Evaluation of Nitrogen Fertilization Systems Based on the in-Season Variability in the Nitrogenous Growth Factor and Soil Fertility Factors—A Case of Winter Oilseed Rape (Brassica napus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Chemical Analysis and Indices
2.4. Statistical Analyses
3. Results
3.1. In-Season Variability in the Nitrate Nitrogen (N-NO3, NN) Content
3.2. In-Season Variability in Contents of Available Nutrients
3.2.1. The Onset of Stem Elongation (STME)
3.2.2. The Onset of Flowering—Change in Nutrient Availability during STME
3.2.3. Physiological Maturity
4. Discussion
4.1. In-Season Variability in the Growth Factor—Nitrate Nitrogen
4.2. In-Season Variability in Soil Fertility Factor—Available Nutrients
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variables | N60 | N89 | N30–60 | Yield |
---|---|---|---|---|
N30 | 0.44 | 0.48 | 0.67 ** | 0.67 ** |
N60 | 1.00 | 0.94 *** | −0.37 | 0.22 |
N89 | 1.00 | −0.28 | 0.22 | |
N30-60 | 1.00 | 0.51 * |
Appendix B
Available Nutrients Other | Soil Layer Variables | Nitrogen Fertilization System, NFS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Mineral | Organic | Organic−Mineral | |||||||||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
Phosphorus | a | −0.08 | −0.80 | 0.17 | −0.22 | −0.88 | −0.14 | −0.12 | −0.65 | −0.51 | −0.16 | 0.20 | 0.78 | 0.12 |
b | −0.32 | −0.84 | 0.07 | 0.07 | −0.91 | 0.00 | 0.06 | −0.43 | −0.41 | −0.71 | −0.36 | 0.85 | −0.15 | |
c | −0.52 | −0.57 | 0.44 | −0.73 | −0.58 | −0.30 | 0.17 | −0.27 | −0.21 | −0.93 | −0.47 | 0.57 | 0.23 | |
Potassium | a | −0.47 | 0.42 | −0.32 | −0.50 | 0.25 | 0.63 | 0.52 | 0.88 | 0.27 | 0.12 | −0.31 | −0.89 | −0.29 |
b | −0.48 | −0.32 | 0.25 | −0.51 | −0.17 | −0.66 | 0.38 | −0.59 | 0.36 | 0.04 | −0.82 | −0.17 | −0.29 | |
c | −0.72 | −0.03 | 0.35 | −0.85 | 0.11 | −0.21 | 0.15 | 0.41 | 0.65 | −0.27 | −0.88 | 0.10 | 0.05 | |
Magnesium | a | 0.49 | −0.82 | 0.06 | 0.43 | −0.84 | −0.29 | −0.01 | −0.89 | −0.32 | 0.15 | 0.60 | 0.70 | −0.20 |
b | 0.75 | −0.28 | 0.29 | 0.67 | −0.11 | −0.50 | 0.48 | −0.91 | −0.06 | 0.25 | 0.85 | −0.09 | 0.13 | |
c | 0.65 | 0.28 | 0.28 | −0.13 | 0.36 | −0.05 | 0.89 | −0.40 | 0.76 | 0.32 | 0.86 | 0.01 | 0.24 | |
Calcium | a | 0.68 | −0.18 | −0.23 | 0.82 | 0.13 | 0.22 | 0.08 | −0.64 | −0.20 | 0.20 | 0.74 | 0.22 | −0.36 |
b | 0.81 | −0.23 | 0.23 | 0.79 | −0.06 | −0.54 | 0.23 | −0.94 | 0.14 | 0.15 | 0.94 | −0.26 | −0.13 | |
c | 0.85 | 0.09 | 0.20 | 0.86 | 0.14 | −0.04 | 0.30 | −0.65 | 0.70 | 0.12 | 0.97 | −0.15 | 0.02 | |
N−NO3 | N30 | −0.10 | −0.50 | −0.79 | 0.06 | −0.61 | 0.73 | 0.29 | 0.20 | −0.89 | 0.37 | −0.09 | 0.29 | −0.94 |
PFPN30 | PFPN30 | 0.08 | 0.41 | 0.68 | 0.02 | 0.62 | −0.67 | −0.29 | −0.21 | 0.91 | 0.04 | −0.15 | −0.01 | 0.83 |
Yield | Y | 0.38 | −0.08 | −0.71 | 0.92 | −0.11 | 0.28 | −0.05 | 0.17 | −0.46 | 0.84 | 0.05 | −0.09 | −0.72 |
Appendix C
Available Nutrients | Soil Layer | Nitrogen Fertilization System—NFS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Mineral | Organic | Organic–Mineral | |||||||||||
Other Variables | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC4 | |
Phosphorus | a | −0.56 | −0.04 | 0.10 | −0.72 | 0.08 | −0.31 | 0.02 | 0.87 | −0.08 | 0.29 | −0.07 | −0.21 | −0.83 |
b | −0.88 | 0.08 | 0.02 | −0.89 | 0.16 | 0.01 | 0.02 | 0.95 | −0.06 | −0.45 | −0.74 | 0.10 | −0.35 | |
c | −0.80 | −0.15 | −0.23 | −0.82 | 0.20 | −0.07 | 0.52 | 0.65 | 0.16 | −0.49 | −0.59 | −0.51 | 0.10 | |
Potassium | a | 0.53 | −0.33 | 0.24 | 0.77 | 0.07 | 0.15 | −0.38 | −0.23 | −0.70 | 0.83 | −0.19 | −0.17 | 0.22 |
b | −0.20 | −0.27 | 0.20 | −0.38 | 0.31 | 0.43 | −0.45 | 0.20 | −0.26 | 0.59 | −0.50 | 0.33 | −0.22 | |
