Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank: Implications for Breeding and Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction
2.3. SSR Genotyping
2.4. Population Structure and Genetic Diversity
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yun, T.K. Brief Introduction of Panax ginseng C.A. Meyer. J. Korea Med. Sci. 2001, 16, S3–S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.J.; Kim, E.H.; Rhee, D.K. Effect of Panax ginseng on stress. J. Ginseng Res. 2008, 32, 8–14. [Google Scholar]
- Attele, A.S.; Wu, J.A.; Yuan, C.-S. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharm. 1999, 58, 1685–1693. [Google Scholar] [CrossRef]
- Nam, M.H.; Kim, S.I.; Liu, J.R.; Yang, D.C.; Lim, Y.P.; Kwon, K.-H.; Yoo, J.S.; Park, Y.M. Proteomic analysis of Korean ginseng (Panax ginseng C.A. Meyer). J. Chromatogr. B 2005, 815, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Baeg, I.-H.; So, S.-H. The world ginseng market and the ginseng (Korea). J. Ginseng Res. 2013, 37, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Agriculture Food and Rural Affairs. Ginseng Annual Report; Ministry of Agriculture Food and Rural Affair: Sejong, South Korea, 2018.
- Bang, K.-H.; Jo, I.-H.; Chung, J.-W.; Kim, Y.-C.; Lee, J.-W.; Seo, A.Y.; Park, J.-H.; Kim, O.; Hyun, D.-Y.; Kim, D.-H.; et al. Analysis of Genetic Polymorphism of Korean Ginseng Cultivars and Foreign Accessions using SSR Markers. Korean J. Med. Crop. Sci. 2011, 19, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.; Kim, N.-H.; Lee, J.; Waminal, N.; Lee, S.-C.; Jayakodi, M.; Choi, H.-I.; Park, J.Y.; Lee, J.-E.; Yang, T.-J. A Glimpse of Panax ginseng Genome Structure Revealed from Ten BAC Clone Sequences Obtained by SMRT Sequencing Platform. Plant Breed. Biotechnol. 2017, 5, 25–35. [Google Scholar] [CrossRef]
- Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Phamacol. Sin. 2008, 29, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Zhuravlev, Y.N.; Reunova, G.D.; Kats, I.L.; Muzarok, T.I.; Bondar, A.A. Genetic variability and population structure of endangered Panax ginseng in the Russian Primorye. Chin. Med. 2010, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.H.; Frankham, R. Correlation between Fitness and Genetic Diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Reunova, G.; Koren, O.; Muzarok, T.I.; Zhuravlev, Y. Microsatellite Analysis of Panax ginseng Natural Populations in Russia. Chin. Med. 2014, 5, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Sinkovi, L.; Pipan, B.; Sinkovi, E.; Megli, V. Morphological Seed Characterization of Common (Phaseolus vulgaris L.) and Runner (Phaseolus coccineus L.) Bean Germplasm: A Slovenian Gene Bank Example. Biomed Res. Int. 2019, 2019, 13. [Google Scholar]
- Jain, A.; Roy, A.K.; Kaushal, P.; Malaviya, D.R.; Zadoo, S.N. Isozyme Banding Pattern and Estimation of Genetic Diversity among Guinea Grass Germplasm. Genet. Resour. Crop. Evol. 2006, 53, 339–347. [Google Scholar] [CrossRef]
- Kottawa-Arachchi, J.; Gunasekare, M.; Ranatunga, M.; Punyasiri, N.; Jayasinghe, L.; Karunagoda, R.P. Biochemical Characteristics of Tea (Camellia L. spp.) Germplasm Accessions in Sri Lanka: Correlation between Black Tea Quality Parameters and Organoleptic Evaluation. Int. J. Tea Sci. 2014, 10, 3–13. [Google Scholar]
