An Analysis of Climate Impacts on Herbicide, Insecticide, and Fungicide Expenditures
Abstract
:1. Introduction
2. Methods and Data
3. Results
3.1. Effects on Corn Pesticides
3.2. Potato Pesticide Expenditures
3.3. Soybean Pesticide Effects
3.4. Spring and Winter Wheat Expenditures
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Maanen, A.; Xu, X.-M. Modelling plant disease epidemics. Eur. J. Plant Pathol. 2003, 109, 669–682. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Williams, R.J.; Gooddy, D.C.; Cape, J.N.; Guha, P.M. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—A UK perspective. Sci. Total Environ. 2006, 369, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 2019, 75, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladányi, M.; Horváth, L. A review of the potential climate change impact on insect populations- General and agricultural aspects. Appl. Ecol. Environ. Res. 2010, 8, 143–152. [Google Scholar] [CrossRef]
- Poggi, S.; Le Cointe, R.; Riou, J.B.; Larroudé, P.; Thibord, J.B.; Plantegenest, M. Relative influence of climate and agroenvironmental factors on wireworm damage risk in maize crops. J. Pest Sci. 2018, 91, 585–599. [Google Scholar] [CrossRef]
- Ziska, L.H.; Blumenthal, D.M.; Runion, G.B.; Hunt, E.R.; Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Chang. 2011, 105, 13–42. [Google Scholar] [CrossRef]
- Ziska, L.H.; McConnell, L.L. Climate change, carbon dioxide, and pest biology: Monitor, mitigate, manage. J. Agric. Food Chem. 2016, 64, 6–12. [Google Scholar] [CrossRef]
- Chen, C.-C.; McCarl, B.A. An investigation of the relationship between pesticide usage and climate change. Clim. Chang. 2001, 50, 475–487. [Google Scholar] [CrossRef]
- Reilly, J.; Tubiello, F.; McCarl, B.A.; Abler, D.; Darwin, R.; Fuglie, K.; Hollinger, S.; Izaurralde, C.; Jagtap, S.; Jones, J.; et al. US agriculture and climate change: New results. Clim. Chang. 2003, 57, 43–67. [Google Scholar] [CrossRef]
- Shakhramanyan, N.G.; Schneider, U.A.; McCarl, B.A. Pesticide and greenhouse gas externalities from US agriculture—The impact of their internalization and climate change. Clim. Chang. Econ. 2013, 4, 1350008. [Google Scholar] [CrossRef]
- Lichtenstein, E.P.; Schulz, K.R. Persistence of some chlorinated hydrocarbon insecticides as influenced by soil types, rate of application and temperature. J. Econ. Entomol. 1959, 52, 124–131. [Google Scholar] [CrossRef]
- Walker, A.; Eagle, D.J. Prediction of herbicide residues in soil for advisory purposes. Asp. Appl. Biol. 1983, 4, 503–509. [Google Scholar]
- Nokes, S.E.; Young, J.H. Predicting the persistence and efficacy of chlorothalonil on peanut leafspot. Trans. ASAE 1992, 35, 1699–1708. [Google Scholar] [CrossRef]
- Garcia-Cazorla, J.; Xirau-Vayreda, M. Persistence of dicarboximidic fungicide residues in grapes, must, and wine. Am. J. Enol. Vitic. 1994, 45, 338–340. [Google Scholar]
- Ahmad, R.; James, T.K.; Rahman, A.; Holland, P.T. Dissipation of the herbicide clopyralid in an allophanic soil: Laboratory and field studies. J. Environ. Sci. Health 2003, 38, 683–695. [Google Scholar] [CrossRef]
- Bailey, S.W. Climate change and decreasing herbicide persistence. Pest Manag. Sci. Former. Pestic. Sci. 2004, 60, 158–162. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Garau, V.L.; Melis, M.; Pirisi, F.M.; Cabitza, F.; Pala, M. The effect of simulated rain on folpet and mancozeb residues on grapes and on vine leaves. J. Environ. Sci. Health Part B 2001, 36, 609–618. [Google Scholar] [CrossRef]
- McDowell, L.L.; Willis, G.H.; Southwick, L.M.; Smith, S. Methyl parathion and EPN washoff from cotton plants by simulated rainfall. Environ. Sci. Technol. 1984, 18, 423–427. [Google Scholar] [CrossRef]
