Tapping the Economic Potential of Chickpea in Sub-Saharan Africa
Abstract
:1. Introduction
2. Importance of Chickpea in Sub-Saharan Africa
- Chickpea has a high potential for expansion and economic benefit;
- Chickpea is a suitable driver for sustainable intensification;
- Chickpea has a low production cost;
- Chickpea is adaptive to climatic shocks, particularly moisture and thermal stresses;
- Chickpea has diversified food, nutrition, feed uses, and health benefits;
- Chickpea has a high market value.
2.1. Chickpea Has a High Potential for Expansion and Economic Benefit
“Many studies detail constraints deemed responsible for the limited adoption of new technologies among smallholder farmers in sub-Saharan Africa. By contrast, here we study the conditions that led to the remarkably fast spread of improved chickpea varieties in Ethiopia. Within just seven years, the adoption rate rose from 30 to 80% of the farmers. A combination of factors explains the rapid uptake. Their attraction lay in superior returns and disease resistance. Chickpea was already an important crop for rural households in the studied districts, for both cash income and consumption. Good market access and easy accessibility of extension services advanced the adoption process. Thus, an attractive technology suitable for rural households in a conducive environment enabled adoption. Our findings prompt us to stress the importance of tailoring agricultural innovations to the realities and demands of rural households, and the need to design and deploy interventions on the basis of ex-ante knowledge on factors potentially determining their success or failure.”
2.2. Chickpea Is a Suitable Driver for Sustainable Intensification
2.3. Chickpea Has a Low Production Cost
2.4. Chickpea Is Adaptive to Climatic Shocks: Moisture and Thermal Stresses
2.5. Chickpea Has Diversified Food, Nutrition, Feed Uses, and Health Benefits
2.6. Chickpea Has a High Market Value
3. Retrospectives and Prospective of Chickpea in SSA
4. Chickpea Research for Development Gaps in SSA
5. Chickpea Improvement Research in SSA
5.1. Understanding the Priorities of Farmers and Value Chain Actors
5.2. Germplasm Enhancement and Breeding
5.3. Advanced Breeding Approaches for Existing and Emerging Challenges
6. Taking Chickpea to the “Last Mile”
7. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alliance for A Green Revolution in Africa (AGRA). Transforming Africa’s Agriculture for Sustainable Inclusive Growth, Improved Livelihoods and Shared Prosperity. In Proceedings of the Background Note for High-Level Side Event on African Economic Transformation Held in the Margins of the Third International Conference on Financing for Development, Addis Ababa, Ethiopia, 13–16 July 2015. [Google Scholar]
- PARI. From Potentials to Reality: Transforming Africa’s Food Production. Program of Accompanying Research for Agricultural Innovation (PARI). 2020. Available online: https://www.zef.de/fileadmin/downloads/ZEF_Akademiya2063.pdf (accessed on 12 October 2020).
- OECD/FAO. Agriculture in Sub-Saharan Africa: Prospects and Challenges for the Next Decade. In OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT 2020. Available online: https://www.fao.org/faostat/en/#data (accessed on 23 August 2020).
- NEPAD. African Agriculture, Transformation and Outlook; New Partnership for African Development (NEPAD): Johannesburg, South Africa, 2013; 72p. [Google Scholar]
- AGRA. Africa Agriculture Status Report 2016: Progress towards Agricultural Transformation in Africa; Alliance for a Green Revolution in Africa (AGRA): Nairobi, Kenya, 2016. [Google Scholar]
- Turner, N.C.; Wright, G.C.; Siddique, K.H.M. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 2001, 71, 193–231. [Google Scholar] [CrossRef]
- African Development Bank Group. Africa in 50 Years’ Time: The Road Towards Inclusive Growth; Working Document; African Development Bank: Tunis, Tunisia, 2011; 72p. [Google Scholar]
- Roorkiwal, M.; Bharadwaj, C.; Barmukh, R.; Dixit, G.P.; Thudi, M.; Gaur, P.M.; Chaturvedi, S.K.; Fikre, A.; Hamwieh, A.; Kumar, S.; et al. Integrating genomics for chickpea improvement: Achievements and opportunities. Theor. Appl. Gen. 2020, 133, 1703–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaur, P.M.; Samineni, S.; Thudi, M.; Tripathi, S.; Sajja, S.B.; Jayalakshmi, V.; Mannur, D.M.; Vijayakumar, A.G.; Gangarao, N.V.P.R.; Ojiewo, C.O.; et al. Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breed. 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Berger, J.D.; Turner, N.C. The ecology of Chickpea. In Chickpea Breeding and Management; Yadav, R., Chen, S., Eds.; CAB International, Cromwell Press: Trowbridge, UK, 2007; pp. 47–71. [Google Scholar]
- ICB. International Crop Biodiversity; ICB: Addis Ababa, Ethiopia, 2012. [Google Scholar]
- Anbessa, Y.; Bejiga, G. Evaluation of Ethiopian chickpea landraces for tolerance to drought. Genet. Resour. Crop Evol. 2002, 49, 557–564. [Google Scholar] [CrossRef]
- FAOSTAT 2018. Available online: https://www.fao.org/faostat/en/#data (accessed on 20 March 2020).