c | 0.41 | −0.58 | 0.17 | 0.61 | −0.37 | −0.21 | 0.39 | −0.58 | −0.46 | 0.75 | −0.46 | −0.18 | 0.05 | |
Magnesium | a | 0.83 | −0.21 | 0.22 | 0.90 | −0.16 | −0.06 | −0.34 | −0.90 | 0.00 | 0.90 | 0.32 | 0.17 | −0.02 |
b | 0.82 | 0.22 | −0.07 | 0.94 | 0.23 | −0.18 | −0.83 | −0.23 | −0.04 | −0.06 | 0.90 | 0.18 | 0.08 | |
c | 0.79 | 0.20 | 0.11 | 0.87 | 0.17 | −0.44 | −0.72 | −0.31 | 0.00 | 0.41 | 0.58 | 0.35 | −0.32 | |
Calcium | a | 0.32 | −0.21 | −0.61 | 0.64 | −0.01 | 0.54 | −0.09 | −0.50 | 0.76 | −0.08 | −0.05 | −0.92 | −0.34 |
b | 0.27 | 0.68 | −0.47 | 0.69 | 0.15 | 0.61 | −0.85 | 0.16 | 0.42 | −0.73 | 0.50 | −0.27 | −0.14 | |
c | 0.20 | 0.85 | −0.11 | 0.29 | 0.57 | −0.37 | −0.83 | 0.33 | 0.20 | −0.55 | 0.59 | 0.35 | −0.28 | |
N−NO3 | N60 | 0.43 | −0.46 | −0.34 | 0.38 | 0.70 | −0.47 | 0.50 | −0.66 | 0.10 | 0.66 | 0.52 | −0.51 | 0.02 |
PFPN30 | N30 | 0.16 | 0.40 | 0.55 | 0.31 | −0.70 | −0.15 | −0.75 | 0.04 | −0.03 | 0.07 | −0.28 | 0.61 | −0.59 |
Yield | Y | 0.11 | −0.20 | −0.74 | 0.20 | 0.65 | 0.42 | 0.72 | −0.18 | 0.28 | 0.19 | 0.41 | −0.73 | −0.34 |
Appendix D
Available Nutrients | Soil Layer | Nitrogen Fertilization System—NFS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Mineral | Organic | Organic–Mineral | ||||||||||||
Other Variables | PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC4 | |
Phosphorus | a | −0.25 | −0.69 | 0.34 | −0.08 | 0.60 | −0.60 | −0.09 | 0.50 | −0.56 | −0.21 | 0.14 | −0.70 | 0.14 | 0.51 |
b | −0.62 | 0.05 | 0.59 | −0.35 | 0.82 | 0.24 | 0.14 | 0.78 | −0.49 | 0.27 | −0.80 | −0.21 | 0.21 | 0.41 | |
c | −0.60 | 0.22 | 0.58 | −0.10 | 0.78 | −0.22 | 0.15 | 0.63 | −0.19 | 0.37 | −0.89 | −0.20 | 0.09 | 0.23 | |
Potassium | a | 0.36 | −0.30 | −0.09 | 0.27 | −0.50 | −0.42 | 0.70 | 0.18 | 0.26 | −0.81 | 0.05 | 0.24 | −0.92 | −0.02 |
b | 0.48 | −0.32 | 0.37 | −0.26 | −0.01 | −0.07 | 0.72 | −0.42 | −0.37 | 0.39 | −0.08 | −0.38 | 0.53 | 0.05 | |
c | 0.12 | −0.73 | −0.19 | −0.49 | 0.49 | −0.61 | 0.11 | −0.29 | 0.63 | 0.15 | 0.55 | −0.55 | 0.37 | 0.30 | |
Magnesium | a | 0.35 | 0.52 | 0.45 | −0.30 | 0.29 | 0.67 | 0.48 | −0.37 | −0.14 | 0.49 | −0.46 | 0.86 | 0.06 | 0.11 |
b | 0.66 | 0.23 | 0.40 | 0.25 | −0.84 | 0.04 | 0.28 | −0.88 | −0.28 | 0.19 | −0.80 | 0.39 | 0.25 | 0.11 | |
c | 0.59 | 0.36 | 0.29 | −0.08 | −0.72 | 0.29 | −0.19 | −0.66 | −0.41 | 0.41 | −0.27 | 0.73 | 0.41 | 0.29 | |
Calcium | a | 0.51 | −0.05 | 0.30 | −0.34 | 0.73 | 0.29 | 0.59 | −0.67 | −0.44 | −0.54 | 0.41 | 0.54 | 0.52 | 0.00 |
b | 0.88 | −0.24 | 0.11 | 0.10 | −0.82 | −0.20 | 0.35 | −0.76 | −0.40 | −0.42 | 0.73 | 0.43 | 0.28 | −0.11 | |
c | 0.92 | −0.12 | 0.02 | 0.05 | −0.94 | 0.09 | 0.15 | −0.88 | −0.32 | −0.06 | 0.75 | 0.38 | 0.38 | 0.26 | |
N−NO3 | N89 | 0.16 | 0.11 | −0.44 | −0.82 | 0.42 | 0.67 | 0.15 | −0.38 | 0.84 | 0.27 | 0.42 | 0.10 | −0.36 | 0.70 |
Yield | Y | 0.21 | 0.61 | −0.50 | −0.23 | −0.11 | 0.84 | −0.16 | −0.56 | 0.65 | −0.01 | 0.17 | 0.34 | −0.51 | 0.61 |
References
- Dowson, C.J.; Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 2011, 36, 14–22. [Google Scholar] [CrossRef]
- Benton Jones, J., Jr. Agronomic Handbook; CRC Press: Boca Raton, FL, USA, 2003; p. 450. [Google Scholar]
- Luce, M.S.; Whalen, J.K.; Ziadi, N.; Zebarth, B.J. Nitrogen dynamics and indices to predict soil nitrogen supply in humid temperate soils. Adv. Agron. 2011, 112, 55–102. [Google Scholar]
- Li, S.X.; Wang, Z.; Stewart, B. Responses of crop plants to ammonium and nitrate N. Adv. Agron. 2013, 118, 205–397. [Google Scholar]
- Marschner, P. (Ed.) Marchnerr’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; p. 672. [Google Scholar]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, P.M.; Spink, J.; Foulkes, M.J.; White, P.J. The physiological basis of genotypic differences in nitrogen use efficiency in oilseed rape (Brassica napus L.). Field Crops Res. 2010, 119, 365–373. [Google Scholar] [CrossRef]
