Stressful Conditions Affect Seed Quality in Glyphosate Resistant Conyza bonariensis (L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Collection and Biotypes Isolation
2.2. Dose–Response Assay
2.3. Shikimic Acid Assay
2.4. Seed Viability by Tetrazolium Test
2.5. Seed Stress Tests
2.6. Statistical Analysis
3. Results
3.1. Dose–Response Assay
3.2. Shikimic Acid Assay
3.3. Embryo Viability and Germination Potential
3.4. Cold and Accelerated Aging Tests
3.5. High-Temperature Stress Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bajwa, A.A.; Aadia, S.; Ali, H.H.; Jabran, K.; Peerzada, A.M.; Chauhan, B.S. Biology and management of two important Conyza weeds: A global review. Environ. Sci. Pollut. Res. 2016, 23, 24694–24710. [Google Scholar] [CrossRef]
- Wu, H.; Walker, S.; Rollin, M.J.; Tan, D.K.Y.; Robinson, G.; Werth, J. Germination, persistence and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist). Weed. Biol. Manag. 2007, 7, 192–199. [Google Scholar] [CrossRef]
- Mora, D.A.; Cheimona, N.; Palma-Bautista, C.; Rojano-Delgado, A.M.; Osuna-Ruiz, M.D.; Alcántara-de la Cruz, R.; De Prado, R. Physiological, biochemical and molecular bases of resistance to tribenuron methyl and glyphosate in Conyza canadensis from olive groves in Southern Spain. Plant Physiol. Biochem. 2019, 144, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, B.K.; Alebrahim, M.T.; Roldán-Gómez, R.A.; Silveira, H.M.; Carvalho, L.B.; Alcántara-de la Cruz, R.; De Prado, R. Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Prot. 2018, 112, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Mylonas, P.N.; Giannopolitis, C.N.; Efthimiadis, P.G.; Menexes, G.C.; Eleftherohorinos, I.G. Dose-response and growth rate variation among glyphosate resistant and susceptible Conyza albida and Conyza bonariensis populations. J. Plant Prot. Res. 2019, 59, 32–40. [Google Scholar]
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef]
- Preston, C.; Wakelin, A.M. Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag. Sci. 2008, 64, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Steinrücken, H.C.; Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980, 94, 1207–1212. [Google Scholar] [CrossRef]
- Kleinman, Z.; Rubin, B. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution on the herbicide. Pest Manag. Sci. 2017, 73, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.O.; Oliveira, W.S.; Uzuele, E.L.; Carvalho, S.J.P.; Lopez-Ovejero, R.F.; Christoffoleti, P.J. Growth and development of Conyza bonariensis based on days or thermal units. Pesqui Agropecu Bras. 2017, 52, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Kaspary, T.E.; Lamego, F.P.; Cutti, L.; Aguiar, A.C.M.; Rigon, C.A.G.; Basso, C.J. Growth, phenology, and seed viability between glyphosate-resistant and glyphosate-susceptible hairy fleabane. Bragantia 2017, 76, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Adegas, F.S.; Vargas, L.; Gazziero, D.L.P.; Karam, D.; Silva, A.F.; Agostinetto, D. Impacto econômico da resistência de planta daninhas a herbicidas no Brasil. EMBRAPA-Circular Técnica 2017, 132, 1–11. [Google Scholar]
- Alcántara-de la Cruz, R.; Oliveira, G.M.; Carvalho, L.B.; Silva, M.F.G.F. Herbicide resistance in Brazil: Status, impacts, and future challenges. In Pests Classification, Management and Practical Approaches, 1st ed.; Kontogiannatos, D., Kourti, A., Ferreira, K.M., Eds.; IntechOpen: Londod, UK, 2020; in press. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, D.A.; Bastiaans, L.; Sattin, M. The role of ecology in the development of weed management systems: An outlook. Weed Res. 2000, 40, 49–62. [Google Scholar] [CrossRef]