- Ferede, S.; Fikre, A.; Ahmed, S. Assessing the Competitiveness of Smallholders Chickpea Production in the Central Highlands of Ethiopia. Ethiop. J. Crop Sci. 2018, 6, 51–65. [Google Scholar]
- Ouédraogo, M.; Zougmoré, R.; Moussa, A.S.; Partey, S.T.; Thornton, P.K.; Kristjanson, P.; Ndour, N.Y.B.; Somé, L.; Naab, J.; Boureima, M.; et al. Markets and climate are driving rapid change in farming practices in Savannah West Africa. Reg. Environ. Chang. 2017, 17, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- Verkaart, S.; Mausch, K.; Claessens, L.; Giller, K.E. A recipe for success? Learning from the rapid adoption of improved chickpea varieties in Ethiopia. Int. J. Agric. Sustain. 2019, 17, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Fikre, A. Progresses of chickpea research and development in Ethiopia. In Proceedings of the Harnessing Chickpea Value Chain for Nutrition Security and Commercialization of Smallholder Agriculture in Africa, Debre Zeit, Ethiopia, 30 January–2 February 2016; Korbu, L., Damite, T., Fikre, A., Eds.; EIAR: Addis Abäba, Ethiopia, 2016. Available online: http://oar.icrisat.org/id/eprint/9977 (accessed on 15 March 2020).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Jemberu, T.; Fikre, A.; Abeje, Y.; Tebabal, B.; Worku, Y.; Jorgi, T. Agronomic and Economic Evaluation of Wheat-Chickpea Double Cropping on the Vertisol of Takusa, North Western Ethiopia. Ethiop. J. Crop Sci. 2018, 6, 67–78. [Google Scholar]
- Shiferaw, B.; Jones, R.; Silim, S.; Tekelewold, H.; Gwata, E. Analysis of production costs, market opportunities and competitiveness of Desi and Kabuli chickpeas in Ethiopia. In IPMS (Improving Productivity and Market Success) of Ethiopian Farmers Project Working Paper 3; ILRI (International Livestock Research Institute): Nairobi, Kenya, 2007; 48p. [Google Scholar]
- Korbu, L.; Tafes, B.; Kassa, G.; Mola, T.; Fikre, A. Unlocking the genetic potential of chickpea through improved crop management practices in Ethiopia. A review. Agron. Sustain. Dev. 2020, 40, 13. [Google Scholar] [CrossRef]
- Gowda, C.L.L.; Gaur, P.M.; Samineni, S. Chickpea Research and Development: Current Status and Future Perspectives in the Semi-arid Tropics. In Proceedings of the Harnessing Chickpea Value Chain for Nutrition Security and Commercialization of Smallholder Agriculture in Africa, Debre Zeit, Ethiopia, 30 January–2 February 2016; Korbu, L., Damite, T., Fikre, A., Eds.; EIAR: Addis Abäba, Ethiopia, 2016. Available online: http://oar.icrisat.org/id/eprint/9977 (accessed on 15 March 2020).
- Geleto, T.; Nefo, K.; Tadesse, T. Crop rotation effects on grain yield and yield components of bread wheat in the Bale highlands of southeastern Ethiopia. In Proceedings of the Eleventh Regional Wheat Workshop for Eastern, Central and Southern Africa, Addis Ababa, Ethiopia, 18–22 September 2000; CIMMYT: Addis Ababa, Ethiopia, 2000; pp. 316–324. [Google Scholar]
- Gizaw, B.; Tsegay, Z.; Tefera, G.; Aynalem, E.; Abatneh, E.; Amsalu, G. Traditional Knowledge on Teff (Eragrostis tef) Farming Practice and Role of Crop Rotation to Enrich Plant Growth Promoting Microbes for Soil Fertility in East Showa: Ethiopia. Agric. Res. Technol. 2019, 16. [Google Scholar] [CrossRef]
- Okori, P.; International Crop Rsearch Institute for Semi-Arid Tropics, Lilongwe, Malawi. Personal communication, 2018.