- Rathke, G.W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2016, 117, 80–108. [Google Scholar] [CrossRef]
- Sieling, K.; Kage, H. N balance as an indicator of N leaching in an oilseed rape–winter wheat–winter barley rotation. Agric. Ecosyst. Environ. 2006, 115, 261–269. [Google Scholar] [CrossRef]
- Szczepaniak, W.; Barłóg, P.; Łukowiak, R.; Przygocka-Cyna, K. Effect of balanced nitrogen fertilization in four-year rotation on plant productivity. J. Cent. Eur. Agric. 2013, 14, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, W. A mineral profile of oilseed rape in critical stages of growth-nitrogen. J. Elem. 2014, 19, 759–778. [Google Scholar] [CrossRef]
- Marschner, H.; Kirkby, E.A.; Cackmak, J. Effect of mineral nutritional status on shoot-root partitioning of Photo-assimilates and cycling of mineral nutrients. J. Exp. Bot. 1996, 47, 1255–1263. [Google Scholar] [CrossRef]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Nitrogen release from organic fertilizers after short and long-term application to arable land. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use effciency in agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Raynaud, X.; Leadley, P. Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology 2004, 85, 2200–2214. [Google Scholar] [CrossRef]
- Wallace, A.; Wallace, G.A. Closing the Crop-Yield Gap through Better Soil and Better Management; Wallace Laboratories: Los Angeles, CA, USA, 2003; p. 162. [Google Scholar]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, W.; Grzebisz, W.; Potarzycki, J.; Łukowiak, R.; Przygocka-Cyna, K. Nutritional status of winter oilseed rape in cardinal stages of growth as yield indicator. Plant Soil Environ. 2015, 61, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Bailigar, V.C.; Clark, R.B. Physiology of Crop Production; CRC Press: New York, NY, USA, 2006; p. 356. [Google Scholar]
- Sylvester-Bradley, R.; Lunn, G.; Foulkes, J.; Shearman, V.; Spink, J.; Ingram, J. Management Strategies for Yield of Cereals and Oilseed Rape. HGCA Conference: Agronomic Intelligence: The Basis for Profitable Production. HGCA, 18. Available online: www.hgca.com/publications (accessed on 14 August 2020).
- Mayer, U. BBCH Monograph. In Growth Stages of Mono- and Dicotyledonous Plants, 2nd ed.; Federal Biological Research Center for Agriculture and Forestry: Berlin, Germany, 2001; Available online: http://www.jki.bund.de/fileadmin/dam_uploads/_veroeff/bbch/BBCH-Skala_Englisch.pdf (accessed on 10 August 2020).
- Böttcher, U.; Rampin, E.; Hartmann, K.; Zanetti, F.; Flenet, F.; Morison, M.; Kage, H. A phenological model of winter oilseed rape according to the BBCH scale. Crop Pasture Sci. 2016, 67, 345–358. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Diatta, J. Effect of timing and nitrogen fertilizers on nutrients content and uptake of winter oilseed rape. Part II. Dynamics of nutrients uptake. In Chemistry for Agriculture; Górecki, H., Dobrzański, Z., Kafarski, P., Eds.; Czech-Pol Trade: Prague, Czech Republic, 2005; Volume 6, pp. 113–123. [Google Scholar]
- White, C.; Sylvester-Bradley, R.; Berry, P.M. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield. J. Exp. Bot. 2015, 66, 2293–2303. [Google Scholar] [CrossRef] [Green Version]
- Ulas, A.; Schulte auf’m Erley, G.; Kamh, M.; Wiesler, F.; Horst, W.J. Root-growth characteristics contributing to genetic variation in nitrogen efficiency of oilseed rape. J. Plant Nutr. 2012, 175, 489–498. [Google Scholar] [CrossRef]
