Particulate Matter Accumulation on Apples and Plums: Roads Do Not Represent the Greatest Threat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Locations
2.1.1. Apple Orchards
2.1.2. Plum Orchards
2.2. Plant Material
2.3. Quantitative Assessment of PM and Fruit Wax Content
2.4. Statistics
3. Results
3.1. Effect of Orchard Location, Sampling Date and Distance from the Road on PM Accumulation and Wax Content on Apples
3.2. Effect of Orchard Location on PM Accumulation and Wax Content on Plums
3.3. Comparison of PM Accumulation by Apples and Plums
4. Discussion
4.1. PM Accumulation by Apples and Plums Is Not Affected by Road Type and Distance from the Road
4.2. PM Quantity on Fruits Increases in Successive Months
4.3. Plums Accumulate More PM than Apples
4.4. Washing Fruits Removes Substantial Amount of Accumulated PM
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weagle, C.L.; Snider, G.; Li, C.; van Donkelaar, A.; Philip, S.; Bissonnette, P.; Burke, J.; Jackson, J.; Latimer, R.; Stone, E.; et al. Global sources of fine particulate matter: Interpretation of PM2.5 chemical composition observed by SPARTAN using a global chemical transport model. Environ. Sci. Technol. 2018, 52, 11670–11681. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- Li, Y.J.; Sun, Y.; Zhang, Q.; Li, X.; Li, M.; Zhou, Z.; Chan, C.K. Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmos. Environ. 2017, 158, 270–304. [Google Scholar] [CrossRef]
- Luo, X.; Bing, H.; Luo, Z.; Wang, Y.; Jin, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019, 255, 113138. [Google Scholar] [CrossRef] [PubMed]
- Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumié, M.; Courcot, D.; Garçon, G. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: Sources, analysis and toxicity. Environ. Chem. Lett. 2018, 16, 439–475. [Google Scholar] [CrossRef]
- Coscollà, C.; Hart, E.; Pastor, A.; Yusà, V. LC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain. Atmos. Environ. 2013, 77, 394–403. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban. For. Urban. Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Coutts, C.; Hahn, M. Green infrastructure, ecosystem services, and human health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Bi, C.; Zhang, J.; Jin, X.; Chen, Z. Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk. Environ. Pollut. 2018, 241, 750–758. [Google Scholar] [CrossRef]
- Paris, A.; Ledauphin, J.; Poinot, P.; Gaillard, J.-L. Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environ. Pollut. 2018, 234, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.; Ferrini, F.; Fini, A. Reprint of: Growing healthy food under heavy metal pollution load: Overview and major challenges of tree based edible landscapes. Urban For. Urban Green. 2019, 45, 126292. [Google Scholar] [CrossRef]
- Noh, K.; The Thi, L.; Jeong, B.R. Particulate matter in the cultivation area may contaminate leafy vegetables with heavy metals above safe levels in Korea. Environ. Sci. Pollut. R. 2019, 26, 25762–25774. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Paris, A.; Gaillard, J.-L.; Ledauphin, J. Impact of biomass combustion on occurrence and distribution of aromatic hydrocarbons in apples. Environ. Sci. Pollut. Res. 2020, 27, 3165–3172. [Google Scholar] [CrossRef] [PubMed]
- De Temmerman, L.; Ruttens, A.; Waegeneers, N. Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac. Environ. Pollut. 2012, 166, 187–195. [Google Scholar] [CrossRef]
