Impact of Climate Change on Population Dynamics and Herbicide Resistance in Kochia (Bassia scoparia (L.) A. J. Scott)
Abstract
:1. Introduction
2. Abiotic Stress in Kochia
2.1. Temperature
2.2. Carbon Dioxide (CO2)
2.3. Precipitation and Photosynthetic Efficiency
3. Herbicide Resistance in Kochia
Herbicide Resistance, Fitness, and Adaptive Potential
4. Genomics and Genetic Diversity of Kochia
5. Kochia Population Expansion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate Change Threats to Plant Diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Boheemen, L.A.; Atwater, D.Z.; Hodgins, K.A. Rapid and Repeated Local Adaptation to Climate in an Invasive Plant. New Phytol. 2019, 222, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Mccallum, K.P.; Guerin, G.R.; Breed, M.F.; Lowe, A.J. Combining Population Genetics, Species Distribution Modelling and Field Assessments to Understand a Species Vulnerability to Climate Change. Austral Ecol. 2014, 39, 17–28. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; Tehranchian, P.; Gitsopoulos, T.K.; Loka, D.A.; Oosterhuis, D.M.; Gealy, D.R.; Moss, S.R.; Burgos, N.R.; Miller, M.R.; et al. Cultivars to Face Climate Change Effects on Crops and Weeds: A Review. Agron. Sustain. Dev. 2016, 36, 12. [Google Scholar] [CrossRef] [Green Version]
- Kathiresan, R.; Gualbert, G. Impact of Climate Change on the Invasive Traits of Weeds. Weed Biol. Manag. 2016, 16, 59–66. [Google Scholar] [CrossRef]
- Peters, K.; Breitsameter, L.; Gerowitt, B. Impact of Climate Change on Weeds in Agriculture: A Review. Agron. Sustain. Dev. 2014, 34, 707–721. [Google Scholar] [CrossRef] [Green Version]
- Baker, H.G. Characteristics and Modes of Origin of Weeds. In The Genetics of Colonizing Species; Academic Press: Cambridge, UK, 1965; pp. 147–172. [Google Scholar]
- Clements, D.R.; Ditommaso, A. Climate Change and Weed Adaptation: Can Evolution of Invasive Plants Lead to Greater Range Expansion than Forecasted? Weed Res. 2011, 51, 227–240. [Google Scholar] [CrossRef]
- Friesen, L.F.; Beckie, H.J.; Warwick, S.I.; Van Acker, R.C. The Biology of Canadian Weeds. 138. Kochia Scoparia (l.) Schrad. Can. J. Plant Sci. 2009, 89, 141–167. [Google Scholar] [CrossRef]
- Mesbah, A.; Miller, S.D.; Fornstrom, K.J.; Legg, D.E. Kochia (Kochia scoparia) and Green Foxtail (Setaria viridis) Interference in Sugarbeets (Beta vulgaris). Weed Technol. 1994, 8, 754–759. [Google Scholar] [CrossRef]
- Schweizer, E.E. Predicting Sugarbeet Root Losses Based on Kochia Densities. Weed Sci. 1973, 21, 565–567. [Google Scholar] [CrossRef]
- Waite, J.; Thompson, C.R.; Peterson, D.E.; Currie, R.S.; Olson, B.L.S.; Stahlman, P.W.; Al-Khatib, K. Differential Kochia (Kochia scoparia) Populations Response to Glyphosate. Weed Sci. 2013, 61, 193–200. [Google Scholar] [CrossRef]
- Wicks, G.A.; Martin, A.R.; Haack, A.E.; Mahnken, G.W. Control of Triazine-Resistant Kochia (Kochia scoparia) in Sorghum (Sorghum bicolor). Weed Technol. 1994, 8, 748–753. [Google Scholar] [CrossRef]
- Wicks, G.A.; Martin, A.R.; Mahnken, G.W. Control of Triazine-Resistant Kochia (Kochia scoparia) in Conservation Tillage Corn (Zea Mays). Weed Sci. 1993, 41, 225–231. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-Term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1029–1136. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Kucharik, C.J. Contribution of Planting Date Trends to Increased Maize Yields in the Central United States. Agron. J. 2008, 100, 328–336. [Google Scholar] [CrossRef]
- Schwartz-Lazaro, L.M.; Copes, J.T. A Review of the Soil Seedbank from a Weed Scientists Perspective. Agronomy 2019, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Jha, P.; Dille, J.A.; Stahlman, P.W. Emergence Dynamics of Kochia (Kochia scoparia) Populations from the U.S. Great Plains: A Multi-Site-Year Study. Weed Sci. 2018, 66, 25–35. [Google Scholar] [CrossRef]