- Halász, J.; Kodad, O.; Galiba, G.M.; Skola, I.; Ercisli, S.; Ledbetter, C.A.; Hegedűs, A. Genetic variability is preserved among strongly differentiated and geographically diverse almond germplasm: An assessment by simple sequence repeat markers. Tree Genet. Genome 2019, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.-W.; Kim, Y.-C.; Rhee, Y.K.; Lee, Y.-C.; Kim, K.-T.; Hong, H.-D. Chemical composition characteristics of Korean straight ginseng products. J. Ethn. Foods 2014, 1, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Shin, B.-K.; Kwon, S.W.; Park, J.H. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res. 2015, 39, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-R.; Shi, F.-X.; Li, Y.-L.; Jiang, P.; Jiao, L.; Liu, B.; Li, L.-F. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer). Genome Biol. Evol. 2017, 9, 2159–2169. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Park, J.-H.; Hong, C.E.; Sebastin, R.; Lee, Y.; Jo, I.-H.; Chung, J.-W. Genetic diversity and population structure of Chinese ginseng accessions using SSR markers. J. Plant Biotechnol. 2017, 44, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Gepts, P. The Use of Molecular and Biochemical Markers in Crop Evolution Studies. In Evolutionary Biology; Hecht, M.K., MacIntyre, R.J., Clegg, M.T., Eds.; Springer: Boston, MA, USA, 1993; Volume 27, pp. 51–94. [Google Scholar]
- Crawford, D.J. Molecular markers for the study of genetic variation within and between populations of rare plants. Opera Bot. 1997, 132, 149–157. [Google Scholar]
- Zhuravlev, Y.; Koren, O.; Reunova, G.D.; Artyukova, E.; Kozyrenko, M.; Muzarok, T.I.; Kats, I.L. Ginseng Conservation Program in Russian Primorye: Genetic Structure of Wild and Cultivated Populations. J. Ginseng Res. 2004, 28, 60–66. [Google Scholar]
- Koren, O.; Potenko, V.V.; Zhuravlev, Y. Inheritance and Variation of Allozymes in Panax ginseng C.A. Meyer (Araliaceae). Int. J. Plant Sci. 2003, 164, 189–195. [Google Scholar] [CrossRef]
- Reunova, G.D.; Kats, I.L.; Muzarok, T.I.; Nguen, C.T.; Dang, T.T.; Zhuravlev, I.N. Population Genetic Structure of Wild-Growing Ginseng (Planax ginseng CA Meyer) Assessed Using AFLP Markers. Genetika 2012, 48, 340–351. [Google Scholar] [PubMed]
- Zhuravlev, Y.; Koren, O.; Reunova, G.D.; Muzarok, T.I.; Gorpenchenko, T.; Kats, I.L.; Khrolenko, Y. Panax ginseng natural populations: Their past, current state and perspectives. Acta Pharmacol. Sin. 2008, 29, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Zhuravlev, Y.; Reunova, G.D.; Kats, I.L.; Muzarok, T.I.; Bondar, A.A. Molecular variation of wild Panax ginseng C.A. Meyer (Araliaceae) by AFLP markers. Chin. Med. 2010, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.-I.; Kim, N.H.; Kim, J.H.; Choi, B.S.; Ahn, I.-O.; Lee, J.-S.; Yang, T.-J. Development of Reproducible EST-derived SSR Markers and Assessment of Genetic Diversity in Panax ginseng Cultivars and Related Species. J. Ginseng Res. 2011, 35, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Kalia, R.; Rai, M.; Kalia, S.; Singh, R.; Dhawan, A. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Xu, W.; Choi, H.-K.; Huang, L. State of Panax ginseng Research: A Global Analysis. Molecules 2017, 22, 1518. [Google Scholar] [CrossRef] [Green Version]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef] [Green Version]
- Esselink, G.D.; Nybom, H.; Vosman, B. Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Appl. Genet. 2004, 109, 402–408. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research±an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivandic, V.; Hackett, C.A.; Nevo, E.; Keith, R.; Thomas, W.T.B.; Forster, B.P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: Associations with ecology, geography and flowering time. Plant Mol. Biol. 2002, 48, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Jombart, T.; Collins, C. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using adegenet 2.0.0. Available online: http://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf (accessed on 9 November 2019).
