Methods of Silicon Application on Organic Spring Wheat (Triticum aestivum L. spp. vulgare) Cultivars Grown across Two Contrasting Precipitation Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary of the Varieties Used in the Experiments
2.2. Meteorological Conditions during Tests
2.3. Field Experiment Design
2.4. Laboratory Analysis Grain Quality Parameters
2.5. Statistical Analysis
3. Results
3.1. Growth Parameters
3.2. Impact of Si on Grain and Yield Development
3.3. Grain Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Beltagi, H.S.; Mohamed, H.I.; Sofy, M.R. Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules 2020, 25, 1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, S.C.; Paramasivan, M.; Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 2018, 9, 2525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 2009, 155, 155–160. [Google Scholar] [CrossRef]
- Tubana, B.S.; Babu, T.; Datnoff, L.E.A. Review of Silicon in Soils and Plants and Its Role in US Agriculture History and Future Perspectives. Soil Sci. 2016, 181, 393–411. [Google Scholar] [CrossRef] [Green Version]
- Haynes, R.A. Contemporary overview of silicon availability in agricultural soils. J. Soil Sci. Plant Nutr. 2014, 177, 831–844. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 2018, 147, 881–896. [Google Scholar] [CrossRef]
- Epstein, E. SILICON. Annu. Rev. Plant Biol. 1999, 50, 641–664. [Google Scholar] [CrossRef]
- Jones, L.H.P.; Handreck, K. Silica in soils, plants and animals. Adv. Agron. 1967, 19, 107–149. [Google Scholar]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002; p. 294. ISBN 9780444511669. [Google Scholar]
- Sacała, E. Role of silicon in plant resistance to water stress. J. Elem. 2009, 14, 619–630. [Google Scholar] [CrossRef]
- Pereira, H.S.; Korndörfer, G.H.; Vidal, A.D.; de Camargo, M.S. Silicon sources for rice crop. Sci. Agric. 2004, 61, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Savant, N.K.; Korndörfer, G.H.; Datnoff, L.E.; Snyder, G.H. Silicon nutrition and sugarcane production: A review. J. Plant Nutr. 1999, 22, 1853–1903. [Google Scholar] [CrossRef]
- Verma, K.K.; Anas, M.; Chen, Z.; Rajput, V.D.; Malviya, M.K.; Verma, C.L.; Singh, R.K.; Singh, P.; Song, X.P.; Li, Y.R. Silicon supply improves leaf gas exchange, antioxidant defense system and growth in sugarcane responsive to water limitation. Plants 2020, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, N.C.; Oliveira, J.S.; Goreti, V.M.; Wellington, O.A.; Campos, G. Combined effects of soil silicon and drought stress on host plant chemical and ultrastructural quality for leaf-chewing and sap-sucking insects. J. Agron. Crop Sci. 2020, 206, 187–201. [Google Scholar] [CrossRef]
- Schaller, J.; Faucherre, S.; Joss, H.; Obs, M.; Goeckede, M.; Planer-Friedrich, B.; Peiffer, S.; Gilfedder, B.; Elberling, B. Silicon increases the phosphorus availability of arctic soils. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Walsh, O.S.; Shafian, S.; McClintick-Chess, J.R.; Belmont, K.M.; Blanscet, S.M. Potential of Silicon Amendment for Improved Wheat Production. Plants 2018, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Tibbitts, S.A. Effect of Silicon on Wheat Growth and Development in Drought and Salinity Stress. Master’s Thesis, 2018; p. 6925. Available online: https://digitalcommons.usu.edu/etd/6925 (accessed on 15 October 2020).