- Beckie, H.J.; Weiss, R.M.; Leeson, J.Y.; Olfert, O.O. Range Expansion of Kochia (Kochia scoparia) in North America under a Changing Climate. In Topics in Canadian Weed Science; Canadian Weed Science Society: Pinawa, MB, Canada, 2012; Volume 8, pp. 31–44. [Google Scholar] [CrossRef]
- Ball, M.C.; Harris-Pascal, D.; Egerton, J.J.G.; Lenné, T. The Paradoxical Increase in Freezing Injury in a Warming Climate: Frost as a Driver of Change in Cold Climate Vegetation. In Temperature Adaptation in a Changing Climate: Nature at Risk; CABI: Cambridge, UK, 2011; pp. 179–185. [Google Scholar] [CrossRef]
- Toderich, K.; Black, C.; Juylova, E.; Kozan, O.; Tolib, M.; Matsuo, N. Climate Change and Terrestrial Carbon Sequestration in Central Asia; CRC Press: Boca Raton, FL, USA, 2007; pp. 33–63. [Google Scholar]
- Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; et al. High-Resolution Carbon Dioxide Concentration Record 650,000-800,000 Years before Present. Nature 2008, 453, 379–382. [Google Scholar] [CrossRef]
- Barnaby, J.Y.; Ziska, L.H. Plant Responses to Elevated CO2; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 1–10. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The Response of Photosynthesis and Stomatal Conductance to Rising [CO2]: Mechanisms and Environmental Interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Gray, S.B.; Brady, S.M. Plant Developmental Responses to Climate Change. Dev. Biol. 2016, 419, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Forseth, I. The Ecology of Photosynthetic Pathways. Nat. Educ. Knowl. 2010, 3, 4. [Google Scholar]
- Freitag, H.; Kadereit, G. C3 and C4 Leaf Anatomy Types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). Plant Syst. Evol. 2014, 300, 665–687. [Google Scholar] [CrossRef]
- Matzrafi, M.; Brunharo, C.; Tehranchian, P.; Hanson, B.D.; Jasieniuk, M. Increased Temperatures and Elevated CO2 Levels Reduce the Sensitivity of Conyza Canadensis and Chenopodium Album to Glyphosate. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Matzrafi, M.; Seiwert, B.; Reemtsma, T.; Rubin, B.; Peleg, Z. Climate Change Increases the Risk of Herbicide-Resistant Weeds Due to Enhanced Detoxification. Planta 2016, 244, 1217–1227. [Google Scholar] [CrossRef]
- Ziska, L.H.; Teasdale, J.R.; Bunce, J.A. Future Atmospheric Carbon Dioxide May Increase Tolerance to Glyphosate. Weed Sci. 1999, 47, 608–615. [Google Scholar] [CrossRef]
- Fernando, N.; Manalil, S.; Florentine, S.K.; Chauhan, B.S.; Seneweera, S. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2. Front. Plant Sci. 2016, 7, 910. [Google Scholar] [CrossRef] [Green Version]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of Climate Change Factors on Weeds and Herbicide Efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar] [CrossRef]
- Dai, S.; Shulski, M.D.; Hubbard, K.G.; Takle, E.S. A Spatiotemporal Analysis of Midwest US Temperature and Precipitation Trends during the Growing Season from 1980 to 2013. Int. J. Climatol. 2016, 36, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulías, J.; Flexas, J. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef]
- Leakey, A.D.B.; Ferguson, J.N.; Pignon, C.P.; Wu, A.; Jin, Z.; Hammer, G.L.; Lobell, D.B. Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C3 and C4 Crops. Annu. Rev. Plant Biol. 2019, 70, 781–808. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Cerling, T.E. C3 and C4 Photosynthesis. Encycl. Glob. Environ. Chang. 2002, 2, 186–190. [Google Scholar]
- Patterson, D.T. Responses of Soybean (Glycine max) and Three C4 Grass Weeds to CO2 Enrichment During Drought. Weed Sci. 1986, 34, 203–210. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Databas. Available online: http://www.weedscience.org/Home.aspx (accessed on 16 September 2020).