- Joachim, J.; LZARDI-Ukiriguru, Tanzania, Tanzania. Personal communication, 2018.
- Fikre, A.; Degefu, T. A Guide to Accelerated Breeding Cycle in Chickpea to Enhance Rate of Gain; Technical Manual No. 1/2019; ICRISAT: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Girma, N.; Fikre, A.; Ojiewo, C.O. The Genotypic and Phenotypic Basis of Chickpea (Cicer arietinum L.) Cultivars for Irrigation-Based Production in Ethiopia. J. Agric. Sci. 2017, 9, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Yemenu, F.; Eshetu, M.; Korbu, L. Assessment of Water Requirements of Chickpea grown in the Central Vertisol Areas of Ethiopia. In Proceedings of the Harnessing Chickpea Value Chain for Nutrition Security and Commercialization of Smallholder Agriculture in Africa, Debre Zeit, Ethiopia, 30 January–2 February 2016; Korbu, L., Damite, T., Fikre, A., Eds.; EIAR: Addis Abäba, Ethiopia, 2016. Available online: http://oar.icrisat.org/id/eprint/9977 (accessed on 15 March 2020).
- Tabe-Ojonga, M.P., Jr.; Kai, M. Impacts of Improved Chickpea Adoption on Smallholder Production and Commercialization in Ethiopia. In Proceedings of the Tropentag 2017, Bonn, Germany, 20–22 September 2017. [Google Scholar]
- Bontpart, T.; Concha, C.; Giuffrida, V.; Robertson, I.; Admkie, K.; Degefu, T.; Girma, N.; Tesfaye, K.; Haileselassie, T.; Fikre, A.; et al. Affordable and Robust phenotyping framework to analyze root system architecture of soil-grown plants. Plant J. 2019, 103, 2330–2343. [Google Scholar] [CrossRef]
- Kassie, M.; Shiferaw, B.; Asfaw, S.; Abate, T.; Muricho, G.; Ferede, S.; Eshete, M.; Assefa, K. Current Situation and Future Outlooks of the Chickpea Sub-sector in Ethiopia. In Survey Report; ICRISAT: Nairobi, Kenya, 2009. [Google Scholar]
- Fikre, A. An overview of chickpea improvement research program in Ethiopia. J. Int. Leg. Soc. 2014, 3, 47–49. [Google Scholar]
- Wondimu, Y.; Fikre, A. The Economics of Targeting and Sustaining a Niche Market: A Case Study of Green Pod Chickpea Marketing in Ethiopia. J. Econ. Sustain. Dev. 2019, 10, 40–52. [Google Scholar] [CrossRef]
- Purushothaman, R.; Krishnamurthy, L.; Upadhyaya, H.D.; Vadez, V.; Varshney, R.K. Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crop. Res. 2017, 201, 146–161. [Google Scholar] [CrossRef] [Green Version]
- Mola, T.; Alemayehu, S.; Fikre, A.; Ojiewo, C.O.; Alemu, K.; Degefu, T. Heat Tolerance Responses of Chickpea (Cicer arietinum L.) Genotypes in the Thermal Zone of Ethiopia, a Case of Werer Station. Ethiop. J. Crop Sci. 2018, 6, 95–118. [Google Scholar]
- Alemayehu, S. Screening of Chickpea (Cicer Arietinum L.) Genotypes for Heat Stress Tolerance Under Lowland Irrigated Condition of Middle Awash Rift Valley, Ethiopia. Master’s Thesis, Ambo University, Ambo, Ethiopia, 2017. [Google Scholar]
- Than, A.M.; Maw, J.B.; Aung, T.; Gaur, P.M.; Gowda, C.L.L. Development and adoption of improved chickpea varieties in Myanmar. J. SAT Agric. Res. 2007, 5, 1–3. Available online: http://oar.icrisat.org/2573/ (accessed on 15 June 2020).
- Olika, E.; Abera, S.; Fikre, A. Effect of Processing Methods on Proximate Composition and Functional Properties of Improved Chickpea (Cicer arietinum L.) Varieties Grown in Ethiopia. Food Sci. Qual. Manag. 2018, 72, 36–42. Available online: https://iiste.org/Journals/index.php/FSQM/article/view/40992/42150 (accessed on 15 March 2020).