- Pick, F.E.; Van Dyk, L.P.; De Beer, P.R. The effect of simulated rain on deposits of some cotton pesticides. Pestic. Sci. 1984, 15, 616–623. [Google Scholar] [CrossRef]
- McDowell, L.L.; Willis, G.H.; Southwick, L.M.; Smith, S., Jr. Fenvalerate wash-off from cotton plants by rainfall. Pestic. Sci. 1987, 21, 83–92. [Google Scholar] [CrossRef]
- Willis, G.H.; Smith, S.; McDowell, L.L.; Southwick, L.M. Carbaryl washoff from soybean plants. Arch. Environ. Contam. Toxicol. 1996, 31, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.H.; Parry, M.L.; Carter, T.R. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 1991, 57, 221–240. [Google Scholar] [CrossRef]
- Cannon, R.J.C. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob. Chang. Biol. 1998, 4, 785–796. [Google Scholar] [CrossRef]
- Hardwick, N.V. Disease forecasting. In The Epidemiology of Plant Diseases; Cooke, B., Jones, D., Kaye, B., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 239–267. [Google Scholar]
- Wolfe, D.W.; Ziska, L.; Petzoldt, C.; Seaman, A.; Chase, L.; Hayhoe, K. Projected change in climate thresholds in the Northeastern US: Implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 555–575. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.; Cobb, A.H.; Sanders, G.E. Possible herbicide: Ozone pollution interactions in United Kingdom crops. In Proceedings of the Brighton Crop Protection Conference, Weeds, Brighton, UK, 22–25 November 1993. [Google Scholar]
- Juroszek, P.; Von Tiedemann, A. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol. 2011, 60, 100–112. [Google Scholar] [CrossRef]
- Juroszek, P.; Von Tiedemann, A. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challenges, research gaps, key studies and concepts. J. Agric. Sci. 2013, 151, 163–188. [Google Scholar] [CrossRef]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D. Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef] [Green Version]
- Brasier, C.M. Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann. Des Sci. For. 1996, 53, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Coakley, S.M.; Scherm, H.; Chakraborty, S. Climate change and plant disease management. Annu. Rev. Phytopathol. 1999, 37, 399–426. [Google Scholar] [CrossRef]
- Shakhramanyan, N.G.; Schneider, U.A.; McCarl, B.A. US agricultural sector analysis on pesticide externalities–The impact of climate change and a Pigovian tax. Clim. Chang. 2013, 117, 711–723. [Google Scholar] [CrossRef]
- Just, R.E.; Pope, R.D. Production function estimation and related risk considerations. Am. J. Agric. Econ. 1979, 61, 276–284. [Google Scholar] [CrossRef]
- McCarl, B.A.; Rettig, R.B. Influence of hatchery smolt releases on adult salmon production and its variability. Can. J. Fish. Aquat. Sci. 1983, 40, 1880–1886. [Google Scholar] [CrossRef]
- Chen, C.C.; McCarl, B.A.; Schimmelpfennig, D.E. Yield variability as influenced by climate: A statistical investigation. Clim. Chang. 2004, 66, 239–261. [Google Scholar] [CrossRef] [Green Version]
- Blanc, E.; Schlenker, W. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 2017, 11, 258–279. [Google Scholar] [CrossRef]
- Buccola, S.T.; McCarl, B.A. Small-sample evaluation of mean-variance production function estimators. Am. J. Agric. Econ. 1986, 68, 732–738. [Google Scholar] [CrossRef]
- USDA/NASS QuickStats Ad-Hoc Query Tool. Available online: https://quickstats.nass.usda.gov/ (accessed on 15 June 2018).
- NOAA Data Access. Available online: https://www.ncdc.noaa.gov/data-access (accessed on 27 June 2018).
