Assessment and Mapping of Soil Salinization Risk in an Egyptian Field Using a Probabilistic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geostatistical Techniques
2.2.1. Indicator Kriging
2.2.2. Probability Kriging
2.2.3. Comparison of the Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corwin, D.L.; Rhoades, J.D.; Šimůnek, J. Leaching requirement for soil salinity control: Steady-state versus transient models. Agric. Water Manag. 2007, 90, 165–180. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics; Academic Press: San Diego, CA, USA, 1998; p. 771. [Google Scholar]
- Rhoades, J.D.; Loveday, J. Salinity in Irrigated Agriculture; Stewart, B.A., Nielsen, D.R., Eds.; American Society of Agronomists: Madison, WI, USA, 1990; ISBN 0891181024. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci. Soc. Am. J. 1954, 18, 348. [Google Scholar] [CrossRef]
- Abrol, I.P.; Yadav, J.S.P.; Massoud, F.I. Salt-Affected Soils and Their Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 1988; ISBN 9251026866. [Google Scholar]
- Mohamed, E.; Belal, A.-A.; Ali, R.R.; Saleh, A.; Hendawy, E.A. Land Degradation. In The Soils of Egypt; Springer: Cham, Switzerland, 2019; pp. 159–174. ISBN 978-3-319-95516-2. [Google Scholar]
- Ministry of Agriculture and Land Reclamation. Sustainable Agricultural Development Strategy towards 2030. Cairo, Egypt. Available online: http://far-malr.gov.eg/pdf/en/Full%20SADS2030.pdf (accessed on 19 November 2019).
- Corwin, D.L.; Scudiero, E. Field-Scale Apparent Soil Electrical Conductivity. In Methods of Soil Analysis; Logsdon, S., Ed.; Soil Science Society of America: Madison, WI, USA, 2016; Volume 1, pp. 1–29. [Google Scholar]
- Corwin, D.L. Site-specific management and delineating management zones. In Precision Agriculture for Sustainability and Environmental Protection; Oliver, M., Bishop, T., Marchant, B.P., Eds.; Routledge: London, UK, 2013; Volume 9780203128, pp. 135–157. ISBN 9780203128329. [Google Scholar]
- Zovko, M.; Romić, D.; Colombo, C.; Di Iorio, E.; Romić, M.; Buttafuoco, G.; Castrignanò, A. A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma 2018, 332, 60–72. [Google Scholar] [CrossRef]
- Langella, G.; Agrillo, A.; Basile, A.; De Mascellis, R.; Manna, P.; Moretti, P.; Mileti, F.A.; Terribile, F.; Vingiani, S. Geography of soil contamination for characterization and precision remediation of potentially contaminated sites. Ital. J. Agron. 2018, 13, 6–15. [Google Scholar]
- Bourgault, G.; Journel, A.G.; Rhoades, J.D.; Corwin, D.L.; Lesch, S.M. Geostatistical Analysis of a Soil Salinity Data Set. Adv. Agron. 1996, 58, 241–292. [Google Scholar] [CrossRef]
- Castrignanò, A.; Buttafuoco, G.; Canu, A.; Zucca, C.; Madrau, S. Modelling spatial uncertainty of soil erodibility factor using joint stochastic simulation. L. Degrad. Dev. 2008, 19, 193–213. [Google Scholar] [CrossRef]
- Dowd, P.A.; Pardo-Igúzquiza, E. The incorporation of model uncertainty in geostatistical simulation. Geogr. Environ. Model. 2002, 6, 147–169. [Google Scholar] [CrossRef]
- Matheron, G. The Theory of Regionalized Variables and Its Applications; Ecole Nationale Superieure des Mines de Paris: Fontainebleau, France, 1971; Volume 5. [Google Scholar]
- Chilès, J.-P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 9781118136188. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; Statistics in Practice; John Wiley & Sons, Ltd: Chichester, UK, 2007; ISBN 9780470517277. [Google Scholar]
- Journel, A.G. Fundamentals of Geostatistics in Five Lessons; American Geophysical Union: Washington, DC, USA, 1989; ISBN 0-87590-708-3. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997; ISBN 0195115384. [Google Scholar]
- Journel, A.G. Nonparametric Geostatistics for Risk and Additional Sampling Assessment. In Principles of Environmental Sampling; Keith, L.H., Ed.; American Chemical Society: Washington, DC, USA, 1988; pp. 45–72. [Google Scholar]
- Juang, K.W.; Lee, D.Y. Comparison of three nonparametric kriging methods for delineating heavy- metal contaminated soils. In Journal of Environmental Quality; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2000; Volume 29, pp. 197–205. [Google Scholar]
- Goovaerts, P.; AvRuskin, G.; Meliker, J.; Slotnick, M.; Jacquez, G.; Nriagu, J. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour. Res. 2005, 41, 1–19. [Google Scholar] [CrossRef]
- Lee, J.-J.; Jang, C.-S.; Wang, S.-W.; Liu, C.-W. Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model. Sci. Total Environ. 2007, 384, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Castrignanò, A.; Buttafuoco, G.; Puddu, R. Multi-scale assessment of the risk of soil salinization in an area of south-eastern Sardinia (Italy). Precis. Agric. 2008, 9, 17–31. [Google Scholar] [CrossRef]
- Carr, J.R. Order relation correction experiments for probability kriging. Math. Geol. 1994, 26, 605–621. [Google Scholar] [CrossRef]
- Adhikary, P.P.; Dash, C.J.; Bej, R.; Chandrasekharan, H. Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Environ. Monit. Assess. 2011, 176, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Shaddad, S.M.; Buttafuoco, G.; Elrys, A.; Castrignanò, A. Site-specific management of salt affected soils: A case study from Egypt. Sci. Total Environ. 2019, 688, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Bakr, N.; Bahnassy, M.H. Egyptian Natural Resources. In The Soils of Egypt; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.-A., Eds.; Springer: Cham, Switzerland, 2019; pp. 33–49. ISBN 978-3-319-95516-2. [Google Scholar]
- Soil Science Division Staff. Soil Survey Manual. USDA Handbook 18; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; Government Printing Office: Washington, DC, USA, 2017.