- Olika, E.; Abera, S.; Fikre, A. Physicochemical Properties and Effect of Processing Methods on Mineral Composition and Antinutritional Factors of Improved Chickpea (Cicer arietinum L.) Varieties Grown in Ethiopia. Int. J. Food Sci. 2019, 9614570, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Tomas, N.; Díaz-Lopez, A.; Rosique-Esteban, N.; Ros, E.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Fito, M.; Serra-Majem, L.; Fernando, A.; et al. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clin. Nutr. 2018, 37, 906–913. [Google Scholar] [CrossRef]
- Zafar, T.A.; Kabir, Y. Chickpeas suppress postprandial blood glucose concentration, and appetite and reduce energy intake at the next meal. J. Food Sci. Technol. 2017, 54, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Chichaybelu, M.; Geleta, T.; Girma, N.; Fikre, A.; Eshete, M.; Ojeiwo, C.O. Innovative Partnership in Chickpea Seed Production and Technology Dissemination: A Decade of Lessons in Ethiopia. Ethiop. J. Crop Sci. 2018, 6, 1–18. [Google Scholar]
- Zegeye, F.; Mussema, R.; Eshete, M.; Aliy, S.; Fikre, A. Gender in chickpea research and development of Ethiopia: Achievements, challenges and future direction. In Proceedings of the Harnessing Chickpea Value Chain for Nutrition Security and Commercialization of Smallholder Agriculture in Africa, Debre Zeit, Ethiopia, 30 January–2 February 2016; Korbu, L., Damite, T., Fikre, A., Eds.; EIAR: Addis Abäba, Ethiopia, 2016. Available online: http://oar.icrisat.org/id/eprint/9977 (accessed on 15 March 2020).
- Bekele, N.; Tesso, B.; Fikre, A. Assessment of seed quality parameters in different seed sources of chickpea (Cicer arietinum L.). Afr. J. Agric. Res. 2019, 14, 1649–1658. [Google Scholar] [CrossRef] [Green Version]
- Eshete, M.; Aliye, S.; Fikre, A.; Ojiewo, C.O. Community Seed Production of Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medic) in Ethiopia. In Community Seed Production. Workshop Proceedings, 9–11 December 2013; Ojiewo, K., Bishaw, R., Eds.; FAO: Rome, Italy; ICRISAT: Addis Ababa, Ethiopia, 2015; pp. 80–87. [Google Scholar]
- CSA (Central Statistical Authority). Crop Production Forecast Sample Survey; Statistical Bulletin; CSA: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Monyo, E.; Varshney, R.K. Seven Seasons of Learning and Engaging Smallholder Farmers in the Drought-Prone Areas of Sub-Saharan Africa and South Asia through Tropical Legumes, 2007–2014; ICRISAT: Patancheru, India, 2016; ISBN 978-92-9066-568-7. [Google Scholar]
- Rubyogo, J.-C.; Akpo, E.; Omoigui, L.; Gaur, P.; Chaturvedi, S.K.; Fikre, A.; Desmae, H.; Hakeem, A.; Monyo, E.; Nkalubo, S.; et al. Market-led options to scale up legume seeds in developing countries: Experiences from the Tropical Legumes Project. Plant Breed. 2019, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, N. Africa’s Top Chickpea Producer Brings First Industrial Processing Machine. GoodFood World. Available online: http://www.goodfoodworld.com/2015/09/africas-top-chickpea-producer-brings-first-industrial-processing-machine-online-in-2015/ (accessed on 20 June 2020).
- Madhuri, R.D.; Jayalakshm, V. Identification of high yielding mechanical harvestable chickpea (Cicer arietinum L.) genotypes under rainfed and irrigated conditions. Int. J. Chem. Stud. 2020, 8, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Pande, S.; Sharma, M.; Ghosh, R.; Rao, S.K.; Sharma, R.N.; Jha, A.K. Opportunities for Chickpea Production in Rainfed Rice Fallows of India—Baseline Survey Report; Grain Legumes Program Report No. 1; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, Andhra Pradesh, India, 2012; 56p. [Google Scholar]
- Macauley, H.; Tabo, R. Cereal Crops: Rice, Maize, Millet, Sorghum, Wheat. In Feeding Africa—Action Plan for African Agricultural Transformation; African Development Bank Group (AfDB): Tunis, Tunisia, 2015. [Google Scholar]
- Demeke, N. GIS-Based Land Suitability Mapping for Legume Crops Technology Targeting and Scaling-Up. Ethiop. J. Crop Sci. 2018, 6, 180–198. [Google Scholar]
- Kimurto, P.K.; Towett, B.K.; Mulwa, R.M.S.; Macharia, D.; Gatongi, I.M.; Njogu, N.; Oyier, M.; Lilian, J.; Kosgei, A.; Songok, S.; et al. An overview of chickpea research and development programs in Kenya: Current status, challenges and opportunities. In Proceedings of the Harnessing Chickpea Value Chain for Nutrition Security and Commercialization of Smallholder Agriculture in Africa, Debre Zeit, Ethiopia, 30 January–2 February 2016; Korbu, L., Damite, T., Fikre, A., Eds.; EIAR: Addis Abäba, Ethiopia, 2016. Available online: http://oar.icrisat.org/id/eprint/9977 (accessed on 15 March 2020).