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Earl, D.A.; Vonholdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-S.; Lee, J.-H.; Ahn, I.-O. Characteristics of new cultivars in Panax ginseng CA Meyer. In Proceedings of the 9th International Symposium on Ginseng, Chungnam, South Korea, 25 September 2006. [Google Scholar]
- Proctor, J.T.A.; Lee, J.C.; Lee, S.-S. Ginseng Production in Korea. HortScience 1990, 25, 746–750. [Google Scholar] [CrossRef]
- FAO. Korean Ginseng Agriculture System; FAO: Rome, Italy, 2018. [Google Scholar]
- Maxted, N.; Magos Brehm, J.; Kell, S. Resource Book for Preparation of National Conservation Plans for Crop Wild Relatives and Landraces; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Singh, N.; Wu, S.; Raupp, W.J.; Sehgal, S.; Arora, S.; Tiwari, V.; Vikram, P.; Singh, S.; Chhuneja, P.; Gill, B.S.; et al. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Sci. Rep. 2019, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Van Hintum, T.J.L.; Knüpffer, H. Duplication within and between germplasm collections. Genet. Res. Crop Evol. 1995, 42, 127–133. [Google Scholar] [CrossRef]
- Harris, A.M.; DeGiorgio, M. An Unbiased Estimator of Gene Diversity with Improved Variance for Samples Containing Related and Inbred Individuals of any Ploidy. G3 Genes Genomes Genet. 2017, 7, 671–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dan, N.; Ramchiary, N.; Choi, S.R.; Uhm, T.S.; Yang, T.-J.; Ahn, I.-O.; Lim, Y.P. Development and characterization of new microsatellite markers in Panax ginseng (C.A. Meyer) from BAC end sequences. Conserv. Genet. 2010, 11, 1223–1225. [Google Scholar] [CrossRef]
- Pudovkin, A.I.; Zaykin, D.V.; Hedgecock, D. On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics 1996, 144, 383–387. [Google Scholar] [PubMed]
- Rasmussen, D.I. Sibling Clusters and Genotypic Frequencies. Am. Nat. 1979, 113, 948–951. [Google Scholar] [CrossRef]
- Stoeckel, S.; Ggange, J.; Fernandez-manjarres, J.F.; Bilger, I.; Frascaria-lacoste, N.; Mariette, S. Heterozygote excess in a self-incompatible and partially clonal forest tree species—Prunus avium L. Mol. Ecol. 2006, 15, 2109–2118. [Google Scholar] [CrossRef]
- Balloux, F. Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 2004, 58, 1891–1900. [Google Scholar] [CrossRef]
- Mark Welch, D.B.; Meselson, M. Evidence for the Evolution of Bdelloid Rotifers without Sexual Reproduction or Genetic Exchange. Science 2000, 288, 1211–1215. [Google Scholar] [CrossRef] [Green Version]
- Hartl, D.L.; Clark, A.G.; Clark, A.G. Principles of Population Genetics; Sinauer Associates: Sunderland, MA, USA, 1997; Volume 116. [Google Scholar]
- Brown, A.; Briggs, J. Sampling strategies for genetic variation in ex situ collections of endangered plant species. In Genetics and Conservation of Rare Plants; Falk, D., Holsinger, K., Eds.; Oxford University Press: Oxford, UK, 1991; pp. 99–119. [Google Scholar]
- Reyes-Valdés, M.H.; Burgueño, J.; Singh, S.; Martínez, O.; Sansaloni, C.P. An informational view of accession rarity and allele specificity in germplasm banks for management and conservation. PLoS ONE 2018, 13, e0193346. [Google Scholar] [CrossRef] [Green Version]
- Kalinowski, S.T. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv. Genet. 2004, 5, 539–543. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Yang, X.-L.; Cheng, Z.; Zhang, W.-J. Genetic diversity and differentiation of cultivated ginseng (Panax ginseng C. A. Meyer) populations in North-east China revealed by inter-simple sequence repeat (ISSR) markers. Genet. Res. Crop Evol. 2011, 58, 815–824. [Google Scholar] [CrossRef]
- Campoy, J.A.; Lerigoleur-Balsemin, E.; Christmann, H.; Beauvieux, R.; Girollet, N.; Quero-García, J.; Dirlewanger, E.; Barreneche, T. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol. 2016, 16, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deperi, S.I.; Tagliotti, M.E.; Bedogni, M.C.; Manrique-Carpintero, N.C.; Coombs, J.; Zhang, R.; Douches, D.; Huarte, M.A. Discriminant analysis of principal components and pedigree assessment of genetic diversity and population structure in a tetraploid potato panel using SNPs. PLoS ONE 2018, 13, e0194398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosyara, U.R.; De Jong, W.S.; Douches, D.S.; Endelman, J.B. Software for Genome-Wide Association Studies in Autopolyploids and Its Application to Potato. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIHHS. Distribution Status of Panax ginseng in China and Comparative Analysis on the Characteristics of Korean and China ginseng; RDA: Jeonju, South Korea, 2016. [Google Scholar]
- Horticulture Business Division. 2017 Ginseng Data Sheet; Ministory of Agriculture Food and Rural Affairs: Sejong, South Korea, 2018.