- Schreck, E.; Foucault, Y.; Sarret, G.; Sobanska, S.; Cécillon, L.; Castrec-Rouelle, M.; Uzu, G.; Dumat, C. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci. Total Environ. 2012, 427–428, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2016, 325, 36–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, J.; Cheng, S. Heavy metals in apple orchard soils and fruits and their health risks in Liaodong Peninsula, Northeast China. Environ. Monit. Assess. 2015, 187, 4178. [Google Scholar] [CrossRef]
- Xiong, T.-T.; Leveque, T.; Austruy, A.; Goix, S.; Schreck, E.; Dappe, V.; Sobanska, S.; Foucault, Y.; Dumat, C. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ. Geochem. Health 2014, 36, 897–909. [Google Scholar] [CrossRef]
- Weyens, N.; Thijs, S.; Popek, R.; Witters, N.; Przybysz, A.; Espenshade, J.; Gawronska, H.; Vangronsveld, J.; Gawronski, S.W. The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int. J. Mol. Sci. 2015, 16, 25576–25604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grembecka, M.; Szefer, P. Comparative assessment of essential and heavy metals in fruits from different geographical origins. Environ. Monit. Assess. 2013, 185, 9139–9160. [Google Scholar] [CrossRef] [Green Version]
- Martorell, I.; Perelló, G.; Martí-Cid, R.; Castell, V.; Llobet, J.M.; Domingo, J.L. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend. Environ. Int. 2010, 36, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Duan, X.; Tao, S.; Qiu, W.; Liu, D.; Wang, Y.; Wei, S.; Wang, B.; Jiang, Q.; Lu, B.; et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Environ. Pollut. 2013, 173, 150–156. [Google Scholar] [CrossRef]
- Žalud, P.; Száková, J.; Sysalová, J.; Tlustoš, P. Factors influencing uptake of contaminated particulate matter in leafy vegetables. Cent. Eur. J. Biol. 2012, 7, 519–530. [Google Scholar] [CrossRef]
- Rodríguez-Acuña, R.; Pérez-Camino, M.D.C.; Cert, A.; Moreda, W. Sources of contamination by polycyclic aromatic hydrocarbons in Spanish virgin olive oils. Food Addit. Contam. 2008, 25, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Shao, L.; Zheng, R.; Peng, J.; Wang, W.; Guo, Q.; Wang, Y.; Qin, Y.; Shuai, S.; Hu, M. Individual particles emitted from gasoline engines: Impact of engine types, engine loads and fuel components. J. Clean. Prod. 2017, 149, 461–471. [Google Scholar] [CrossRef]
- Xia, L.; Gao, Y. Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in northeast New Jersey in the U.S. east coast. Atmos. Pollut. Res. 2011, 2, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Säumel, I.; Kotsyuk, I.; Hölscher, M.; Lenkereit, C.; Weber, F.; Kowarik, I. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ. Pollut. 2012, 165, 124–132. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Bujdos, M. The contribution of road traffic to particulate matter and metals in air pollution in the vicinity of an urban road. Transp. Res. D 2017, 50, 397–408. [Google Scholar] [CrossRef]
- Fang, X.; Wu, L.; Zhang, Q.; Zhang, J.; Wang, A.; Zhang, Y.; Zhao, J.; Mao, H. Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement. Transp. Res. D 2019, 67, 674–684. [Google Scholar] [CrossRef]
- Qian, Y.; Li, Z.; Yu, L.; Wang, X.; Lu, X. Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines. Appl. Energy 2019, 238, 1269–1298. [Google Scholar] [CrossRef]