- Gaur, P.M.; Samaké, O. Feasibility of Growing Chickpea for Crop Diversification in Northern Mali; Survey Report; ICRISAT: Hyderabad, India, 2006. [Google Scholar]
- Khalifa, G.E.; Hamed, A.A.; Adam, A. Review of Chickpea Production, Opportunities, and Challenges in Sudan. In Proceedings of the Harnessing Chickpea Value Chain for Nutrition Security and Commercialization of Smallholder Agriculture in Africa, Debre Zeit, Ethiopia, 30 January–2 February 2016; Korbu, L., Damite, T., Fikre, A., Eds.; EIAR: Addis Abäba, Ethiopia, 2016. Available online: http://oar.icrisat.org/id/eprint/9977 (accessed on 15 March 2020).
- University of Venda. A Pilot Project Indicates Success in Chickpea Production by Local Farmers in South Africa. 9 October 2018. Available online: https://www.univen.ac.za/news/a-pilot-project-indicates-success-in-chickpea-production-by-local-farmers-in-south-africa/ (accessed on 30 July 2020).
- Kileo, R.O.; Joseph, J.; GangaRao, N.V.P.R. Prospects of chickpea improvement research and development in Tanzania: Challenges and opportunities. In Proceedings of the Harnessing Chickpea Value Chain for Nutrition Security and Commercialization of Smallholder Agriculture in Africa, Debre Zeit, Ethiopia, 30 January–2 February 2016; Korbu, L., Damite, T., Fikre, A., Eds.; EIAR: Addis Abäba, Ethiopia, 2016. Available online: http://oar.icrisat.org/id/eprint/9977 (accessed on 15 March 2020).
- Maya, M.; Maphosa, M. Current status of chickpea production: Opportunities for promoting, adoption and adapting the crop in Zimbabwe: A review. J. Dryland Agric. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Weather and Climate Information. Available online: https://weather-and-climate.com/ (accessed on 20 September 2020).
- Ojiewo, C.O.; Rubyogo, J.C.; Wesonga, J.M.; Bishaw, Z.; Gelalcha, S.W.; Abang, M.M. Mainstreaming Efficient Legume Seed Systems in Eastern Africa: Challenges, Opportunities and Contributions towards Improved Livelihoods; License: CC BY-NC-SA 3.0 IGO; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; 72p. [Google Scholar]
- Akpo, E.; Feleke, G.; Fikre, A.; Chichaybelu, M.; Ojiewo, C.O.; Varshney, R.K. Analyzing Pathways of Nurturing Informal Seed Production into Formal Private Ventures for Sustainable Seed Delivery and Crop Productivity: Experiences from Ethiopia. Sustainability 2020, 12, 6828. [Google Scholar] [CrossRef]
- Varshney, R.K.; Hiremath, P.J.; Lekha, P.; Kashiwagi, J.; Balaji, J.; Deokar, A.A.; Vadez, V.; Xiao, Y.; Srinivasan, R.; Gaur, P.M.; et al. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). Genomics 2009, 10, 523. [Google Scholar] [CrossRef] [Green Version]
- Saxena, N.P.; Johansen, C. Realizing yield potential in chickpea and physiological considerations for further genetic improvement. In Proceedings of the International Congress of Plant Physiology, New Delhi, India, 15–20 February 1988; Sinha, S., Bhargava, A., Eds.; Society for Plant Physiology and Biochernistry: New Delhi, India, 1988; pp. 279–288. Available online: http://oar.icrisat.org/4479/ (accessed on 15 March 2020).