- Yun, Y.M. A Study on the Production and Distribution of Domestic Korea Ginseng Seeds—A Case Study of Korea Ginseng Seeds in Chungnam Province. Master’s Thesis, Kongju National University, Yesan, South Korea, 2015. [Google Scholar]
Locus | Ra 1 | Ca | Aa | Na | I | Ho | GD | Evenness | Range |
---|---|---|---|---|---|---|---|---|---|
PES0024 | 0 | 1 | 1 | 2 | 0.69 | 0.99 | 0.50 | 1.00 | 145–171 |
PES0021 | 0 | 1 | 1 | 2 | 0.69 | 1.00 | 0.50 | 0.99 | 245–263 |
PES0034 | 2 | 1 | 1 | 4 | 0.70 | 1.00 | 0.50 | 0.97 | 247–275 |
PES0026 | 3 | 1 | 1 | 5 | 0.70 | 1.00 | 0.49 | 0.95 | 178–213 |
PES0029 | 1 | 2 | 0 | 3 | 0.70 | 1.00 | 0.5 | 0.99 | 183–200 |
PES0037 | 2 | 1 | 1 | 4 | 0.69 | 0.99 | 0.49 | 0.96 | 260–307 |
PES0040 | 1 | 1 | 1 | 3 | 0.69 | 1.00 | 0.50 | 1.00 | 250–272 |
PES0038 | 1 | 2 | 0 | 3 | 0.70 | 1.00 | 0.50 | 0.97 | 169–190 |
PES0039 | 2 | 1 | 1 | 4 | 0.69 | 0.99 | 0.49 | 0.96 | 168–250 |
PES0018 | 0 | 2 | 0 | 2 | 0.69 | 1.00 | 0.50 | 1.00 | 202–216 |
PES0032 | 1 | 2 | 0 | 3 | 0.69 | 1.00 | 0.49 | 0.98 | 161–172 |
PES0033 | 1 | 1 | 1 | 3 | 0.71 | 1.00 | 0.5 | 0.98 | 286–302 |
GES0019 | 0 | 1 | 1 | 2 | 0.58 | 0.22 | 0.39 | 0.81 | 198–208 |
PES0004 | 4 | 1 | 1 | 6 | 0.82 | 0.99 | 0.52 | 0.85 | 362–402 |
PES0005 | 0 | 2 | 0 | 2 | 0.69 | 1.00 | 0.50 | 1.00 | 334–358 |
PES0007 | 0 | 2 | 0 | 2 | 0.69 | 1.00 | 0.49 | 0.99 | 542–563 |
PES0012 | 4 | 2 | 0 | 6 | 0.73 | 1.00 | 0.50 | 0.94 | 235–279 |
Total | 22 | 24 | 10 | 56 | - | - | - | - | - |
Mean | 3.29 | 0.70 | 0.95 | 0.49 | 0.96 | - |
Pop | N 1 | MLG | Na | H | GD |
---|---|---|---|---|---|
CN | 160 | 148 | 1.77 | 4.97 | 0.485 |
CB | 109 | 104 | 2.08 | 4.63 | 0.476 |
NIHHS | 840 | 707 | 2.62 | 6.45 | 0.494 |
Total | 1109 | 942 | 3.29 | 6.74 | 0.492 |
Source | df | SS | MS | Est. Var. | % | PhiPT | Nm |
---|---|---|---|---|---|---|---|
Among clusters | 2 | 322.552 | 161.276 | 0.704 | 9% | 0.094 ** | 4.822 |
Within clusters | 1106 | 7508.527 | 6.789 | 6.789 | 91% | ||
Total | 1108 | 7831.079 | 7.493 | 100% |
Cluster1 | Cluster2 | PhiPT | Nm |
---|---|---|---|
CN | CB | 0.085 | 5.374 |
CN | NIHHS | 0.081 | 5.656 |
CB | NIHHS | 0.113 | 3.940 |
Source | df | SS | MS | Est. Var. | % | PhiPT | Nm |
---|---|---|---|---|---|---|---|
Among pops | 11 | 932.529 | 84.775 | 0.855 | 12% | 0.120 ** | 3.678 |