- Wollenweber, B.; Porter, J.R.; Schellberg, J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci. 2003, 189, 142–150. [Google Scholar] [CrossRef]
- Lasram, S.; Oueslati, S.; Valero, A.; Marin, S.; Ghorbel, A.; Sanchis, V. Water activity and temperature effects on fungal growth and ochratoxin A production by ochratoxigenic Aspergillus carbonarius isolated from Tunisian grapes. J. Food Sci. 2010, 75, M89–M97. [Google Scholar] [CrossRef]
- Mayo, Z.B. Influences of rainfall and sprinkler irrigation on the residual activity of insecticides applied to corn for control of adult western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 1984, 77, 190–193. [Google Scholar] [CrossRef]
Climate Variable | Description |
---|---|
DT90 | The number of days with temperatures at or above 90 °F (about 32.2 °C) during a cropping period |
DT32 | The number of days where the minimum temperature is at or below 32 °F (0 °C) during a cropping period |
DP10 | The number of days with at least one inch (2.54 cm) of precipitation during a cropping period |
PRCP | Total precipitation over a cropping period (in inches) |
TAVG | Average Temperature during the cropping period (in Fahrenheit). |
Crop | Pesticide Subgroup | DT90 | DT32 | DP10 | PRCP | TAVG |
---|---|---|---|---|---|---|
Corn | Herbicides | Linear | Quadratic | Quadratic | Quadratic | Linear |
Corn | Insecticides | Quadratic | Linear | Linear | Linear | Linear |
Potatoes | Herbicides | Linear | Quadratic | Linear | Quadratic | Quadratic |
Potatoes | Insecticides | Linear | Quadratic | Quadratic | Linear | Linear |
Potatoes | Fungicides | Quadratic | Linear | Quadratic | Linear | Linear |
Soybeans | Herbicides | Linear | Quadratic | Linear | Linear | Linear |
Soybeans | Insecticides | Quadratic | Quadratic | Linear | Linear | Quadratic |
Soybeans | Fungicides | Linear | Quadratic | Linear | Linear | Quadratic |
Spring Wheat | Herbicides | Linear | Quadratic | Linear | Quadratic | Linear |
Winter Wheat | Herbicides | Linear | Quadratic | Quadratic | Quadratic | Linear |
Winter Wheat | Insecticides | Quadratic | Linear | Quadratic | Quadratic | Quadratic |
Winter Wheat | Fungicides | Quadratic | Linear | Linear | Quadratic | Quadratic |
Crop and Pesticide | DT90 | DT32 | DP10 | PRCP | TAVG |
---|---|---|---|---|---|
Corn Herbicide | − | +*Q− | +*Q− | −Q+ | + |
Corn Insecticide | −Q+* | − | + | − | + |
Potatoes Herbicide | +* | +Q− | +* | −Q+ | +Q− |
Potatoes Insecticide | +* | +*Q− | +Q− | − | −* |
Potatoes Fungicide | +Q− | − | +Q− | + | − |
Soybeans Herbicide | − | +Q− | − | + | + |
Soybeans Insecticide | +Q−* | +*Q−* | − | − | −Q+* |
Soybeans Fungicide | + | +*Q−* | −* | + | −Q+ |
Spring Wheat Herbicide | + | −Q+ | − | +Q+ | + |
Winter Wheat Herbicide | +* | +*Q−* | −Q+ | +Q−* | −* |