- El Bouraie, M.M.; Motawea, E.A.; Mohamed, G.G.; Yehia, M.M. Water quality of Rosetta branch in Nile delta, Egypt. Suo 2011, 62, 31–37. [Google Scholar]
- El-Marsafawy, S.; Bakr, N.; Elbana, T.; El-Ramady, H. Climate; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.-A., Eds.; Springer: Cham, Switzerland, 2019; pp. 69–92. [Google Scholar]
- Ayers, R.S.; Wescot, D.W. Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29, Rev. 1, Reprinted 1994; Ayers, R.S., Westcot, D.W., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994; ISBN 9251022631. [Google Scholar]
- Miller, J.J.; Curtin, D. Electrical Conductivity and Soluble Ions. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; p. 1224. ISBN 9780849335860. [Google Scholar]
- Slavich, P.G.; Petterson, G.H. Estimating the electrical conductivity of saturated paste extracts from 1:5 soil: Water suspensions and texture. Aust. J. Soil Res. 1993, 31, 73. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis Part 3—Chemical Methods. SSSA Book Ser. 5.3. SSSA; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; ISBN 978-0-89118-866-7. [Google Scholar]
- Castrignanò, A.; Giugliarini, L.; Risaliti, R.; Martinelli, N. Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma 2000, 97, 39–60. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 3540441425. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: Oxford, UK, 1989; Volume 21, ISBN 0195050134. [Google Scholar]
- Cressie. Statistics for Spatial Data-Cressie.pdf; Wiley-Blackwell: Hoboken, NJ, USA, 1993; ISBN 0-471-84336-9. [Google Scholar]
- Castrignanò, A.; Wong, M.T.F.; Stelluti, M.; De Benedetto, D.; Sollitto, D. Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma 2012, 175–176, 78–89. [Google Scholar] [CrossRef]
- Castrignanò, A.; Quarto, R.; Venezia, A.; Buttafuoco, G. A comparison between mixed support kriging and block cokriging for modelling and combining spatial data with different support. Precis. Agric. 2019, 1–21. [Google Scholar] [CrossRef]
Variable | Min | Max | Mean | Median | St. Dev. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
ECe (dS m−1) | 1.86 | 54.78 | 7.04 | 3.96 | 8.58 | 3.69 | 18.76 |
Ca (mEq L−1) | 3.50 | 87.50 | 12.15 | 8.40 | 13.80 | 4.15 | 20.86 |
CaCO3 (g kg−1) | 29.00 | 57.00 | 40.15 | 39.50 | 5.93 | 0.50 | 2.69 |
K (mEq L−1) | 0.41 | 18.80 | 3.51 | 2.18 | 3.67 | 2.30 | 9.16 |
Mg (mEq L−1) | 0.00 | 99.40 | 12.26 | 7.00 | 16.26 | 3.53 | 17.11 |
Na (mEq L−1) | 25.27 | 381.90 | 57.66 | 44.77 | 47.25 | 5.06 | 34.06 |
OM (%) | 3.22 | 9.41 | 4.71 | 4.57 | 0.83 | 2.71 | 16.54 |
SAR (-) | 10.07 | 39.51 | 16.98 | 16.35 | 4.03 | 2.63 | 15.51 |
pH (-) | 7.64 | 8.16 | 7.99 | 8.00 | 0.10 | −0.98 | 3.86 |
Avail. K (mg kg−1) | 240.84 | 813.87 | 420.98 | 380.66 | 134.67 | 1.35 | 4.02 |
Avail. N (mg kg−1) | 23.66 | 95.55 | 46.78 | 46.41 | 12.82 | 0.85 | 4.74 |
Avail. P (mg kg−1) | 11.19 | 28.23 | 18.70 | 17.56 | 3.68 | 0.39 | 2.41 |
Variable | ECe | Ca | CaCO3 | K | Mg | Na | OM | SAR | pH | Av. K | Av. N | Av. P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ECe | 1 | |||||||||||
Ca | 0.96 | 1 | ||||||||||