- Zhu, Y.; Haijun, G. Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev. 2014, 34, 455–472. [Google Scholar] [CrossRef] [Green Version]
- Ming, D.; Pei, Z.; Naeem, M.; Gong, H.; Zhou, W. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron. Crop Sci. 2012, 198, 14–26. [Google Scholar] [CrossRef]
- Xu, L.; Islam, F.; Ali, B.; Pei, Z.; Li, J.; Ghani, M.A.; Zhou, W. Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.). Biotechnology 2017, 7, 273. [Google Scholar] [CrossRef]
- Artyszak, A. Effect of silicon fertilization on crop yield quantity and quality—A Literature Review in Europe. Plants 2018, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, J.; Tyburski, J.; Jakubowska, M.; Krzyminska, J. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon 2020, 2. [Google Scholar] [CrossRef] [Green Version]
- Borgen, A.; Kristensen, L. Use of mustard flour and milk powder to control common bunt (Tilletia tritici) in wheat and stem smut (Urocystis occulta) in rye in organic agriculture. BCPC Symp. Proc. Seed Treat. Chall. Oppor. 2001, 75, 141–148. [Google Scholar]
- Plakholm, G.; Sollinger, J. Seed treatment for common wheat-bunt (Tilletia caries (DC) Tul.) according to organic farming principles. In Proceedings of the l3th International IFOAM Scientic Conference 2000, Basel, Switzerland, 28–31 August 2000; p. 139. [Google Scholar]
- Ekologiczne doświadczalnictwo Odmianowe, Institute of Soil Science and Plant Cultivation. Zalecenia, Odmiany Pszenicy Jarej do Rolnictwa Ekologicznego. Instrukcja Upowszechnieniowa nr 237. Puławy 2019. 2019. Available online: http://iung.pulawy.pl/edo/zalecenia.html (accessed on 15 October 2020). (In Polish).
- Moussavi-Nik, M.; Mobasser, H.R.; Mheraban, A. Effect of Water Stress and Potassium Chloride on Biological and Grain Yield of Different Wheat Cultivars. In Wheat Production in Stressed Environments. Developments in Plant Breeding; Buck, H.T., Nisi, J.E., Salomón, N., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 12. [Google Scholar] [CrossRef]
- Smutná, P.; Elzner, P.; Středa, T. The effect of water deficit on yield and yield component variation in winter wheat. Agric. Conspec. Sci. 2018, 83, 105–111. [Google Scholar]
- Ahmad, F.; Aziz, T.; Maqsood, M.A.; Tahir, M.A.; Kanwal, S. Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. Emir. J. Food Agric. 2007, 19, 1–7. [Google Scholar] [CrossRef]
- Laane, H.M. The efficacy of the Silicic Acid Agro Technology: The use of stabilized silicic acid. In Proceedings of the 6th Int. Conf on Silicon in Agriculture, Stockholm, Sweden, 26–30 August 2014; p. 110. [Google Scholar]
- Maghsoudi, K.; Yahya, A.E.; Emam, B.; Muhammad, A.C.; Mohammad, J.; Arvin, D. Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop Pasture Sci. 2019, 70, 36–43. [Google Scholar] [CrossRef]
- Guevel, M.H.; Menzies, J.G.; Belanger, R.R. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 2007, 119, 429–436. [Google Scholar] [CrossRef]
- Dufey, I.; Gheysens, S.; Ingabire, A.; Lutts, S.; Bertin, P. Silicon application in cultivated rices (Oryza sativa L and Oryza glaberrima Steud) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. J. Agron. Crop Sci. 2013, 200, 132–142. [Google Scholar] [CrossRef]
- Institute of Soil Science and Plant Cultivation, Badania nad Przydatnością Odmian Zbóż Jarych do Uprawy w Rolnictwie Ekologicznym w Ramach Ekologicznego Doświadczalnictwa Odmianowego—EDO dla zbóż Jarych. 2019. Available online: http://www.iung.pulawy.pl/index.php?option=com_content&view=article&id=175&Itemid=155 (accessed on 15 October 2020). (In Polish).
