]
- Fjelde, H.; von Uexkull, N. Climate triggers: Rainfall anomalies, vulnerability and communal conflict in Sub-Saharan Africa. Polit. Geogr. 2012, 31, 444–453. [Google Scholar] [CrossRef]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Msongaleli, B.M.; Tumbo, S.D.; Kihupi, N.I.; Rwehumbiza, F.B. Performance of sorghum varieties under variable rainfall in central Tanzania. Int. Sch. Res. Not. 2017, 2017, 2506946. [Google Scholar] [CrossRef] [Green Version]
- Ratnavathi, C.V.; Patil, J.V. Sorghum utilization as food. J. Nutr. Food Sci. 2013, 4, 247. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT Crops. Available online: http://www.fao.org/faostat/en/#home (accessed on 23 October 2019).
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; Irrigation and Drainage Paper No. 66; Food and Agricultural Organization: Rome, Italy, 2012; p. 500. Available online: http://www.fao.org/3/a-i2800e.pdf (accessed on 29 October 2019).
- FAO/WFP. Crop and Food Security Assessment Mission to South Sudan; Special Report; Food and Agriculture Organization World Food Programme: Rome, Italy, 2018; p. 69. Available online: http://www.fao.org/3/I8702EN/i8702en.pdf (accessed on 17 December 2019).
- Gichangi, E.M.; Gatheru, M.; Njiru, E.N.; Mungube, E.O.; Wambua, J.M.; Wamuongo, J.W. Assessment of climate variability and change in semi-arid eastern Kenya. Clim. Chang. 2015, 130, 287–297. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management; Routledge: London, UK, 2015; p. 976. ISBN 9780203762264. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Mukome, F.N.D.; Machado, S.; Nyamasoka, B. Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. J. Environ. Manag. 2015, 150, 250–261. [Google Scholar] [CrossRef]
- Nyambo, P.; Taeni, T.; Chiduza, C.; Araya, T. Effects of maize residue biochar amendments on soil properties and soil loss on acidic Hutton soil. Agronomy 2018, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Kätterer, T.; Roobroeck, D.; Andrén, O.; Kimutai, G.; Karltun, E.; Kirchmann, H.; Nyberg, G.; Vanlauwe, B.; de Nowina, K.R. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crop. Res. 2019, 235, 18–25. [Google Scholar] [CrossRef]
- Deng, B.; Tammeorg, P.; Luukkanen, O.; Helenius, J.; Starr, M. Effects of Acacia seyal and biochar on soil properties and sorghum yield in agroforestry systems in South Sudan. Agrofor. Syst. 2017, 91, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Bada, B.; Tammeorg, P.; Helenius, J.; Luukkanen, O.; Starr, M. Drought stress and Acacia seyal biochar effects on sorghum gas exchange and yield: A greenhouse experiment. Agric. Nat. Resour. 2019, 53, 573–580. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop Reference Manual (Version 6.0–6.1), Chapter 3 Calculation Procedures; Food and Agriculture Organization: Rome, Italy, 2018; Chapter 3; p. 141. Available online: http://www.fao.org/3/br267e/BR267E.pdf (accessed on 29 October 2019).
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Dile, Y.T.; Srinivasan, R. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. J. Am. Water Resour. Assoc. 2014, 50, 1226–1241. [Google Scholar] [CrossRef]
- Fuka, D.R.; Walter, M.T.; MacAllister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the Climate Forecast System Reanalysis dataset to improve weather input data for watershed models. Hydrol. Process. 2014, 28, 5613–5623. [Google Scholar] [CrossRef]
- Global Weather Data for SWAT. Available online: https://globalweather.tamu.edu/ (accessed on 20 March 2019).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper No. 56; Food and Agriculture Organization: Rome, Italy, 1998; p. 300. Available online: http://www.fao.org/docrep/x0490e/x0490e00.htm (accessed on 29 October 2019).
- Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2011, 62, 869–882. [Google Scholar] [CrossRef] [Green Version]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM – Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Modell. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Vadez, V.; Kholova, J.; Medina, S.; Kakkera, A.; Anderberg, H. Transpiration efficiency: New insights into an old story. J. Exp. Bot. 2014, 65, 6141–6153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wamari, J.O.; Sijali, I.; Kheng, L.; Miriti, J.; Obutiati, E. Use of AquaCrop model to predict maize yields under varying rainfall and temperature in a semi-arid environment in Kenya. J. Meteorol. Relat. Sci. 2012, 6, 26–35. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Calibration and testing of AquaCrop for selected sorghum genotypes. Water SA 2017, 43, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Bello, Z.A.; Walker, S. Calibration and validation of AquaCrop for pearl millet (Pennisetum glaucum). Crop Pasture Sci. 2016, 67, 948–960. [Google Scholar] [CrossRef]
- Mibulo, T.; Kiggundu, N. Evaluation of FAO AquaCrop model for simulating rainfed maize growth and yields in Uganda. Agronomy 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.A.; Hassan, M.S.M.; El Naim, A.M. Evaluation of some local sorghum genotypes in North Kordofan of Sudan semi-arid agro-ecological environment. Int. J. Agric. For. 2016, 6, 54–57. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.J.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.J.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251, 47–54. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.; Shen, Y.; Li, S. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crop. Res. 2016, 196, 284–293. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Chen, C.; Wang, R.; Shang, J.; Liu, K.; Irshad, M.K.; Hu, K.; Arthur, E. Effect of biochar application on hydraulic properties of sandy soil under dry and wet Conditions. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Bahar, A.H.; Adam, K.I.; Mohamed Ali, S.A. Performance of some sorghum (Sorghum Bicolor L. Moench) varieties under rain-fed condition at Zalingei Area, Sudan (growth, yield, pests and diseases). Agric. Biol. Sci. J. 2015, 1, 162–166. [Google Scholar]
Soil Layer and Biochar Amendment | Soil Hydraulic Property b | |||||
---|---|---|---|---|---|---|
θSAT, % | θFC, % | θPWP, % | θTAW, % | Ksat, mm day−1 | Change in Properties Due to Biochar Amendment Compared to BC0 | |
Silty Loam | ||||||
BC0 a | 46 | 33 | 13 | 20 | 575 | |
BC1 | 49 | 35 | 13 | 22 | 690 | θFC 10% increase, θSAT 7%, Ksat 20% increase |
BC2 | 49 | 35 | 13 | 22 | 730 | θFC 10% increase, θSAT 7%, Ksat 27% increase |
BC3 | 49 | 37 | 13 | 24 | 690 | θFC 20% increase, θSAT 7%, Ksat 20% increase |
BC4 | 49 | 37 | 13 | 24 | 730 | θFC 20% increase, θSAT 7%, Ksat 27% increase |
Clay a | 55 | 54 | 39 | 15 | 35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starr, M.; Deng, B.; Helenius, J. AquaCrop-Simulated Response of Sorghum Biomass and Grain Yield to Biochar Amendment in South Sudan. Agronomy 2020, 10, 67. https://doi.org/10.3390/agronomy10010067
Starr M, Deng B, Helenius J. AquaCrop-Simulated Response of Sorghum Biomass and Grain Yield to Biochar Amendment in South Sudan. Agronomy. 2020; 10(1):67. https://doi.org/10.3390/agronomy10010067
Chicago/Turabian StyleStarr, Mike, Biar Deng, and Juha Helenius. 2020. "AquaCrop-Simulated Response of Sorghum Biomass and Grain Yield to Biochar Amendment in South Sudan" Agronomy 10, no. 1: 67. https://doi.org/10.3390/agronomy10010067
APA StyleStarr, M., Deng, B., & Helenius, J. (2020). AquaCrop-Simulated Response of Sorghum Biomass and Grain Yield to Biochar Amendment in South Sudan. Agronomy, 10(1), 67. https://doi.org/10.3390/agronomy10010067