- Yan, F.; Winijkul, E.; Bond, T.C.; Streets, D.G. Global emission projections of particulate matter (PM): II. Uncertainty analyses of on-road vehicle exhaust emissions. Atmos. Environ 2014, 87, 189–199. [Google Scholar] [CrossRef]
- Fang, B.; Zhu, X. High content of five heavy metals in four fruits: Evidence from a case study of Pujiang County, Zhejiang Province, China. Food Control. 2014, 39, 62–67. [Google Scholar] [CrossRef]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytorem. 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Samsøe-Petersen, L.; Larsen, E.H.; Larsen, P.B.; Bruun, P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ. Sci. Technol. 2002, 36, 3057–3063. [Google Scholar] [CrossRef]
- Cheng, J.; Ding, C.; Li, X.; Zhang, T.; Wang, X. Heavy metals in navel orange orchards of Xinfeng County and their transfer from soils to navel oranges. Ecotoxicol. Environ. Saf. 2015, 122, 153–158. [Google Scholar] [CrossRef]
- He, C.; Qiu, K.; Pott, R. Reduction of traffic-related particulate matter by roadside plants: Effect of traffic pressure and sampling height. Int. J. Phytorem. 2019, 22, 184–200. [Google Scholar] [CrossRef] [PubMed]
- Amato-Lourenco, L.F.; Ranieri, G.R.; de Oliveira Souza, V.C.; Barbosa Junior, F.; Nascimento Saldiva, P.H.; Mauad, T. Edible weeds: Are urban environments fit for foraging? Sci. Total Environ. 2020, 698, 133967. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Popek, R.; Gawrońska, H.; Sæbø, A.; Wrochna, M.; Gawroński, S.W. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes—A 3 year study. Int. J. Phytorem. 2013, 15, 245–256. [Google Scholar] [CrossRef]
- Bonanno, G. Ricinus communis as an element biomonitor of atmospheric pollution in urban areas. Water Air Soil Pollut. 2014, 225, 1852. [Google Scholar] [CrossRef]
- Amato, F.; Cassee, F.R.; van der Gon, H.A.C.D.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Gillies, J.A.; Etyemezian, V.; Kuhns, H.; Nikolic, D.; Gillette, D.A. Effect of vehicle characteristics on unpaved road dust emissions. Atmos. Environ. 2005, 39, 2341–2347. [Google Scholar] [CrossRef]
- Dallmann, T.R.; Onasch, T.B.; Kirchstetter, T.W.; Worton, D.R.; Fortner, E.C.; Herndon, S.C.; Wood, E.C.; Franklin, J.P.; Worsnop, D.R.; Goldstein, A.H.; et al. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmos. Chem. Phys. 2014, 14, 7585–7599. [Google Scholar] [CrossRef] [Green Version]
- Reşitoğlu, I.A.; Altinişik, K.; Keskin, A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn. Environ. Policy 2015, 17, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Viard, B.; Pihan, F.; Promeyrat, S.; Pihan, J.-C. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: Bioaccumulation in soil, Graminaceae and land snails. Chemosphere 2004, 55, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hinds, W.C.; Kim, S.; Sioutas, C. Concentration and size distribution of ultrafine particles near a major highway. Air Waste Manage. Assoc. 2002, 52, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Bakirdere, S.; Yaman, M. Determination of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey. Environ. Monit. Assess. 2008, 136, 401–410. [Google Scholar] [CrossRef]
- Mori, J.; Hanslin, H.M.; Burchi, G.; Sæbø, A. Particulate matter and element accumulation on coniferous trees at different distance from a highway. Urban For. Urban Green. 2015, 14, 170–177. [Google Scholar] [CrossRef]