- Schmidhalter, U. Development of a quick on-farm test to determine nitrate levels in soils. J. Plant Nutr. Soil Sci. 2005, 168, 432–438. [Google Scholar] [CrossRef]
- Olfs, H.W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil-and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R.; Sassenrath, G. Virtual nitrogen as a tool for assessment of nitrogen at the field scale. Field Crops Res. 2018, 218, 182–184. [Google Scholar] [CrossRef]
- Parris, K. Agricultural nutrient balances as agri-environmental indicators: An OECD perspective. Environ. Pollut. 1998, 102, 219–225. [Google Scholar] [CrossRef]
- Conijn, J.G.; Bindraban, P.S.; Schroder, J.J.; Jongschaap, R.E.E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 2018, 252, 244–256. [Google Scholar] [CrossRef]
- Odlare, M.; Lindmark, J.; Ericsson, A.; Pell, M. Use of organic wastes in agriculture. Energy Procedia 2015, 75, 2472–2476. [Google Scholar] [CrossRef] [Green Version]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and liquid fractionantion of digestate: Mass balance, Chemical characterization, and agronomic and environmental value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Makadi, M.; Tomocsik, A.; Orosz, V. Digestate: A new nutrient source—A review. In Biogas; Kumar, S., Ed.; InTech: Rijeka, Croatia, 2012; pp. 295–312. [Google Scholar]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- Przygocka-Cyna, K.; Grzebisz, W. The multifactorial effect of digestate on the availability of soil elements and grain yield and its mineral profile—The case of maize. Agronomy 2020, 10, 275. [Google Scholar] [CrossRef] [Green Version]
- Weymann, W.; Bottcher, U.; Sieling, K.; Kage, H. Effects of weather conditions during different growth phases on yield formation of winter oilseed rape. Field Crops Res. 2015, 173, 41–48. [Google Scholar] [CrossRef]
- WRB, I.W.G. World Reference Base for Soil Resources 2014. World Soil Resources Reports; Food and Agriculture organization of the United Nations: Rome, Italy, 2019; Volume 106. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Trávník, K.; Zbíral, J.; Němec, P. Agrochemical soil testing—Mehlich III; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 1999. (In Czech) [Google Scholar]
- Fotyma, E.; Fotyma, M.; Pietruch, C. The content of mineral N in arable soils in Poland. Fertil. Fertil. 2004, 3, 11–54. [Google Scholar]
- Łukowiak, R.; Grzebisz, W. Effect of site specific nitrogen management on seed nitrogen—A driving factor of winter oilseed rape (Brassica napus L.) yield. Agronomy 2020, in press. [Google Scholar]
- Möller, K.; Stinner, W. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur. J. Agron. 2009, 30, 1–16. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R.; Biber, M.; Przygocka-Cyna, K. Effect of multi-micronutrient fertilizers applied to foliage on nutritional status of winter oilseed rape and development of yield forming elements. J. Elem. 2010, 15, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, T.; Li, X.; Ren, T.; Cong, R.; Lu, J. Nutrient deficiency limits population development, yield formation and nutrient uptake of direct sown winter oilseed rape. J. Integr. Agric. 2015, 14, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Bouchet, A.S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed. A review. Agron. Sustain. Dev. 2016, 36, 38. [Google Scholar] [CrossRef]
- Szczepaniak, W.; Grzebisz, W.; Barłóg, P.; Przygocka-Cyna, K. Mineral composition of winter oilseed rape (Brassica napus L.) seeds as a tool for oil seed prognosis. J. Cent. Eur. Agric. 2017, 18, 196–213. [Google Scholar] [CrossRef]