- Publikacje COBORU. Wstępne Wyniki Plonowania Odmian w Doświadczeniach Porejestrowych. Zboża Jare; COBO 46/2020; 2019; p. 14. Available online: https://coboru.gov.pl/Polska/Publikacje/publikacje.aspx (accessed on 15 October 2020). (In Polish)
- Huang, X.; Zhang, Z.; Ke, Y.; Xiao, C.; Peng, Z.; Wu, L.; Zhong, S. Effects of silicate fertilizer on nutrition of leaves. yield and sugar of sugarcanes. J. Trop. Subtrop. Soil Sci. 1997, 6, 242–246. [Google Scholar]
- Segalin, S.R.; Huth, C.; Rosa, T.A.; Pahins, D.B.; Mertz, L.M.; Nunes, U.R. Foliar application of silicon and the effect on wheat seed yield and quality. J. Seed Sci. 2013, 35, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Korunic, Z.; Fields, P.G.; Kovacs, M.I.P.; Noll, J.S.; Lukow, O.M.; Demianyk, C.J.; Shibley, K.J. The effect of diatomaceous earth on grain quality. Postharvest Biol. Tec. 1996, 9, 373–387. [Google Scholar] [CrossRef]
- Nelson, A.G.; Quideau, S.; Frick, B.; Niziol, D.; Clapperton, J.; Spaner, D. Spring wheat genotypes differentially alter soil microbial communities and wheat bread making quality in organic and conventional systems. Can. J. Plant Sci. 2011, 91, 485–495. [Google Scholar] [CrossRef]
- Langenkämper, G.; Zörb, C.; Seifert, M.; Mäder, P.; Fretzdorff, B.; Betsche, T. Nutritional quality of organic and conventional wheat. J. Appl. Bot. Food Qual. 2006, 80, 150–154. [Google Scholar]
- Krejčířová, L.; Capouchová, I.; Petr, J.; Bicanová, E.; Faměra, O. The effect of organic and conventional growing systems on quality and storage protein composition of winter wheat. Plant. Soil Environ. 2007, 53, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Casagrande, M.; David, C.; Valantin-Morison, M.; Makowski, D.; Jeuffroy, M.-H. Factors limiting the grain protein content of organic winter wheat in south-eastern France: A mixed-model approach. Agron. Sustain. Dev. 2009, 29, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Park, E.Y.; Fuerst, E.P.; Miller, P.R.; Machado, S.; Burke, I.C.; Baik, B.K. Functional and Nutritional Characteristics of Wheat Grown in Organic, No-Till and Conventional Cropping Systems. 2014. Available online: http://smallgrains.wsu.edu/wp-content/uploads/2014/01/Wheat-Quality-in-Organic-No-till-and-Conventional-Croppping-Systems.pdf (accessed on 15 October 2020).
- Commission Regulation (EU) No 742/2010 of 17 August 2010 amending Regulation (EU) No 1272/2009 Laying down Common Detailed Rules for the Implementation of Council Regulation (EC) No 1234/2007 as Regards Buying-in and Selling of Agricultural Products under Public Intervention. Available online: http://data.europa.eu/eli/reg/2010/742/oj (accessed on 15 October 2020).
Month/year | Means for 1998–2017 | 2018 | 2019 | |||
---|---|---|---|---|---|---|
Temp., °C | Rainfall, mm | Temp., °C | Rainfall, mm | Temp., °C | Rainfall, mm | |