Winter Wheat Insecticide | −*Q+ | + | −*Q+* | +*Q−* | −Q+ |
Winter Wheat Fungicide | −Q+ | − | − | +*Q−* | +Q− |
Crop and Pesticides | DT90 | DT32 | DP10 | PRCP | TAVG |
---|---|---|---|---|---|
Corn Herbicide | − | − | + | − | + |
Corn Insecticide | − | − | + | − | + |
Potatoes Herbicide | − | − | − | + | + |
Potatoes Insecticide | + | + | +* | −* | + |
Potatoes Fungicide | −* | + | − | + | + |
Soybeans Herbicide | + | + | + | + | − |
Soybeans Insecticide | − | − | + | − | + |
Soybeans Fungicide | − | − | + | − | − |
Spring Wheat Herbicide | + | − | − | + | + |
Winter Wheat Herbicide | +* | +* | +* | −* | −* |
Winter Wheat Insecticide | − | − | + | + | − |
Winter Wheat Fungicide | − | + | − | + | +* |
Corn Herbicide | Corn Insecticide | Potatoes Herbicide | Potatoes Insecticide | Potatoes Fungicide | |
---|---|---|---|---|---|
Adj. R2 | 0.625 | 0.424 | 0.465 | 0.397 | 0.524 |
DT90 | −2.793 (2.328) | −0.614 (0.595) | 14.65 ** (5.555) | 63.00 *** (16.02) | 57.06 (34.15) |
DT902 | 0.0128 *** (0.00431) | −1.495 (1.028) | |||
DT32 | 17.87 ** (6.653) | −0.165 (1.903) | 5.272 (15.89) | 46.42 * (23.27) | −7.481 (9.270) |
DT322 | −0.265 (0.155) | −0.0442 (0.162) | −0.383 (0.260) | ||
DP10 | 70.30 * (37.03) | 1.874 (4.025) | 7.924 * (3.747) | 65.21 (46.97) | 83.38 (58.49) |
DP102 | −0.780 (0.611) | −0.398 (0.532) | −0.789 (0.640) | ||
PRCP | −63.99 (72.50) | −1.218 (3.913) | −19.61 (18.89) | −18.58 (23.67) | 1.762 (22.39) |
PRCP2 | 1.209 (1.644) | 0.176 (0.383) | |||
TAVG | 5.204 (7.248) | 2.097 (2.371) | 28.52 (22.33) | −47.86 ** (21.65) | −41.10 (59.99) |
TAVG2 | −0.396 (0.281) |
Soybeans Herbicide | Soybeans Insecticide | Soybeans Fungicide | Spring Wheat Herbicide | |
---|---|---|---|---|
Adj. R2 | 0.708 | 0.351 | 0.566 | 0.293 |
DT90 | −2.559 (3.266) | 0.912 (1.707) | 0.174 (0.305) | 3.340 (1.876) |
DT902 | −0.0274 ** (0.0116) | |||
DT32 | 5.870 (8.211) | 6.717 * (3.264) | 3.430 ** (1.592) | −7.407 (27.55) |
DT322 | −0.0377 (0.115) | −0.0580 ** (0.0241) | −0.0395 ** (0.0176) | 0.0134 (0.224) |
DP10 | −3.649 (5.930) | −0.796 (1.327) | −1.842 * (0.891) | −19.34 (12.75) |
DP102 | ||||
PRCP | 5.273 (6.048) | −1.687 (1.605) | 1.215 (1.420) | 10.84 (41.57) |
PRCP2 | 1.003 (0.880) | |||
TAVG | 6.511 (6.339) | −94.42 (59.33) | −2.201 (3.649) | 21.00 (15.90) |
TAVG2 | 0.929 * (0.493) | 0.0417 (0.0495) |
Winter Wheat Herbicide | Winter Wheat Insecticide | Winter Wheat Fungicide | |
---|---|---|---|
Adj. R2 | 0.655 | 0.612 | 0.737 |
DT90 | 25.61 *** (4.144) | −10.55 *** (3.052) | −0.772 (5.287) |
DT902 | 0.317 (0.320) | 0.0282 (0.245) | |
DT32 | 53.45 *** (14.42) | 0.444 (0.348) | −0.00917 (0.133) |
DT322 | −0.538 ** (0.226) | ||
DP10 | −168.2 (133.8) | −2.954 *** (0.762) | −0.420 (0.305) |