- Kumar, V.; Jha, P.; Jugulam, M.; Yadav, R.; Stahlman, P.W. Herbicide-Resistant Kochia (Bassia scoparia) in North America: A Review. Weed Sci. 2019, 67, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Varanasi, V.K.; Godar, A.S.; Currie, R.S.; Dille, A.J.; Thompson, C.R.; Stahlman, P.W.; Jugulam, M. Field-Evolved Resistance to Four Modes of Action of Herbicides in a Single Kochia (Kochia Scoparia L. Schrad.) Population. Pest Manag. Sci. 2015, 71, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Jugulam, M.; Niehues, K.; Godar, A.S.; Koo, D.H.; Danilova, T.; Friebe, B.; Sehgal, S.; Varanasi, V.K.; Wiersma, A.; Westra, P.; et al. Tandem Amplification of a Chromosomal Segment Harboring 5-Enolpyruvylshikimate-3-Phosphate Synthase Locus Confers Glyphosate Resistance in Kochia Scoparia. Plant Physiol. 2014, 166, 1200–1207. [Google Scholar] [CrossRef] [Green Version]
- Gaines, T.A.; Barker, A.L.; Patterson, E.L.; Westra, P.; Westra, E.P.; Wilson, R.G.; Jha, P.; Kumar, V.; Kniss, A.R. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia Scoparia. PLoS ONE 2016, 11, e0168295. [Google Scholar] [CrossRef] [Green Version]
- Wiersma, A.T.; Gaines, T.A.; Preston, C.; Hamilton, J.P.; Giacomini, D.; Robin Buell, C.; Leach, J.E.; Westra, P. Gene Amplification of 5-Enol-Pyruvylshikimate-3-Phosphate Synthase in Glyphosate-Resistant Kochia Scoparia. Planta 2015, 241, 463–474. [Google Scholar] [CrossRef]
- Patterson, E.L.; Saski, C.A.; Sloan, D.B.; Tranel, P.J.; Westra, P.; Gaines, T.A. The Draft Genome of Kochia Scoparia and the Mechanism of Glyphosate Resistance via Transposon-Mediated EPSPS Tandem Gene Duplication. Genome Biol. Evol. 2019, 11, 2927–2940. [Google Scholar] [CrossRef] [Green Version]
- Patterson, E.L.; Pettinga, D.J.; Ravet, K.; Neve, P.; Gaines, T.A. Glyphosate Resistance and EPSPS Gene Duplication: Convergent Evolution in Multiple Plant Species. J. Hered. 2018, 109, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Foes, M.J.; Liu, L.; Vigue, G.; Stoller, E.W.; Wax, L.M.; Tranel, P.J. A Kochia (Kochia scoparia) Biotype Resistant to Triazine and ALS-Inhibiting Herbicides. Weed Sci. 1999, 47, 20–27. [Google Scholar] [CrossRef]
- Mengistu, L.W.; Christoffers, M.J.; Lym, R.G. A PsbA Mutation in Kochia Scoparia (L) Schrad from Railroad Rights-of-Way with Resistance to Diuron, Tebuthiuron and Metribuzin. Pest Manag. Sci. 2005, 61, 1035–1042. [Google Scholar] [CrossRef]
- Kumar, V.; Jha, P.; Giacomini, D.; Westra, E.P.; Westra, P. Molecular Basis of Evolved Resistance to Glyphosate and Acetolactate Synthase-Inhibitor Herbicides in Kochia (Kochia scoparia) Accessions from Montana. Weed Sci. 2015, 63, 758–769. [Google Scholar] [CrossRef]
- Warwick, S.I.; Xu, R.; Sauder, C.; Beckie, H.J. Acetolactate Synthase Target-Site Mutations and Single Nucleotide Polymorphism Genotyping in ALS-Resistant Kochia (Kochia scoparia). Weed Sci. 2008, 56, 797–806. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Eberlein, C.V.; Thill, D.C. Diverse Mutations in the Acetolactate Synthase Gene Confer Chlorsulfuron Resistance in Kochia (Kochia scoparia) Biotypes. Weed Sci. 1995, 43, 175–178. [Google Scholar] [CrossRef]
- Preston, C.; Belles, D.S.; Westra, P.H.; Nissen, S.J.; Ward, S.M. Inheritance of Resistance to The Auxinic Herbicide Dicamba in Kochia (Kochia scoparia). Weed Sci. 2009, 57, 43–47. [Google Scholar] [CrossRef]
- Westra, E.P.; Nissen, S.J.; Getts, T.J.; Westra, P.; Gaines, T.A. Survey Reveals Frequency of Multiple Resistance to Glyphosate and Dicamba in Kochia (Bassia scoparia). Weed Technol. 2019, 33, 664–672. [Google Scholar] [CrossRef]
- Pettinga, D.J.; Ou, J.; Patterson, E.L.; Jugulam, M.; Westra, P.; Gaines, T.A. Increased Chalcone Synthase (CHS) Expression Is Associated with Dicamba Resistance in Kochia Scoparia. Pest Manag. Sci. 2018, 74, 2306–2315. [Google Scholar] [CrossRef]