- Kirnak, H.; Varol, I.S.; Irik, H.A.; Ozaktan, H. Effects of irrigation applied at different growth stages on chickpea yield. Agron. Res. 2017, 15, 1928–1933. [Google Scholar] [CrossRef]
- Rocha, I.; Duarte, I.; Ma, Y.; Souza-Alonso, P.; Látr, A.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating with Arbuscular Mycorrhizal Fungi for Improved Field Production of Chickpea. Agronomy 2019, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.E. Extension in Sub-Saharan Africa: Overview and Assessment of Past and Current Models, and Future Prospects. J. Int. Agric. Ext. Educ. 2008, 15, 1–14. [Google Scholar] [CrossRef]
- FAO. World Agriculture: Towards 2015/30; Summary Report; FAO: Rome, Italy, 2002. [Google Scholar]
- Alabi, T.R.; Adebola, P.O.; Asfaw, A.; De Koeyer, D.; Lopez-Montes, A.; Asiedu, R. Spatial Multivariate Cluster Analysis for Defining Target Population of Environments in West Africa for Yam Breeding. IJAGR 2019, 10, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Chenu, K.; Cooper, M.; Hammer, G.L.; Mathews, K.L.; Dreccer, M.F.; Chapman, S.C. Environment characterization as an aid to wheat improvement: Interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia. J. Exp. Bot. 2011, 62, 1743–1755. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M.; Stucker, R.E.; DeLacy, I.H.; Harch, B.D. Wheat Breeding Nurseries, Target Environments, and Indirect Selection for Grain Yield. Crop. Sci. 1997, 37, 1168–1176. [Google Scholar] [CrossRef]
- Nyquist, W.E. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 1991, 10, 235–322. [Google Scholar] [CrossRef]
- Cooper, M.; Hammer, G.L. Synthesis of strategies for crop improvement. In Plant Adaptation and Crop Improvement; Cooper, H., Ed.; CABI: Wallingford, UK, 1996; pp. 591–623. [Google Scholar]
- Ceccarelli, S.; Grando, S. Selection environment and environmental sensitivity in barley. Euphytica 1991, 57, 157–167. [Google Scholar] [CrossRef]
- Podlich, D.W.; Cooper, M. QU-GENE: A simulation platform for quantitative analysis of genetic models. Bioinformatics 1998, 14, 632–653. [Google Scholar] [CrossRef] [Green Version]
- Kimani, P.M.; Anthony, V.M. Advances in market-oriented approaches for legume breeding in eastern Africa. Afr. J. Rural Dev. 2019, 4, 305–322. Available online: http://www.afjrd.org/jos/index.php/afjrd/article/view/2048 (accessed on 20 July 2020).
- Persley, G.J.; Anthony, V.M. The Business of Plant Breeding: Market-Led Approaches to New Variety Design in Africa; CABI: Wallingford, UK; Boston, MA, USA, 2017; 210p. [Google Scholar]
- Yao, N.K.; Kimani, P.; Hussein, S.; Tongoona, P. Demand-Led Variety Design: Make Plant Breeding in Africa a Business Model Responsive to Market Demand. In Proceedings of the International Tropical Agriculture Conference 2017 (TropAg2017), Brisbane, Australia, 20–22 November 2017. Poster. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Dwivedi, S.L.; Sharma, S. Managing and discovering agronomically beneficial traits in chickpea germplasm collections. In The Chickpea Genome; Varshney, R., Thudi, M., Muehlbauer, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 43–52. [Google Scholar] [CrossRef]
- Debre Zeit Research Center (DZARC) Annual Report; DZARC: Debre Zeit, Ethiopia, 2018.
- Fikre, A. Improving chickpea production to create wider welfare impact by leveraging technology and seed system development. Bulletin of Tropical Legumes. 2018. Available online: http://tropicallegumes.icrisat.org/wp-content/uploads/2018/05/TL-III-Bulletin-11_Final.pdf (accessed on 2 November 2020).
- Girma, N.; Fikre, A. The Myth of Ascochyta Blight Devastation in Desi Chickpea finally Curbed: A Ground-Breaking News for Chickpea Farmers; Ethiopian Institute of Agricultural Research (EIAR): Addis Ababa, Ethiopia; Available online: https://www.facebook.com/EIARPR/posts/1705437109610338 (accessed on 20 September 2020).
- Reddy, A.; Bantilan, M.C.S.; Mohan, G. Pulses Production Scenario: Policy and Technological Options. Policy Briefs. 2013. Available online: http://oar.icrisat.org/6812/1/26_Policy_BriefIndia%20_2013.pdf (accessed on 15 March 2020).