- Popek, R.; Gawrońska, H.; Gawroński, S.W. The level of particulate matter on foliage depends on the distance from the source of emission. Int. J. Phytorem. 2015, 17, 1262–1268. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Von Hoffen, L.P.; Säumel, I. Orchards for edible cities: Cadmium and lead content in nuts, berries, pome and stone fruits harvested within the inner city neighbourhoods in Berlin, Germany. Ecotoxicol. Environ. Saf. 2014, 101, 233–239. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef]
- Alves, C.A.; Gomes, J.; Nunes, T.; Duarte, M.; Calvo, A.; Custódio, D.; Pio, C.; Karanasiou, A.; Querol, X. Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel. Atmos. Res. 2015, 153, 134–144. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zhang, L.; Zou, R.; Zhang, Z. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci. Rep. 2017, 7, 3206. [Google Scholar] [CrossRef]
- Xu, X.; Yu, X.; Bao, L.; Desai, A.R. Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes. Environ. Pollut. 2019, 255, 113234. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, N.; Cetin, H.; Kankaya, A.; Karakus, A. Determination of the active lenticel numbers in some types and varieties fruit. Asian J. Chem. 2008, 20, 3811–3816. [Google Scholar]
- Kritzinger, I.; Lötze, E. Quantification of lenticels in Japanese plum cultivars and their effect on total fruit peel permeance. Sci. Hortic. 2019, 254, 35–39. [Google Scholar] [CrossRef]
- Khanal, B.P.; Si, Y.; Knoche, M. Lenticels and apple fruit transpiration. Postharvest Biol. Technol. 2020, 167, 111221. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Chen, L.; McNulty, S. An investigation on the leaf accumulation-removal efficiency of atmospheric particulate matter for five urban plant species under different rainfall regimes. Atmos. Environ. 2019, 208, 123–132. [Google Scholar] [CrossRef]
- Przybysz, A.; Wińska-Krysiak, M.; Małecka-Przybysz, M.; Stankiewicz-Kosyl, M.; Skwara, M.; Kłos, A.; Kowalczyk, S.; Jarocka, K.; Sikorski, P. Urban wastelands: On the frontline between air pollution sources and residential areas. Sci. Total Environ. 2020, 721, 137695. [Google Scholar] [CrossRef]
- Yuri, J.A.; Neira, A.; Fuentes, M.; Razmilic, I.; Lepe, V.; González, M.F. Bagging cv. Fuji, Raku Raku apple fruit affects their phenolic profile and antioxidant capacity. Erwerbs Obstbau 2020, 62, 221–229. [Google Scholar] [CrossRef]
- Özcan, M.M.; Harmankaya, M.; Gezgin, S. Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits. Environ. Environ. Monit. Assess. 2012, 184, 313–320. [Google Scholar] [CrossRef]
Parameter | Rural Location | Local Road | National Road | |
---|---|---|---|---|
Apple Orchards (Vehicles·h−1) | ||||
Traffic density | 7.00–8.00 | 15.3 (±2.7) 1 | 110.3 (±6.8) | 395.0 (±13.2) |
12.30–13.30 | 9.1 (±2.2) | 92.7 (±5.5) | 374.2 (±16.7) | |
Traffic structure | Large share of agricultural vehicles (e.g., tractors) in the morning hours. Passenger cars of all ages, rarely over 10–15 years old. | All kinds of cars, including trucks and agricultural vehicles. Different age and condition of vehicles. | All kinds of cars, including trucks, except for agricultural vehicles. Different age and condition of vehicles. |
Treatment | Plant Protection (Pests, Diseases) | Herbicides | Foliar Fertilization | Soil Fertilization | Chemical Thinning | MechanicalPruning | Mowing | Harvest |
---|---|---|---|---|---|---|---|---|
Number·row−1 | ||||||||
22–24 | 2–3 | 8–10 | 2 | 1–2 | 1 | 2–3 | 8–12 |
Parameter | Rural Location | Local Road | National Road |