- Grzebisz, W.; Szczepaniak, W.; Grześ, S. Sources of nutrients for high-yielding winter oilseed rape (Brassica napus L.) during post-flowering growth. Agronomy 2020, 10, 626. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J. Agron. Crop Sci. 2004, 190, 314–323. [Google Scholar] [CrossRef]
- Wang, X.; Mathieu, A.; Cournede, P.H.; Allirand, J.M.; Jullien, A.; de Reffye, P.; Zhang, B.G. Variability and regulation of the number of ovules, seeds, and pods according to assimilate availability in winter oilseed rape (Brassica napus L.). Field Crops Res. 2011, 122, 60–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, P.; Ren, T.; Lu, J.; Wang, L. Dynamics of growth and nitrogen capture in winter oilseed rape hybrid and line cultivars under contrasting N supply. Agronomy 2020, 19, 1183. [Google Scholar] [CrossRef]
- Kautz, T.; Walter, A.; Kemna, A.; Vetterlein, D.; Ewert, F.; Wiesenberg, G.L.B.; Schneider, H.; Scherer, H.W.; Vanderborght, J.; Munch, J.; et al. Nutrient acquisition from arable subsoils in temperate climates: A review. Soil Biol. Biochem. 2013, 57, 1003–1022. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Łukowiak, R.; Barłóg, P.; Grzebisz, W. Soil mineral nitrogen and the rating of CaCl2 extractable nutrients. Plant Soil Environ. 2017, 63, 177–183. [Google Scholar]
- Barraclough, P.B. Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yeilding winter oilseed rape crop. Plant Soil 1989, 119, 59–70. [Google Scholar] [CrossRef]
- Łukowiak, R.; Grzebisz, W.; Sassenrath, G.F. New insights into phosphorus management in agriculture. Sci. Total Environ. 2016, 542, 1062–1077. [Google Scholar] [CrossRef] [Green Version]
- Nieder, R.; Dinesh, K.B.; Schere, H.W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. Soil 2011, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Grinsted, M.J.; Hedley, M.J.; White, R.E.; Nye, P.H. Plant induced changes in the rhizospehere of rape (Brassica napus var. Emerald) seedlings. New Phytol. 1982, 91, 19–29. [Google Scholar] [CrossRef]
- Pan, Y.; Lu, Z.; Lu, J.; Li, X.; Cong, R. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiol. Bioch. 2017, 113, 110–121. [Google Scholar] [CrossRef]
- Grzebisz, W.; Szczepaniak, W.; Barłóg, P.; Przygocka-Cyna, K.; Potarzycki, J. Phosphorus sources for winter oilseed rape (Brassica napus L.) during reproductive growth–magnesium sulfate management impact on P use efficiency. Arch. Agron. Soil Sci. 2018, 64, 1646–1662. [Google Scholar] [CrossRef]
Year/Soil Layer cm | P | K | Ca | Mg | P | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|
2015/2016 | 2016/2017 | |||||||
0–30 | 80 ± 29 2 H 3 | 155 ± 38 H 3 | 390 ± 61 L4 | 62 ± 6 H3 | 88 ± 72 H | 105 ± 37 M | 430 ± 156 VL | 72 ± 12 M |
30–60 | 30 ± 12 VL | 96 ± 27 M | 275 ± 100 VL | 59 ± 11 H | 53 ± 44 L | 80 ± 22 M | 369 ± 86 VL | 65 ± 16 M |
60–90 | 17 ± 6 VL | 71 ± 16 M | 309 ± 299 VL | 73 ± 20 H | 53 ± 34 L | 70 ± 23 L | 298 ± 44 VL | 62 ± 12 H |
Growing Season | Consecutive Months during the WOSR Growing Season | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VIII | IX | X | XI | XII | I | II | III | IV | V | VI | VII | Average | |
Temperature, °C | |||||||||||||
2015/2016 | 21.1 | 14.1 | 8.5 | 7.1 | 6.7 | −0.9 | 3.7 | 4.3 | 8.8 | 15.7 | 18.5 | 19 | 10.6 |
2016/2017 | 17.8 | 16.8 | 8.6 | 9.3 | 3 | −0.7 | 1.6 | 6.7 | 7.4 | 14 | 17.2 | 17.7 | 10.0 |
1981–2010 | 23.0 | 13.9 | 9.4 | 4.4 | 1.1 | 0.2 | 0.9 | 4.0 | 8.6 | 13.6 | 16.2 | 18.6 | 9.5 |
Precipitation, mm | |||||||||||||
2015/2016 | 26.5 | 40.9 | 61.0 | 57.4 | 45.7 | 38.6 | 56.6 | 33.3 | 33.5 | 17.4 | 73.9 | 78.5 | 563.3 |
2016/2017 | 69.0 | 0.0 | 54.0 | 49.0 | 57.8 | 66.7 | 58.0 | 51.2 | 47.0 | 56.7 | 106.0 | 236.6 | 852 |
1981–2010 | 80.6 | 62.0 | 52.2 | 53.0 | 50.1 | 57.5 | 30.2 | 35.6 | 36.9 | 65.6 | 57.9 | 93.8 | 675.3 |