Within pops | 1097 | 6898.550 | 6.289 | 6.289 | 88% | ||
Total | 1108 | 7831.079 | 7.143 | 100% |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | - | 0.126 | 0.137 | 0.174 | 0.084 | 0.098 | 0.153 | 0.147 | 0.196 | 0.152 | 0.138 | 0.218 |
C2 | 3.467 | 0.093 | 0.113 | 0.080 | 0.084 | 0.106 | 0.080 | 0.090 | 0.120 | 0.070 | 0.126 | |
C3 | 3.160 | 4.881 | - | 0.087 | 0.126 | 0.046 | 0.037 | 0.126 | 0.133 | 0.034 | 0.147 | 0.117 |
C4 | 2.374 | 3.915 | 5.227 | - | 0.124 | 0.063 | 0.070 | 0.178 | 0.181 | 0.127 | 0.188 | 0.224 |
C5 | 5.438 | 5.764 | 3.478 | 3.527 | - | 0.082 | 0.104 | 0.160 | 0.164 | 0.138 | 0.039 | 0.203 |
C6 | 4.619 | 5.463 | 10.370 | 7.396 | 5.611 | - | 0.015 | 0.107 | 0.121 | 0.028 | 0.129 | 0.138 |
C7 | 2.773 | 4.230 | 13.077 | 6.649 | 4.312 | 33.651 | - | 0.167 | 0.152 | 0.028 | 0.136 | 0.141 |
C8 | 2.904 | 5.725 | 3.478 | 2.301 | 2.616 | 4.185 | 2.486 | - | 0.052 | 0.120 | 0.182 | 0.143 |
C9 | 2.054 | 5.082 | 3.261 | 2.257 | 2.556 | 3.622 | 2.795 | 9.172 | - | 0.111 | 0.176 | 0.059 |
C10 | 2.792 | 3.674 | 14.321 | 3.445 | 3.126 | 17.623 | 17.617 | 3.678 | 4.012 | - | 0.166 | 0.097 |
C11 | 3.131 | 6.688 | 2.908 | 2.159 | 12.483 | 3.364 | 3.187 | 2.245 | 2.339 | 2.511 | - | 0.197 |
C12 | 1.799 | 3.478 | 3.767 | 1.734 | 1.966 | 3.112 | 3.043 | 3.003 | 7.943 | 4.679 | 2.037 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.J.; Lee, J.-R.; Sebastin, R.; Cho, G.-T.; Hyun, D.Y. Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank: Implications for Breeding and Conservation. Agronomy 2020, 10, 68. https://doi.org/10.3390/agronomy10010068
Lee KJ, Lee J-R, Sebastin R, Cho G-T, Hyun DY. Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank: Implications for Breeding and Conservation. Agronomy. 2020; 10(1):68. https://doi.org/10.3390/agronomy10010068
Chicago/Turabian StyleLee, Kyung Jun, Jung-Ro Lee, Raveendar Sebastin, Gyu-Taek Cho, and Do Yoon Hyun. 2020. "Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank: Implications for Breeding and Conservation" Agronomy 10, no. 1: 68. https://doi.org/10.3390/agronomy10010068
APA StyleLee, K. J., Lee, J. -R., Sebastin, R., Cho, G. -T., & Hyun, D. Y. (2020). Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank: Implications for Breeding and Conservation. Agronomy, 10(1), 68. https://doi.org/10.3390/agronomy10010068