---|---|---|---|
µg m−3 | |||
PM10 | 17.5 (±1.07) | 15.3 (±0.84) | 15.2 (±0.25) |
PM2.5 | 14.8 (±1.37) | 13.5 (±0.43) | 13.2 (±0.33) |
PM1 | 11.5 (±0.31) | 12.1 (±0.35) | 11.7 (±0.30) |
Parameter | Rural Location | Local Road | National Road | |
---|---|---|---|---|
Plum Orchards (Vehicles·h−1) | ||||
Traffic density | 7.00–8.00 | 72.0 (±12.1) 1 | 78.0 (±15.7) | 417.3 (±27.5) |
12.30–13.30 | 66.3 (±6.78) | 70.3 (±10.0) | 398.7 (±22.6) | |
Traffic structure | All kind of kind of vehicles, however large share of agricultural vehicles (e.g., tractors) was recorded in the morning hours. Passenger cars of all ages, rarely over 10–15 years old. | All kinds of cars, including trucks. Different age and condition of vehicles. | All kinds of cars, including trucks except for agricultural vehicles. Different age and condition of vehicles. |
Treatment | Plant Protection (Pests, Diseases) | Herbicides | Foliar Fertilization | Soil Fertilization | Chemical Thinning | MechanicalPruning | Mowing | Harvest |
---|---|---|---|---|---|---|---|---|
Number·row−1 | ||||||||
4–6 | 3–4 | 2–4 | 1–2 | - | 1 | 4–5 | 4–5 |
Parameter | Location | Distance to Road | Date of Sampling | Location × Distance to Road | Location × Date of Sampling | Distance to Road × Date of Sampling | Location × Distance to Road × Date of Sampling |
---|---|---|---|---|---|---|---|
Total PM | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
Fine PM (0.2–2.5 µm) | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
Coarse PM (2.5–10 µm) | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
Large PM (10–100 µm) | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
Surface PM (SPM) | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
In-wax PM (WPM) | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
Wax content | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Orchard Location | Rural Location | Local Road | National Road | Avg. Sampling Date (B) |
---|---|---|---|---|
Total PM [μg·cm−2] | ||||
June | 30.56 (±3.09) | 10.15 (±0.93) | 13.67 (±1.07) | 18.13 (±2.06) b 1 |
Harvest | 41.59 (±1.87) | 62.02 (±4.25) | 27.48 (±2.11) | 43.69 (±3.22) a |
Avg. location (A) | 36.07 (±2.20) A 2 | 36.08 (±6.63) A | 20.57 (±2.03) B | LSD (A/B) = 8.74; (B/A) = 7.24 |
Fine PM (0.2–2.5 µm) [μg·cm−2] | ||||
June | 1.55 (±0.17) | 1.78 (±0.16) | 1.95 (±0.32) | 1.76 (±0.13) b |
August | 3.72 (±0.37) | 3.87 (±0.31) | 2.83 (±0.19) | 3.47 (±0.19) a |
Avg. location (A) | 2.64 (±0.33) A | 2.83 (±0.31) A | 2.39 (±0.21) A | LSD (A/B) = 0.92; (B/A) = 0.76 |
Coarse PM (2.5–10 µm) [μg·cm−2] | ||||
June | 10.87 (±1.41) | 1.92 (±0.24) | 2.99 (±0.31) | 5.26 (±0.91) b |
August | 8.93 (±0.87) | 15.97 (±0.67) | 7.99 (±1.00) | 10.96 (±0.85) a |
Avg. location (A) | 9.90 (±0.84) A | 8.94 (±1.74) AB | 5.49 (±0.79) B | LSD (A/B) = 3.05; (B/A) = 2.53 |
Large PM (10–100 µm) [μg·cm−2] | ||||
June | 18.15 (±1.59) | 6.46 (±0.70) | 8.73 (±0.67) | 11.11 (±1.16) b |
August | 28.93 (±2.02) | 42.18 (±3.80) | 16.66 (±1.11) | 29.26 (±2.49) a |
Avg. location (A) | 23.54 (±1.81) AB | 24.32 (±4.72) A | 12.69 (±1.15) B | LSD (A/B) = 6.96; (B/A) = 5.77 |
Surface PM (SPM) [μg·cm−2]. | ||||
June | 14.60 (±1.75) | 2.42 (±0.40) | 4.11 (±0.64) | 7.05 (±1.22) b |
August | 19.60 (±2.36) | 30.88 (±3.02) | 11.66 (±0.86) | 20.71 (±1.99) a |
Avg. location (A) | 17.10 (±1.54) A | 16.65 (±3.75) AB | 7.88 (±1.05) B | LSD (A/B) = 6.22; (B/A) = 5.15 |