DP102 | 3.900 (2.411) | 0.0193 *** (0.00565) | |
PRCP | 206.3 (137.4) | 4.032 ** (1.616) | 3.174 *** (0.780) |
PRCP2 | −6.750 * (3.372) | −0.0489 ** (0.0185) | −0.0309 *** (0.0108) |
TAVG | −17.59 *** (5.022) | −3.300 (4.439) | 0.473 (2.321) |
TAVG2 | 0.0741 (0.0761) | −0.0202 (0.0458) |
Corn Herbicide | Corn Insecticide | Potatoes Herbicide | Potatoes Insecticide | Potatoes Fungicide | |
---|---|---|---|---|---|
Adj. R2 | 0.249 | 0.112 | 0.031 | 0.184 | 0.026 |
Ln(DT90) | −0.0435 (0.922) | −0.147 (1.108) | −0.439 (0.276) | 0.209 (0.121) | −0.456 * (0.209) |
Ln(DT32) | −0.984 (3.496) | −0.0944 (0.460) | −0.414 (0.489) | 0.663 (0.743) | 0.755 (1.214) |
Ln(DP10) | 1.742 (4.295) | 0.891 (1.048) | −0.765 (2.370) | 3.585 *** (0.881) | −0.321 (2.106) |
Ln(PRCP) | −1.785 (1.673) | −0.645 (1.449) | 0.00134 (1.556) | −2.683 *** (0.677) | 0.708 (1.097) |
Ln(TAVG) | 0.745 (3.966) | 1.166 (5.971) | 1.050 (1.076) | 2.737 (5.504) | 9.073 (9.366) |
Soybeans Herbicide | Soybeans Insecticide | Soybeans Fungicide | Spring Wheat Herbicide | |
---|---|---|---|---|
Adj. R2 | 0.106 | Approx. 0 | 0.007 | Approx. 0 |
Ln(DT90) | 250.0 (205.3) | −0.679 (0.600) | −0.283 (1.688) | 0.0549 (0.335) |
Ln(DT32) | 255.4 (209.3) | −0.0154 (0.247) | −0.0280 (1.559) | −2.091 (3.215) |
Ln(DP10) | 1942 (1589) | 2.574 (2.290) | 4.105 (4.618) | −5.168 (3.995) |
Ln(PRCP) | 76.23 (64.66) | −1.920 (1.425) | −4.133 (4.380) | 4.642 (3.666) |
Ln(TAVG) | −3645 (2987) | 15.61 (9.184) | −4.290 (7.438) | 4.979 (4.987) |
Winter Wheat Herbicide | Winter Wheat Insecticide | Winter Wheat Fungicide | |
---|---|---|---|
Adj. R2 | 0.419 | Approx. 0 | Approx. 0 |
Ln(DT90) | 0.0444 * (0.0230) | −0.0216 (0.0962) | −0.108 (0.0777) |
Ln(DT32) | 11.65 *** (3.464) | −0.404 (1.142) | 0.983 (0.916) |
Ln(DP10) | 8.163 *** (2.138) | 0.305 (2.552) | −1.966 (2.454) |
Ln(PRCP) | −7.750 *** (2.118) | 0.323 (2.508) | 0.287 (1.698) |
Ln(TAVG) | −22.2 *** (6.457) | −0.771 (1.553) | 2.277 * (1.261) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhodes, L.A.; McCarl, B.A. An Analysis of Climate Impacts on Herbicide, Insecticide, and Fungicide Expenditures. Agronomy 2020, 10, 745. https://doi.org/10.3390/agronomy10050745
Rhodes LA, McCarl BA. An Analysis of Climate Impacts on Herbicide, Insecticide, and Fungicide Expenditures. Agronomy. 2020; 10(5):745. https://doi.org/10.3390/agronomy10050745
Chicago/Turabian StyleRhodes, Lauren A., and Bruce A. McCarl. 2020. "An Analysis of Climate Impacts on Herbicide, Insecticide, and Fungicide Expenditures" Agronomy 10, no. 5: 745. https://doi.org/10.3390/agronomy10050745
APA StyleRhodes, L. A., & McCarl, B. A. (2020). An Analysis of Climate Impacts on Herbicide, Insecticide, and Fungicide Expenditures. Agronomy, 10(5), 745. https://doi.org/10.3390/agronomy10050745