- Innes, N.L. The contribution from conventional plant-breeding. Proc. R. Soc. Edinburgh. Sect. B Boil. Sci. 1992, 99, 1–10. [Google Scholar] [CrossRef]
- Simmonds, N.W. Genotype (G), environment (E) and GE components of crop yields. Exp. Agric. 1981, 17, 355–362. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Royo, C.; Serret, M.D. Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Varshney, R.K.; Thudi, M.; Pandey, M.K.; Tardieu, F.; Ojiewo, C.; Vadez, V.; Whitbread, A.M.; Siddique, K.H.M.; Nguyen, H.T.; Carberry, P.S.; et al. Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: Integrating genomics, phenotyping, systems modelling and agronomy. J. Exp. Bot. 2018, 69, 3293–3312. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Md Hatta, M.A.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plant. 2018, 4, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.; Cannon, S.; Baek, J.; Rosen, B.D.; Taran, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Deokar, A.; Sagi, M.; Tar’an, B. Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2019, 132, 1861–1872. [Google Scholar] [CrossRef] [Green Version]
- Paul, P.J.; Samineni, S.; Thudi, M.; Sajja, S.B.; Rathore, A.; Das, R.R.; Khan, A.W.; Chaturvedi, S.K.; Lavanya, G.R.; Varshney, R.K.; et al. Molecular mapping of QTLs for heat tolerance in chickpea. Int. J. Mol. Sci. 2018, 19, 2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Gupta, S.; Bandhiwal, N.; Kumar, T.; Bharadwaj, C.; Bhatia, S. High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS). Sci. Rep. 2015, 5, 17512. [Google Scholar] [CrossRef] [Green Version]
- von Wettberg, E.J.B.; Chang, P.L.; Başdemir, F.; Carrasquila-Garcia, N.; Korbu, L.; Moenga, S.M.; Bedada, G.; Greenlon, A.; Moriuchi, K.S.; Singh, V.; et al. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat. Commun. 2018, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- Cacho, O.J.; Moss, J.; Thornton, P.K.; Herrero, M.; Henderson, B.; Bodirsky, B.L.; Humpenöder, F.; Popp, A.; Lipper, L. The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa. Clim. Chang. 2020, 1–17. [Google Scholar] [CrossRef]
- Tomar, B.S.; Kalyanrao, R.; Kumar, K.V. Seed production: An entrepreneurial venture. Indian Farming 2011, 61, 4–9. [Google Scholar]
- Sisay, D.T.; Verhees, F.J.H.M.; van Trijp, H.C.M. Seed producer cooperatives in the Ethiopian seed sector and their role in seed supply improvement: A Review. J. Crop. Improv. 2017, 31, 323–355. [Google Scholar] [CrossRef] [Green Version]
- Sperling, L.; Gallagher, P.; McGuire, S.; March, J.; Templer, N. Informal Seed Traders: The Backbone of Seed Business and African Smallholder Seed Supply. Sustainability 2020, 12, 7074. [Google Scholar] [CrossRef]
- Bishaw, Z.; van Gastel, A.J.; Gregg, B.R. Sustainable Seed Production of Cool Season Food Legumes in CWANA Region. In Proceedings of the Fourth International Food Legumes Research Conference (IFLRC-IV), New Delhi, India, 18–22 October 2005; Kharkwal, M.C., Ed.; ISGPB: New Delhi, India, 2008; pp. 231–257. [Google Scholar]
- Ojiewo, C.O.; Omoigui, L.O.; Janila, P.; Lenné, J.M. Grain legume seed systems for smallholder farmers: Perspectives on successful innovations. Outlook Agric. 2020, 1–7. [Google Scholar] [CrossRef]
- McGuire, S.; Louise, S. Making seed systems more resilient to stress. Glob. Environ. Chang. 2013, 23, 644–653. [Google Scholar] [CrossRef]
- Dhehibi, B.; Rudiger, U.; Moyo, H.P.; Dhraief, M.Z. Agricultural Technology Transfer Preferences of Smallholder Farmers in Tunisia’s Arid Regions. Sustainability 2020, 12, 421. [Google Scholar] [CrossRef] [Green Version]