In-wax PM (WPM) [μg·cm−2] | ||||
June | 15.96 (±1.38) | 7.73 (±0.78) | 9.56 (±0.72) | 11.08 (±0.89) b |
August | 21.98 (±1.88) | 31.14 (±2.46) | 15.82 (±1.41) | 22.98 (±1.65) a |
Avg. location (A) | 18.97 (±1.35) A | 19.44 (±3.10) A | 12.69 (±1.08) B | LSD (A/B) = 5.84; (B/A) = 4.83 |
Wax content [μg·cm−2] | ||||
June | 449.5 (±5.58) | 495.8 (±14.7) | 456.8 (±12.2) | 467.4 (±7.52) a |
August | 489.1 (±24.9) | 502.3 (±8.68) | 433.0 (±17.2) | 474.8 (±11. 7) a |
Avg. location (A) | 469.3 (±13.3) AB | 499.0 (±8.3) A | 445.0 (±10.6) B | LSD (A/B) = 54.02; (B/A) = 44.73 |
Parameter | Distance A | Distance B | Distance C |
---|---|---|---|
Total PM [μg·cm−2] | 32.18 (±4.39) a 1 | 29.72 (±4.25) a | 30.83 (±4.98) a |
Fine PM (0.2–2.5 µm) [μg·cm−2] | 2.77 (±0.27) a | 2.42 (±0.27) a | 2.66 (±0.32) a |
Coarse PM (2.5–10 µm) [μg·cm−2] | 8.34 (±1.25) a | 8.58 (±1.32) a | 7.42 (±1.28) a |
Large PM (10–100 µm) [μg·cm−2] | 21.07 (±3.11) a | 18.73 (±2.89) a | 20.76 (±3.69) a |
Surface PM (SPM) [μg·cm−2] | 14.07 (±2.27) a | 13.48 (±2.67) a | 14.09 (±2.91) a |
In-wax PM (WPM) [μg·cm−2] | 18.11 (±2.33) a | 16.24 (±1.81) a | 16.74 (±2.33) a |
Wax content [μg·cm−2] | 464.5 (±11.7) a | 476.3 (±11. 8) a | 472.4 (±12.8) a |
Parameter | Rural Location | Local Road | National Road |
---|---|---|---|
Total PM [μg·cm−2] | 56.57 (±2.68) a 1 | 58.27 (±4.08) a | 61.61 (±8.76) a |
Fine PM (0.2–2.5 µm) [μg·cm−2] | 3.96 (±0.65) a | 2.36 (±0.22) a | 4.59 (±0.80) a |
Coarse PM (2.5–10 µm) [μg·cm−2] | 8.28 (±0.94) a | 7.06 (±0.94) a | 4.92 (±1.06) a |
Large PM (10–100 µm) [μg·cm−2] | 44.33 (±2.12) a | 48.85 (±3.17) a | 52.10 (±8.34) a |
Surface PM (SPM) [μg·cm−2] | 30.00 (±2.20) a | 32.74 (±2.67) a | 35.04 (±9.39) a |
In-wax PM (WPM) [μg·cm−2] | 26.57 (±0.60) a | 25.53 (±1.66) a | 26.57 (±1.98) a |
Wax content [μg·cm−2] | 709.9 (±57.7) b | 1247.6 (±134.0) a | 1257.9 (±11.7) a |
Parameter | Apple | Plum |
---|---|---|
Total PM [μg·cm−2] | 44.64 (±5.16) b 1 | 58.81 (±2.99) a |
Fine PM (0.2–2.5 µm) [μg·cm−2] | 3.65 (±0.33) a | 3.63 (±0.45) a |
Coarse PM (2.5–10 µm) [μg·cm−2] | 10.91 (±1.43) a | 6.75 (±0.69) b |
Large PM (10–100 µm) [μg·cm−2] | 30.08 (±3.88) b | 48.43 (±2.88) a |
Surface PM (SPM) [μg·cm−2] | 19.78 (±2.88) b | 32.59 (±2.98) a |
In-wax PM (WPM) [μg·cm−2] | 24.85 (±2.96) a | 26.22 (±0.78) a |
Wax content [μg·cm−2] | 465.8 (±20.2) b | 1071.8 (±99.9) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybysz, A.; Stępniak, A.; Małecka-Przybysz, M.; Zhu, C.; Wińska-Krysiak, M. Particulate Matter Accumulation on Apples and Plums: Roads Do Not Represent the Greatest Threat. Agronomy 2020, 10, 1709. https://doi.org/10.3390/agronomy10111709
Przybysz A, Stępniak A, Małecka-Przybysz M, Zhu C, Wińska-Krysiak M. Particulate Matter Accumulation on Apples and Plums: Roads Do Not Represent the Greatest Threat. Agronomy. 2020; 10(11):1709. https://doi.org/10.3390/agronomy10111709
Chicago/Turabian StylePrzybysz, Arkadiusz, Andrzej Stępniak, Monika Małecka-Przybysz, ChunYang Zhu, and Marzena Wińska-Krysiak. 2020. "Particulate Matter Accumulation on Apples and Plums: Roads Do Not Represent the Greatest Threat" Agronomy 10, no. 11: 1709. https://doi.org/10.3390/agronomy10111709
APA StylePrzybysz, A., Stępniak, A., Małecka-Przybysz, M., Zhu, C., & Wińska-Krysiak, M. (2020). Particulate Matter Accumulation on Apples and Plums: Roads Do Not Represent the Greatest Threat. Agronomy, 10(11), 1709. https://doi.org/10.3390/agronomy10111709