Year | Factor | Level of | Yield | N30 | N60 | N89 | N60-30 | PFPN30 |
---|---|---|---|---|---|---|---|---|
(Y) | Factor | t ha−1 | kg ha−1 | kg Seeds kg−1 N | ||||
2015/2016 | Fertilization | M | 3.072 | 107.8 a | 45.2 a,b | 39.4 a | −62.6 b | 38.4 |
system | O | 3.068 | 77.3 c | 40.6 b | 29.8 c | −36.8 a | 42.0 | |
(FS) | OM | 3.363 | 88.7 b | 49.0 a | 34.6 b | −39.7 a | 45.0 | |
F-value | 0.11 | 28.4 *** | 9.45 *** | 13.0 *** | 17.1 *** | 2.32 | ||
Nitrogen | 0 | 1.937 b | 39.4 c | 33.6 c | 18.5 c | −5.7 a | 51.2 a | |
rate | 60 | 3.161 | 54.0 c | 42.3 b | 25.4 c | −11.7 a | 59.7 a | |
(N) | 120 | 3.438 a | 97.8 b | 53.3 a | 36.8 b | −44.5 b | 36.6 b | |
kg ha−1 | 180 | 3.643 a | 104.2 b | 43.3 b | 38.1 b | −60.9 b | 35.3 b | |
240 | 3.660 a | 161.0 a | 52.1 a | 54.1 a | −108.9 c | 26.3 a | ||
F-value | 24.0 *** | 164 *** | 20.8 *** | 61.5 *** | 89.6 *** | 23.1 *** | ||
2016/2017 | Fertilization | M | 3.062 b | 112.4 | 35.1 b | 41.8 b | −77.3 | 34.3 b |
system | O | 3.332 a,b | 105.0 | 28.1 a | 35.1 a | −76.8 | 37.0 b | |
(FS) | OM | 3.357 a | 113.6 | 30.4 a | 31.2 a | −83.2 | 42.8 a | |
F-value | 3.91 * | 1.12 | 10.4 *** | 19.9 *** | 0.58 | 8.56 *** | ||
Nitrogen | 0 | 1.634 b | 40.6 d | 13.4 c | 24.9 a | −27.2 a | 41.4 b | |
rate | 60 | 3.517 a | 63.6 c | 18.3 c | 29.9 a,b | −45.3 a | 63.0 a | |
(N) | 120 | 3.675 a | 108.1 b | 36.5 b | 41.9 c,d | −71.6 b | 34.8 b,c | |
kg ha−1 | 180 | 3.908 a | 128.1 b | 37.2 c | 35.7 b,c | −90.9 b | 32.8 c | |
240 | 3.517 a | 211.3 a | 50.8 a | 47.8 d | −160.5 c | 18.1 d | ||
F-value | 73.7 *** | 134 *** | 115 *** | 34.3 *** | 73.2 *** | 71.7 *** | ||
Y × FS | 1.26 | 5.63 ** | 6.20 ** | 6.20 ** | 7.34 ** | 0.31 | ||
Y × N | 2.53 * | 7.97 *** | 18.0 *** | 5.62 *** | 2.34 | 2.14 | ||
FS × N | 2.09 * | 29.3 *** | 5.37 *** | 18.6 *** | 27.8 *** | 9.73 *** | ||
Y × FS × N | 0.32 | 5.56 *** | 3.15 ** | 5.13 *** | 6.04 *** | 5.87 *** |
Year (Y) | Factor | Level | Phosphorus (P) | Potassium (K) | Magnesium (Mg) | Calcium (Ca) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
of Factor | a | b | c | a | b | c | a | b | c | a | b | c | ||
2015/ | Fertilization | M | 51.5 | 31.0 a | 20.4 | 111.8 | 68.8 | 47.4 a | 56.9 | 58.3 | 74.7 | 385.1 | 231.7 | 329.3 |
2016 | system | O | 50.7 | 25.4 b | 19.0 | 109.0 | 65.4 | 42.3 a,b | 56.2 | 55.2 | 79.8 | 385.7 | 226.9 | 338.4 |
(FS) | OM | 48.6 | 22.4 b | 18.4 | 108.3 | 60.8 | 39.6 b | 58.0 | 56.3 | 76.0 | 395.9 | 222.5 | 312.4 | |
F-value | 0.39 | 7.19 ** | 0.93 | 0.20 | 1.79 | 4.11 * | 0.26 | 0.33 | 0.42 | 0.04 | 0.07 | 0.28 | ||
Nitrogen | 0 | 48.9 | 28.0 | 23.2 a | 107.5 | 66.5 | 49.5 | 56.1 | 55.9 | 83.1 | 384.5 | 221.4 | 319.8 | |
rate | 60 | 50.0 | 26.2 | 19.4 a,b | 106.8 | 64.9 | 41.9 | 57.5 | 57.3 | 86.2 | 400.0 | 234.9 | 364.0 | |
(N) | 120 | 51.2 | 21.4 | 16.7 b | 109.3 | 64.6 | 41.5 | 56.3 | 58.7 | 78.5 | 356.5 | 242.4 | 313.0 | |
kg ha−1 | 180 | 50.1 | 25.2 | 16.1 b | 108.8 | 63.2 | 41.1 | 57.4 | 58.8 | 69.8 | 436.6 | 253.9 | 369.4 | |
240 | 51.2 | 30.5 | 20.7 a,b | 116.0 | 65.7 | 41.5 | 57.9 | 52.4 | 66.6 | 367.0 | 182.6 | 267.3 | ||
F-value | 0.10 | 2.53 | 4.69 ** | 0.48 | 0.10 | 1.98 | 0.12 | 0.54 | 2.52 | 0.64 | 1.38 | 1.67 | ||
2016/ | Fertilization | M | 62.1 | 39.2 a | 27.5 a | 98.8 | 74.6 a | 48.3 a | 70.0 | 64.8 | 71.1 b | 357.5 b | 302.8 | 320.0 |
2017 | system | O | 57.0 | 32.4 b | 22.4 a,b | 94.9 | 65.5 a,b | 35.5 b | 68.4 | 62.9 | 80.6 a,b | 558.3 a | 331.3 | 378.0 |
(FS) | OM | 56.5 | 31.5 b | 21.2 b | 84.5 | 55.1 b | 37.2 b | 67.1 | 62.5 | 93.3 a | 489.7 a | 263.0 | 422.1 | |
F-value | 0.48 | 5.22 ** | 4.35 * | 2.26 | 4.67 * | 6.73 ** | 0.34 | 0.10 | 3.52 * | 8.92 *** | 2.1 | 2.66 | ||