- LeClere, S.; Wu, C.; Westra, P.; Sammons, R.D. Cross-Resistance to Dicamba, 2,4-D, and Fluroxypyr in Kochia Scoparia Is Endowed by a Mutation in an AUX/IAA Gene. Proc. Natl. Acad. Sci. USA 2018, 115, E2911–E2920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, F.E. Current Status and Future Prospects in Herbicide Discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Duke, S.O. Why Have No New Herbicide Modes of Action Appeared in Recent Years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Heap, I. Herbicide Resistant Weeds. In Integrated Pest Management: Pesticide Problems; Springer: Dordrecht, The Netherland, 2014; Volume 3, pp. 281–302. [Google Scholar] [CrossRef]
- Busi, R.; Vila-Aiub, M.M.; Beckie, H.J.; Gaines, T.A.; Goggin, D.E.; Kaundun, S.S.; Lacoste, M.; Neve, P.; Nissen, S.J.; Norsworthy, J.K.; et al. Herbicide-Resistant Weeds: From Research and Knowledge to Future Needs. Evol. Appl. 2013, 6, 1218–1221. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M. Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management. Plants 2019, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Jha, P. Differences in Germination, Growth, and Fecundity Characteristics of Dicamba-Fluroxypyr-Resistant and Susceptible Kochia Scoparia. PLoS ONE 2016, 11, e0161533. [Google Scholar] [CrossRef]
- Beckie, H.J.; Blackshaw, R.E.; Leeson, J.Y.; Stahlman, P.W.; Gaines, T.A.; Johnson, E.N. Seedbank Persistence, Germination and Early Growth of Glyphosate-Resistant Kochia Scoparia. Weed Res. 2018, 58, 177–187. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A. Fitness Outcomes Related to Glyphosate Resistance in Kochia (Kochia scoparia): What Life History Stage to Examine? Front. Plant Sci. 2017, 8, 1090. [Google Scholar] [CrossRef]
- Kumar, V.; Jha, P. Effect of Temperature on Germination Characteristics of Glyphosate-Resistant and Glyphosate-Susceptible Kochia (Kochia scoparia). Weed Sci. 2017, 65, 361–370. [Google Scholar] [CrossRef]
- Dyer, W.E.; Chee, P.W.; Fay, P.K. Rapid Germination of Sulfonylurea-Resistant Kochia Scoparia L. Accessions Is Associated with Elevated Seed Levels of Branched Chain Amino Acids. Weed Sci. 1993, 41, 18–22. [Google Scholar] [CrossRef]
- Thompson, C.R.; Thill, D.C.; Shafii, B. Growth and Competitiveness of Sulfonylurea-Resistant and-Susceptible Kochia (Kochia scoparia). Weed Sci. 1994, 42, 172–179. [Google Scholar] [CrossRef]
- Wu, C.; LeClere, S.; Liu, K.; Paciorek, M.; Perez-Jones, A.; Westra, P.; Sammons, R.D. A Dicamba Resistance-Endowing IAA16 Mutation Leads to Significant Vegetative Growth Defects and Impaired Competitiveness in Kochia (Bassia scoparia)†. Pest Manag. Sci. 2020, 1–10. [Google Scholar] [CrossRef]
- Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Borm, T.J.A.; Ohyanagi, H.; Mineta, K.; Michell, C.T.; Saber, N.; et al. The Genome of Chenopodium Quinoa. Nature 2017, 542, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez del Río, Á.; Minoche, A.E.; Zwickl, N.F.; Friedrich, A.; Liedtke, S.; Schmidt, T.; Himmelbauer, H.; Dohm, J.C. Genomes of the Wild Beets Beta Patula and Beta Vulgaris Ssp. Maritima. Plant J. 2019, 99, 1242–1253. [Google Scholar] [CrossRef] [Green Version]
- Gaines, T.A.; Patterson, E.L.; Neve, P. Molecular Mechanisms of Adaptive Evolution Revealed by Global Selection for Glyphosate Resistance. New Phytol. 2019, 223, 1770–1775. [Google Scholar] [CrossRef] [Green Version]
- Kovalchuk, I.; Kovalchuk, O. Genome Stability: From Virus to Human Application; Academic Press: Cambridge, UK, 2016. [Google Scholar]
- Franks, S.J.; Hoffmann, A.A. Genetics of Climate Change Adaptation. Annu. Rev. Genet. 2012, 46, 185–208. [Google Scholar] [CrossRef]