April | 9.5 | 30.5 | 13.7 | 28.9 | 10.7 | 6.1 |
May | 14.2 | 52.7 | 17.5 | 37.2 | 12.4 | 83.4 |
June | 17.4 | 52.4 | 19.0 | 48.0 | 22.7 | 2.1 |
July | 19.7 | 85.5 | 20.9 | 112.8 | 19.5 | 4.7 |
August | 19.1 | 63.1 | 21.6 | 18.7 | 21.2 | 4.8 |
Mean/sum April–August | 16.0 | 284.2 | 18.5 | 245.6 | 17.3 | 101.1 |
Source of Variation | Thousand-Grain Weight | Yield | Length of Leaves per Plant | Length of Roots per Plant | ||||
---|---|---|---|---|---|---|---|---|
d.f. | m.s. | d.f. | m.s. | d.f. | m.s. | d.f. | m.s. | |
Year | 1 | 3701.2 *** | 1 | 12.47 *** | 1 | 7.427 | 1 | 7.001 |
Method | 3 | 39.08 *** | 3 | 2.84 *** | 2 | 235.3 *** | 2 | 24.87 ** |
Cultivar | 2 | 115.75 *** | 2 | 6.466 *** | 3 | 26.09 *** | 3 | 10.99 * |
Year × Method | 3 | 2.705 *** | 3 | 0.013 | 2 | 24.14 ** | 2 | 2.618 |
Year × Cultivar | 2 | 12.64 *** | 2 | 0.198 *** | 3 | 3.967 | 3 | 1.296 |
Method × Cultivar | 6 | 1.800 *** | 6 | 0.100 *** | 6 | 159.7 *** | 6 | 73.69 *** |
Year × Method × Cultivar | 6 | 1.008 *** | 6 | 0.060 *** | 6 | 13.4 ** | 6 | 7.157 |
Residual | 36 | 0.031 | 36 | 0.005 | 372 | 3.631 | 372 | 4.076 |
Si Application Method | |||||
---|---|---|---|---|---|
Cultivar | Year | Untreated | Seed Dressing | Foliar Treatments | Seed and Foliar Treatments |
Mean length of leaves per plant, cm | |||||
Harenda | 2018 2019 | 20.60 ± 0.34 a 21.88 ± 0.06 a | 21.05 ± 0.12 a 19.94 ± 0.26 b | 20.00 ± 0.32 a 18.92 ± 0.63 bc | 20.40 ± 0.09 a 17.73 ± 0.42 c |
Rusałka | 2018 2019 | 20.36 ± 0.21 a 15.25 ± 0.50 b | 20.93 ± 0.11 a 20.20 ± 0.78 a | 20.24 ± 0.08 a 19.57 ± 0.38 a | 20.81 ± 0.23 a 20.49 ± 0.62 a |
Serenada | 2018 2019 | 20.75 ± 0.11 a 19.26 ± 0.21 b | 20.68 ± 0.32 a 23.79 ± 1.04 a | 20.27 ± 0.21 a 23.24 ± 0.42 a | 20.44 ± 0.15 a 21.55 ± 1.07 a |
Mean length of roots per plant, cm | |||||
Harenda | 2018 2019 | 13.03 ± 0.10 a 14.44 ± 0.21 a | 12.96 ± 0.21 a 12.41 ± 0.43 b | 12.82 ± 0.09 a 11.89 ± 0.69 b | 12.84 ± 0.51 a 10.19 ± 0.22 c |
Rusałka | 2018 2019 | 12.89 ± 0.34 a 11.02 ± 0.72 c | 12.43 ± 0.56 a 12.51 ± 1.04 bc | 12.84 ± 0.23 a 14.15 ± 0.41 a | 12.68 ± 0.19 a 13.55 ± 0.45 ab |
Serenada | 2018 2019 | 13.98 ± 0.05 a 11.74 ± 1.05 b | 13.85 ± 0.14 a 13.29 ± 0.81 a | 13.73 ± 0.45 a 13.56 ± 0.22 a | 14.01 ± 0.28 a 13.76 ± 0.37 a |
Si Application Method | |||||
---|---|---|---|---|---|
Cultivar | Year | Untreated | Seed Dressing | Foliar Treatments | Seed and Foliar Treatments |
Harenda | 2018 2019 | 26.32 ± 0.22 c 26.48 ± 0.77 c | 29.01 ± 0.31 b 27.85 ± 0.70 b | 28.78 ± 0.32 b 26.62 ± 0.48 b | 31.38 ± 0.50 a 29.37 ± 0.47 a |
Rusałka | 2018 2019 | 30.09 ± 0.85 a 28.85 ± 0.82 a | 32.09 ± 0.50 a 29.05 ± 0.11 a | 30.34 ± 0.57 a 28.98 ± 0.86 a | 33.00 ± 0.27 a 29.80 ± 0.30 a |
Serenada | 20182019 | 31.89 ± 0.41 b 30.80 ± 0.48 a | 32.09 ± 0.78 a 30.20 ± 0.64ca | 32.02 ± 0.23 a 30.67 ± 0.59 a | 33.03 ± 0.51 a 31.18 ± 0.15 a |
Cultivar | Year | Si Application Method | |||