- Kaur, K.; Kaur, P. Agricultural Extension Approaches to Enhance the Knowledge of Farmers. Int. J. Curr. Microb. Appl. Sci. 2018, 7, 2367–2376. [Google Scholar] [CrossRef] [Green Version]
- Campenhout, B.V.; Spielman, D.J.; Lecoutere, E. Information and communication technologies to provide agricultural advice to smallholder farmers: Experimental evidence from Uganda. Am. J. Agric. Econ. 2020, 1–21. [Google Scholar] [CrossRef]
Processing Methods | Proximate Composition | |||||
---|---|---|---|---|---|---|
Ash | Crude Protein | Crude Fiber | Crude Fat | Total CHO | Energy kcal/100 g | |
Raw | 3.77 ± 0.04 a | 18.71 ± 1.39 c | 5.81 ± 0.50 a | 6.97 ± 0.20 c | 55.90 ± 1.28 d,c | 361.13 ± 2.66 e |
Dry roasting | 3.44 ± 0.04 e | 12.51± 1.07 e | 3.93 ± 0.22 d | 6.94 ± 0.34 c | 68.52 ± 1.14 a | 386.54 ± 3.38 b |
Dehulling | 3.21 ± 0.02 f | 22.62 ± 0.58 a | 2.43 ± 0.16 e | 8.48 ± 0.63 a | 56.52 ± 1.34 c | 392.86 ± 3.24 a |
Soaking | 3.67 ± 0.03 b | 15.15 ± 2.26 d | 5.16 ± 0.36 b | 7.08 ± 0.36 c | 62.24 ± 2.43 b | 373.29 ± 3.34 c |
Germination | 3.60 ± 0.03 c | 20.21 ± 0.63 b | 5.32 ± 0.42 b | 7.39 ± 0.36 b | 54.85 ± 0.77 d | 366.75 ± 2.95 d |
Boiling | 3.48 ± 0.03 d | 19.91 ± 0.20 b | 4.91 ± 0.30 c | 7.43 ± 0.27 b | 53.34 ± 0.29 d | 360.20 ± 3.09 e |
CV | 0.69 | 3.55 | 3.55 | 2.15 | 1.97 | 1.02 |
LSD | 0.04 | 1.09 | 0.28 | 0.27 | 1.94 | 6.40 |
Products | Value of the Raw Grain, % | Main Value Actors | Reference |
---|---|---|---|
Raw grain | 100 | household head | [22] |
Green pod | 300 | Household head, women, boys | [36] |
Whole-grain-based value-added products (soaked, boiled, fried, puffed, sprouts, salads, vegetable curry, kollo, shiro, tamia, kicha, bukulti, thithko, githeri, taamia (falafil) | Up to 300 | Girls, boys, shops | [46]; observation |
Flour-based products (salty snacks, sweets, condiments, cake, biscuits, buns, doughnuts, shimbraassa) | Up to 350 | Women, shop owners | Observation |
De-husked-based value-added product (split seed (dhal), vegetable curry (dhal), soup) | Up to 200 | Women | Observation |
Seed | Up to 150 | Seed producers | [46,48,49] |
Fodder/feed | 10 | producers | Observation |
Factors | Constraints | Reference |
---|---|---|
Productivity | Low yield, yield gap, unavailability of improved varieties | [35,65,68] |
Biotic stresses | Ascochyta blight, fusarium wilt and root rot, pod borer, viruses, bruchids | [19,58,59,60,62] |
Abiotic stresses | Terminal drought, heat, waterlogging, salinity | [10,24,58] |
Market traits/value addition | Nutrient-dense variety, seed size, market quality | [24] |
Agronomic | Cropping systems, cultural practices | [63,69,70] |
Mechanization | Machine harvesting and threshing, cleaning, sorting and grading machines | [53,54] |
Socio-economic factors | Weak policy support, poor access to credit, poor market access, poor access to inputs, weak seed and agro-business system | [15,46,49,52,65,71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fikre, A.; Desmae, H.; Ahmed, S. Tapping the Economic Potential of Chickpea in Sub-Saharan Africa. Agronomy 2020, 10, 1707. https://doi.org/10.3390/agronomy10111707
Fikre A, Desmae H, Ahmed S. Tapping the Economic Potential of Chickpea in Sub-Saharan Africa. Agronomy. 2020; 10(11):1707. https://doi.org/10.3390/agronomy10111707
Chicago/Turabian StyleFikre, Asnake, Haile Desmae, and Seid Ahmed. 2020. "Tapping the Economic Potential of Chickpea in Sub-Saharan Africa" Agronomy 10, no. 11: 1707. https://doi.org/10.3390/agronomy10111707
APA StyleFikre, A., Desmae, H., & Ahmed, S. (2020). Tapping the Economic Potential of Chickpea in Sub-Saharan Africa. Agronomy, 10(11), 1707. https://doi.org/10.3390/agronomy10111707