Nitrogen | 0 | 63.0 | 32.9 a,b | 28.3 a | 91.0 | 66.3 | 48.1 | 63.6 | 58.1 | 80.8 | 385.8 b,c | 264.2 b,c | 351.8 a b | |
rate | 60 | 56.3 | 36.9 a b | 25.7 a,b | 88.9 | 65.5 | 37.8 | 68.9 | 64.4 | 76.8 | 417.3 b,c | 264.7 b,c | 343.8 a b | |
(N) | 120 | 54.5 | 27.9 a | 18.4 b | 95.2 | 73.8 | 41.0 | 70.1 | 70.7 | 94.0 | 559.0 a,b | 390.0 a | 406.7 a b | |
kg ha−1 | 180 | 57.9 | 32.6 a,b | 20.6 a,b | 90.8 | 56.3 | 33.4 | 72.8 | 66.4 | 83.6 | 614.7 a | 386.2 a,b | 501.2 a | |
240 | 60.9 | 41.6 b | 25.4 a,b | 97.8 | 63.5 | 41.3 | 66.9 | 57.4 | 73.1 | 365.8 c | 190.2 c | 263.2 c | ||
F-value | 0.36 | 4.59 ** | 3.74 * | 0.33 | 1.16 | 2.41 | 1.13 | 1.21 | 1.08 | 6.38 *** | 8.07 *** | 4.72 ** | ||
F value for FS × N | 0.25 | 3.09 ** | 7.20 *** | 0.97 | 0.66 | 2.62* | 0.97 | 0.77 | 2.72 ** | 3.44 ** | 4.40 *** | 10.6 *** |
Year | Factor | Level | Phosphorus (P) | Potassium (K) | Magnesium (Mg) | Calcium (Ca) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Y) | of Factor | a | b | c | a | b | c | a | b | c | a | b | c | |
2015/2016 | Fertilization | M | 57.7 | 18.4 b | 16.0 | 142.2 a | 77.0 | 58.2 a | 85.3 | 95.4 | 136.3 a | 568.5 a | 323.9 a | 378.0 |
system | O | 56.7 | 25.0 a | 15.3 | 128.9 a,b | 72.6 | 47.4 b | 82.8 | 74.5 | 107.5 b | 458.4 b | 327.1 a | 408.0 | |
(FS) | OM | 59.3 | 24.1 a | 16.2 | 113.7 b | 70.7 | 52.3 a,b | 78.1 | 73.9 | 118.3 a,b | 406.2 b | 222.4 b | 365.7 | |
F-value | 0.32 | 7.77 ** | 0.28 | 3.47 * | 0.77 | 4.43 * | 0.78 | 7.74 ** | 3.22 * | 7.01 *** | 10.13 *** | 0.66 | ||
Nitrogen | 0 | 59.3 | 25.9 | 15.2 | 130.8 | 75.1 | 48.3 | 82.7 | 90.8 | 99.7 b | 430.7 b | 353.5 a,b | 438.3 a,b | |
rate | 60 | 56.8 | 22.0 | 14.6 | 117.3 | 76.2 | 57.8 | 84.2 | 84.5 | 161.9 a | 507.9 a,b | 357.8 a | 522.4 a | |
(N) | 120 | 59.6 | 21.4 | 15.6 | 126.5 | 72.2 | 52.5 | 81.6 | 81.5 | 123.7 a b | 477.0 a,b | 258.8 b,c | 358.0 b,c | |
kg ha−1 | 180 | 54.4 | 22.2 | 15.7 | 131.1 | 72.8 | 52.5 | 78.8 | 75.1 | 122.5 a,b | 377.7 b | 223.6 c | 362.6 b,c | |
240 | 59.5 | 21.0 | 18.0 | 135.7 | 70.8 | 52.2 | 83.0 | 74.4 | 95.9 b | 595.1 a | 262.1 a,b,c | 238.1 c | ||
F-value | 0.59 | 1.38 | 1.09 | 0.50 | 0.22 | 1.04 | 0.15 | 1.45 | 6.28 *** | 4.12 ** | 6.33 *** | 9.30 *** | ||
2016/2017 | Fertilization | M | 68.8 | 50.4 a | 38.1 a | 96.9 a,b | 90.7 a | 47.9 | 57.4 | 51.2 b | 58.1 b | 414.5 a,b | 239.5 b | 332.8 |
system | O | 69.3 | 39.8 b | 26.0 b | 113.6 a | 72.3 b | 43.5 | 62.8 | 56.7 a,b | 71.9 a,b | 379.9 b | 307.0 a,b | 415.8 | |
(FS) | OM | 56.7 | 32.2 b | 29.3 b | 82.9 b | 64.1 b | 47.3 | 57.3 | 66.6 a | 82.0 a | 515.2 a | 376.0 a | 437.6 | |
F-value | 2.64 | 9.05 *** | 7.84 ** | 6.49 ** | 9.31 * | 0.67 | 0.96 | 3.95 * | 6.15 ** | 3.83 * | 5.00 * | 2.51 | ||
Nitrogen | 0 | 67.7 a,b | 41.9 a,b | 28.7 b | 102.5 | 74.4 | 48.1 | 57.3 | 53.5 | 72.5 | 270.0 b | 227.3 | 329.1 | |
rate | 60 | 67.3 a,b | 40.9 a,b | 26.0 b | 102.0 | 76.3 | 43.9 | 59.5 | 60.9 | 76.6 | 445.9 a,b | 312.3 | 446.2 | |
(N) | 120 | 52.0 b | 30.4 b | 32.2 a,b | 105.2 | 86.4 | 51.2 | 62.6 | 52.9 | 68.3 | 503.6 a | 316.3 | 386.2 | |
kg ha−1 | 180 | 60.4 a,b | 39.5 a,b | 26.4 b | 91.8 | 65.6 | 43.8 | 59.2 | 63.9 | 67.8 | 459.9 a | 369.5 | 403.9 | |
240 | 77.4 a | 51.3 a | 42.5 a | 87.3 | 75.8 | 44.1 | 57.4 | 59.8 | 68.1 | 503.1 a | 312.1 | 411.6 | ||
F-value | 2.78 * | 3.68 * | 5.63 *** | 0.99 | 1.64 | 0.77 | 0.27 | 0.88 | 0.38 | 4.32 ** | 1.67 | 0.91 | ||
FS × N | 1.38 | 3.87 *** | 6.09 *** | 2.31* | 1.31 | 1.29 | 0.43 | 2.91 ** | 4.43 *** | 4.35 *** | 4.82 *** | 5.08 *** |
Year | Factor | Level | Phosphorus (P) | Potassium (K) | Magnesium (Mg) | Calcium (Ca) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Y) | of Factor | a | b | c | a | b | c | a | b | c | a | b | c | |