---|---|---|---|---|---|
Untreated | Seed Dressing | Foliar Treatments | Seed and Foliar Treatments | ||
Harenda | 2018 2019 | 2.92 ± 0.18 b 1.66 ± 0.16 c | 3.62 ± 0.26 a 2.48 ± 0.24 b | 3.23 ± 0.20 a 2.04 ± 0.03 bc | 3.94 ± 0.19 a 2.87 ± 0.12 a |
Rusałka | 2018 2019 | 3.60 ± 0.28 b 2.89 ± 0.05 c | 3.93 ± 0.19 b 3.28 ± 0.13 b | 3.78 ± 0.21 b 3.09 ± 0.07 bc | 4.98 ± 0.33 a 3.74 ± 0.18 a |
Serenada | 2018 2019 | 4.06 ± 0.32 b 3.12 ± 0.13 c | 4.47 ± 0.34 ab 3.74 ± 0.06 ab | 4.32 ± 0.07 b 3.33 ± 0.18 bc | 4.71 ± 0.19 a 4.10 ± 0.22 a |
Cultivar | Year | Si Application Method | |||
---|---|---|---|---|---|
Untreated | Seed Dressing | Foliar Treatments | Seed and Foliar Treatments | ||
Crude Protein (%) | |||||
Harenda | 2018 2019 | 13.7 ± 0.43 a 14.3 ± 0.14 b | 14.1 ± 0.36 a 15.9 ± 0.34 a | 13.9 ± 0.36 a 14.8 ± 0.37 b | 14.4 ± 0.51 a 16.5 ± 0.41 a |
Rusałka | 2018 2019 | 13.7 ± 0.35 a 14.5 ± 0.26 a | 14.0 ± 0.22 a 14.9 ± 0.18 a | 13.8 ± 0.10 a 14.6 ± 0.14 a | 14.2 ± 0.11 a 15.0 ± 0.19 a |
Serenada | 2018 2019 | 13.2 ± 0.27 a 13.9 ± 0.15 a | 13.5 ± 0.46 a 14.5 ± 0.37 a | 13.4 ± 0.42 a 14.4 ± 0.41 a | 13.7 ± 0.11 a 14.6 ± 0.14 a |
Wet Gluten (cm3) | |||||
Harenda | 2018 2019 | 30.1 ± 0.76 a 31.4 ± 0.98 b | 31.8 ± 0.76 a 34.9 ± 0.87 a | 30.9 ± 0.45 a 32.7 ± 0.98 b | 32.1 ± 0.98 a 36.0 ± 1.80 a |
Rusałka | 2018 2019 | 29.4 ± 0.41 a 32.2 ± 0.43 a | 30.1 ± 0.98 a 32.6 ± 0.78 a | 29.7 ± 0.87 a 32.6 ± 0.76 a | 30.2 ± 0.65 a 33.9 ± 0.65 a |
Serenada | 2018 2019 | 33.7 ± 0.56 a 38.2 ± 0.71 a | 34.8 ± 0.54 a 40.2 ± 0.91 a | 34.2 ± 0.62 a 39.4 ± 0.75 a | 35.5 ± 0.78 a 40.4 ± 0.86 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, J.; Tyburski, J.; Bocianowski, J.; Krzymińska, J.; Matysiak, K. Methods of Silicon Application on Organic Spring Wheat (Triticum aestivum L. spp. vulgare) Cultivars Grown across Two Contrasting Precipitation Years. Agronomy 2020, 10, 1655. https://doi.org/10.3390/agronomy10111655
Kowalska J, Tyburski J, Bocianowski J, Krzymińska J, Matysiak K. Methods of Silicon Application on Organic Spring Wheat (Triticum aestivum L. spp. vulgare) Cultivars Grown across Two Contrasting Precipitation Years. Agronomy. 2020; 10(11):1655. https://doi.org/10.3390/agronomy10111655
Chicago/Turabian StyleKowalska, Jolanta, Józef Tyburski, Jan Bocianowski, Joanna Krzymińska, and Kinga Matysiak. 2020. "Methods of Silicon Application on Organic Spring Wheat (Triticum aestivum L. spp. vulgare) Cultivars Grown across Two Contrasting Precipitation Years" Agronomy 10, no. 11: 1655. https://doi.org/10.3390/agronomy10111655
APA StyleKowalska, J., Tyburski, J., Bocianowski, J., Krzymińska, J., & Matysiak, K. (2020). Methods of Silicon Application on Organic Spring Wheat (Triticum aestivum L. spp. vulgare) Cultivars Grown across Two Contrasting Precipitation Years. Agronomy, 10(11), 1655. https://doi.org/10.3390/agronomy10111655