- De Maagd, R.A.; Van De Wiel, C.; Schouten, H.J. The Plasticity of Plant Genomes Causes and Consequences: A Survey of Data on Structural Genome Variation in Plants; Wageningen Plant Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Lynch, M. Evolution of the Mutation Rate. Trends Genet. 2010, 26, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Migicovsky, Z.; Kovalchuk, I. Transgenerational Inheritance of Epigenetic Response to Cold in Arabidopsis Thaliana. Biocatal. Agric. Biotechnol. 2015, 4, 1–10. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Yao, Y.; Kovalchuk, I. Transgenerational Phenotypic and Epigenetic Changes in Response to Heat Stress in Arabidopsis Thaliana. Plant Signal. Behav. 2014, 9, e27971. [Google Scholar] [CrossRef] [Green Version]
- Reza Rahavi, S.M.; Kovalchuk, I. Transgenerational Changes in Arabidopsis Thaliana in Response to UV-C, Heat and Cold. Biocatal. Agric. Biotechnol. 2013, 2, 226–233. [Google Scholar] [CrossRef]
- Debolt, S. Copy Number Variation Shapes Genome Diversity in Arabidopsis over Immediate Family Generational Scales. Genome Biol. Evol. 2010, 2, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, L.W.; Messersmith, C.G. Genetic Diversity of Kochia. Weed Sci. 2002, 50, 498–503. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Eberlein, C.V.; Souza, E.J. Inbreeding Coefficients of Field Populations of Kochia Scoparia Using Chlorsulfuron Resistance as a Phenotypic Marker. Weed Sci. 1998, 46, 521–525. [Google Scholar] [CrossRef]
- Stallings, G.P.; Thill, D.C.; Mallory-Smith, C.A.; Shafii, B. Pollen-Mediated Gene Flow of Sulfonylurea-Resistant Kochia (Kochia scoparia). Weed Sci. 1995, 43, 95–102. [Google Scholar] [CrossRef]
- Baker, D.V.; Beck, K.G.; Bienkiewicz, B.J.; Bjostad, L.B. Forces Necessary to Initiate Dispersal for Three Tumbleweeds. Invasive Plant Sci. Manag. 2008, 1, 59–65. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Huenneke, L.F. Disturbance, Diversity, and Invasion: Implications for Conservation. Conserv. Biol. 1992, 6, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Amare, T. Review on Impact of Climate Change on Weed and Their Management. Am. J. Biol. Environ. Stat. 2016, 2, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, K.; Matloob, A.; Aslam, F.; Florentine, S.K.; Chauhan, B.S. Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for Future Weed Management. Front. Plant Sci. 2017, 8, 95. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, R.K.; Singh, M.K. Impact of Climate and Carbon Dioxide Change on Weeds and Their Management-A Review. Indian J. Weed Sci. 2011, 43, 1–11. [Google Scholar]
- Sheley, R.L.; Svejcar, T.J.; Maxwell, B.D. A Theoretical Framework for Developing Successional Weed Management Strategies on Rangeland. Weed Technol. 1996, 10, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Zinsmeister, J.; Leprince, O.; Buitink, J. Molecular and Environmental Factors Regulating Seed Longevity. Biochem. J. 2020, 447, 305–323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Burns, E.; Fleming, M.; Patterson, E. Impact of Climate Change on Population Dynamics and Herbicide Resistance in Kochia (Bassia scoparia (L.) A. J. Scott). Agronomy 2020, 10, 1700. https://doi.org/10.3390/agronomy10111700
Chen J, Burns E, Fleming M, Patterson E. Impact of Climate Change on Population Dynamics and Herbicide Resistance in Kochia (Bassia scoparia (L.) A. J. Scott). Agronomy. 2020; 10(11):1700. https://doi.org/10.3390/agronomy10111700
Chicago/Turabian StyleChen, Jinyi, Erin Burns, Margaret Fleming, and Eric Patterson. 2020. "Impact of Climate Change on Population Dynamics and Herbicide Resistance in Kochia (Bassia scoparia (L.) A. J. Scott)" Agronomy 10, no. 11: 1700. https://doi.org/10.3390/agronomy10111700
APA StyleChen, J., Burns, E., Fleming, M., & Patterson, E. (2020). Impact of Climate Change on Population Dynamics and Herbicide Resistance in Kochia (Bassia scoparia (L.) A. J. Scott). Agronomy, 10(11), 1700. https://doi.org/10.3390/agronomy10111700