2016 | Fertilization | M | 57.2 | 21.8 b | 13.5 b | 125.2 a | 82.3 b | 61.2 | 67.3 | 86.1 a | 115.1 a | 335.8 b | 346.4 a | 423.5 a |
system | O | 62.6 | 25.6 a,b | 17.5 a | 115.9 a,b | 78.8 a,b | 54.7 | 72.1 | 75.9 a | 100.3 a | 581.1 a | 314.8 a | 368.7 a | |
(FS) | OM | 60.8 | 27.9 a | 16.8 a | 99.2 b | 65.9 b | 58.4 | 59.6 | 53.9 b | 71.4 b | 332.2 b | 176.4 b | 225.7 b | |
F-value | 0.63 | 5.13 ** | 4.17 * | 4.77 * | 3.71 * | 0.89 | 2.90 | 6.66 ** | 10.1 *** | 21.8 *** | 23.1 | 21.3 *** | ||
Nitrogen | 0 | 62.8 | 26.0 | 16.0 | 120.6 | 72.1 | 56.7 | 65.4 | 62.9 | 76.8 a | 396.4 a,b | 258.3 | 272.6 b | |
rate | 60 | 60.9 | 25.5 | 17.8 | 123.3 | 80.3 | 50.7 | 65.0 | 78.6 | 79.8 a | 473.9 a,b | 323.6 | 307.4 a,b | |
(N) | 120 | 60.4 | 25.0 | 14.7 | 108.8 | 78.2 | 61.6 | 61.4 | 70.0 | 111.6 b | 379.5 a,b | 293.8 | 349.4 a,b | |
kg ha−1 | 180 | 59.6 | 23.4 | 15.8 | 113.7 | 80.4 | 61.2 | 65.6 | 83.6 | 106.5ab | 336.3 b | 258.9 | 398.5 a | |
240 | 57.4 | 25.7 | 15.2 | 100.8 | 67.4 | 60.1 | 74.3 | 64.9 | 103.2ab | 495.9 a | 261.2 | 368.5 ab | ||
F-value | 0.20 | 0.34 | 0.75 | 1.37 | 0.97 | 1.06 | 0.98 | 1.16 | 3.17 * | 2.86 * | 1.42 | 3.04 * | ||
2017 | Fertilization | M | 64.8 | 31.2 | 19.5 | 111.6 | 82.2 a | 67.7 a | 69.5 | 61.5 | 70.3 | 484.9 a | 243.3 a | 235.3 a |
system | O | 54.3 | 29.3 | 23.0 | 110.3 | 78.6 a,b | 52.2 a,b | 76.3 | 67.7 | 86.3 | 382.2 a,b | 187.4 b | 210.0 a,b | |
(FS) | OM | 52.1 | 32.3 | 22.6 | 103.7 | 63.9 b | 47.6 b | 69.0 | 71.2 | 93.1 | 319.5 b | 118.5 c | 136.4 b | |
F-value | 1.99 | 0.08 | 0.33 | 0.41 | 3.37 * | 5.0 * | 1.27 | 0.56 | 1.69 | 5.12 ** | 16.2 *** | 5.32 ** | ||
Nitrogen | 0 | 63.0 | 34.7 | 25.7 | 105.4 | 78.6 | 63.8 | 66.8 | 64.6 | 74.6 | 379.7b | 167.1b | 192.9 a,b | |
rate | 60 | 63.1 | 38.2 | 24.6 | 105.3 | 64.5 | 51.1 | 73.8 | 75.4 | 87.4 | 316.4b | 180.2ab | 152.4 b | |
(N) | 120 | 48.8 | 26.2 | 19.2 | 104.2 | 90.0 | 53.5 | 79.7 | 73.1 | 111.3 | 595.2a | 260.3a | 280.5 a | |
kg ha−1 | 180 | 54.8 | 24.2 | 18.3 | 110.4 | 74.6 | 52.1 | 71.4 | 64.8 | 76.9 | 316.8b | 185.1ab | 226.4 a,b | |
240 | 55.7 | 31.5 | 20.5 | 117.3 | 66.6 | 58.8 | 66.3 | 56.2 | 66.0 | 369.6b | 122.6b | 117.1 b | ||
F-value | 0.97 | 0.64 | 0.59 | 0.41 | 2.24 | 0.77 | 1.37 | 0.83 | 2.26 | 5.87 *** | 6.13 *** | 4.89 ** | ||
FS × N | 0.31 | 1.49 | 0.53 | 1.98 | 0.54 | 0.76 | 0.40 | 0.57 | 1.37 | 2.99 ** | 8.42 *** | 6.41 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzebisz, W.; Łukowiak, R.; Kotnis, K. Evaluation of Nitrogen Fertilization Systems Based on the in-Season Variability in the Nitrogenous Growth Factor and Soil Fertility Factors—A Case of Winter Oilseed Rape (Brassica napus L.). Agronomy 2020, 10, 1701. https://doi.org/10.3390/agronomy10111701
Grzebisz W, Łukowiak R, Kotnis K. Evaluation of Nitrogen Fertilization Systems Based on the in-Season Variability in the Nitrogenous Growth Factor and Soil Fertility Factors—A Case of Winter Oilseed Rape (Brassica napus L.). Agronomy. 2020; 10(11):1701. https://doi.org/10.3390/agronomy10111701
Chicago/Turabian StyleGrzebisz, Witold, Remigiusz Łukowiak, and Karol Kotnis. 2020. "Evaluation of Nitrogen Fertilization Systems Based on the in-Season Variability in the Nitrogenous Growth Factor and Soil Fertility Factors—A Case of Winter Oilseed Rape (Brassica napus L.)" Agronomy 10, no. 11: 1701. https://doi.org/10.3390/agronomy10111701
APA StyleGrzebisz, W., Łukowiak, R., & Kotnis, K. (2020). Evaluation of Nitrogen Fertilization Systems Based on the in-Season Variability in the Nitrogenous Growth Factor and Soil Fertility Factors—A Case of Winter Oilseed Rape (Brassica napus L.). Agronomy, 10(11), 1701. https://doi.org/10.3390/agronomy10111701