CaCO3 | 0.42 | 0.27 | 1 | |||||||||
K | 0.92 | 0.83 | 0.51 | 1 | ||||||||
Mg | 0.98 | 0.94 | 0.38 | 0.89 | 1 | |||||||
Na | 0.95 | 0.89 | 0.43 | 0.85 | 0.92 | 1 | ||||||
OM | 0.04 | 0.01 | -0.01 | 0.05 | 0.06 | 0.01 | 1 | |||||
SAR | 0.71 | 0.58 | 0.55 | 0.70 | 0.62 | 0.83 | −0.03 | 1 | ||||
pH | −0.43 | −0.49 | −0.13 | −0.39 | −0.41 | −0.38 | 0.21 | −0.16 | 1 | |||
Av. K | 0.36 | 0.23 | 0.52 | 0.65 | 0.37 | 0.28 | 0.13 | 0.33 | −0.09 | 1 | ||
Av. N | 0.13 | 0.20 | −0.20 | 0.14 | 0.13 | 0.05 | 0.05 | −0.06 | 0.02 | 0.12 | 1 | |
Av. P | 0.40 | 0.31 | 0.41 | 0.48 | 0.39 | 0.38 | 0.03 | 0.43 | 0.16 | 0.47 | 0.15 | 1 |
(1) Nugget Effect | |||||||||
Variable | I ECe | u_Ca | u_CaCO3 | u_K | u_Mg | u_Na | u_SAR | u_av_K | u_av_P |
I ECe | 0.0864 | ||||||||
u_Ca | 0.0272 | 0.0485 | |||||||
u_CaCO3 | 0.0056 | 0.0061 | 0.0485 | ||||||
u_K | 0.0174 | 0.0108 | 0.0141 | 0.0372 | |||||
u_Mg | 0.0150 | 0.0065 | 0.0094 | 0.0126 | 0.0199 | ||||
u_Na | 0.0131 | 0.0105 | 0.0085 | 0.0144 | 0.0078 | 0.0122 | |||
u_SAR | 0.0023 | −0.0041 | 0.0061 | 0.0102 | −0.0093 | 0.0084 | 0.0349 | ||
u_av_K | 0.0095 | 0.0033 | 0.0160 | 0.0316 | 0.0062 | 0.0096 | 0.0098 | 0.0494 | |
u_av_P | −0.0154 | −0.0152 | 0.0041 | −0.0004 | −0.0038 | −0.0053 | 0.0025 | 0.0050 | 0.0523 |
(2) Cubic Model (Range 203 m) | |||||||||
Variable | I ECe | u_Ca | u_CaCO3 | u_K | u_Mg | u_Na | u_SAR | u_av_K | u_av_P |
I ECe | 0.1693 | ||||||||
u_Ca | 0.0697 | 0.0395 | |||||||
u_CaCO3 | 0.0689 | 0.0274 | 0.0421 | ||||||
u_K | 0.0961 | 0.0459 | 0.0320 | 0.0619 | |||||
u_Mg | 0.0822 | 0.0371 | 0.0350 | 0.0499 | 0.0523 | ||||
u_Na | 0.1005 | 0.0495 | 0.0474 | 0.0592 | 0.0567 | 0.0727 | |||
u_SAR | 0.0931 | 0.0416 | 0.0476 | 0.0509 | 0.0506 | 0.0641 | 0.0605 | ||
u_av_K | 0.0764 | 0.0332 | 0.0187 | 0.0510 | 0.0407 | 0.0414 | 0.0350 | 0.0483 | |
u_av_P | 0.0475 | 0.0225 | 0.0153 | 0.0328 | 0.0354 | 0.0306 | 0.0272 | 0.0326 | 0.0354 |
Variable | Min | Max | Mean | St. Dev. | RMSSE | r | ρ | n |
---|---|---|---|---|---|---|---|---|
Err IK | −1.00 | 0.87 | 0.005 | 0.33 | 1.01 | 0.73 | 0.002 | 3 |
Err PK | −0.54 | 0.68 | 0.007 | 0.26 | 1.02 | 0.84 | 0.004 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaddad, S.M.; Buttafuoco, G.; Castrignanò, A. Assessment and Mapping of Soil Salinization Risk in an Egyptian Field Using a Probabilistic Approach. Agronomy 2020, 10, 85. https://doi.org/10.3390/agronomy10010085
Shaddad SM, Buttafuoco G, Castrignanò A. Assessment and Mapping of Soil Salinization Risk in an Egyptian Field Using a Probabilistic Approach. Agronomy. 2020; 10(1):85. https://doi.org/10.3390/agronomy10010085
Chicago/Turabian StyleShaddad, Sameh M., Gabriele Buttafuoco, and Annamaria Castrignanò. 2020. "Assessment and Mapping of Soil Salinization Risk in an Egyptian Field Using a Probabilistic Approach" Agronomy 10, no. 1: 85. https://doi.org/10.3390/agronomy10010085
APA StyleShaddad, S. M., Buttafuoco, G., & Castrignanò, A. (2020). Assessment and Mapping of Soil Salinization Risk in an Egyptian Field Using a Probabilistic Approach. Agronomy, 10(1), 85. https://doi.org/10.3390/agronomy10010085