- Agostinetto, A.; Vargas, A.A.M.; Ruchel, Q.; Silva, J.D.G.; Vargas, L. Germination, viability and longevity of horseweed (Conyza spp.) seeds as a function of temperature and evaluation periods. Ciênc Rural. 2018, 48, e20170687. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Hanson, B.D.; Fidelibus, M.W.; Alcorta, M. Growth, phenology, and intraspecific competition between glyphosate-resistant and glyphosate-susceptible horseweeds (Conyza canadensis) in the San Joaquin valley of California. Weed Sci. 2010, 58, 147–153. [Google Scholar] [CrossRef]
- Vargas, A.A.M.; Agostinetto, D.; Zandoná, R.R.; Fraga, D.S.; Avila-Neto, R.C. Longevity of horseweed seed bank depending on the burial depth. Planta Daninha 2018, 36, e018172073. [Google Scholar] [CrossRef]
- Piasecki, C.; Mazon, A.S.; Agostinetto, D.; Vargas, L. Glyphosate resistance affect the physiological quality of Conyza bonariensis seeds. Planta Daninha 2019, 37, e019213902. [Google Scholar] [CrossRef]
- Piasecki, C.; Mazon, A.S.; Monge, A.; Cavalcante, J.A.; Agostinetto, D.; Vargas, L. Glyphosate applied at the early reproductive stage impairs seed production of glyphosate-resistant hairy fleabane. Planta Daninha 2019, 37, e019196815. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Zambrana, E.; Tenorio, J.L. Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil. Tillage Res. 2016, 161, 38–46. [Google Scholar] [CrossRef]
- Lazaroto, C.A.; Fleck, N.G.; Vidal, R.A. Biology and ecophysiology of hairy fleabane (Conyza bonariensis) and horseweed (Conyza canadensis). Cienc. Rural. 2008, 38, 852–860. [Google Scholar] [CrossRef]
- Carvalho, L.B.; Duke, S.O.; Alves, P.L.C.A. Physiological responses of Eucalyptus x urograndis to glyphosate are dependent on the genotype. Sci. For. 2018, 46, 177–187. [Google Scholar] [CrossRef]
- Costa, F.R.; Stinghen, J.C.; Bortoli, J.R.G.; Coelho, C.M.C.; Carvalho, L.B. Can seed quality of hairy fleabane be reduced due to glyphosate resistance? Rev. Ciênc. Agrovet. 2018, 17, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- Delouche, J.C. Environmental effects on seed development and seed quality. HortScience 1980, 15, 13–18. [Google Scholar]
- Shrestha, A.; Steinhauer, K.M.; Hanson, B.D.; Jasieniuk, M.; Hembree, K.J.; Wright, S.D. Growth and development of fall- and spring-planted populations of Conyza canadensis and C. bonariensis. Int. J. Pest Manag. 2016, 62, 300–307. [Google Scholar] [CrossRef]
- González-Torralva, F.; Cruz-Hipolito, H.; Bastida, F.; Mülleder, N.; Smeda, R.J.; De Prado, R. Differential susceptibility o glyphosate among the Conyza weed species in Spain. J. Agric. Food Chem. 2010, 58, 4361–4366. [Google Scholar] [CrossRef]
- Travlos, I.S.; Chachalis, D. Relative competitiveness of glyphosate-resistant and glyphosate-susceptible populations of hairy fleabane, Conyza bonariensis. J. Pest Sci. 2013, 86, 345–351. [Google Scholar] [CrossRef]
- Piasecki, C.; Carvalho, I.R.; Cechin, J.; Goulart, F.A.P.; Maia, L.C.; Agostinetto, D.; Caverzan, A.; Stewart, C.N., Jr.; Vargas, L. Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant and -sensitive hairy fleabane in response to glyphosate treatment. Bragantia 2019, 78, 379–396. [Google Scholar] [CrossRef] [Green Version]
- Okumu, M.N.; Vorster, B.J.; Reinhardt, C.F. Growth-stage and temperature influence glyphosate resistance in Conyza bonariensis (L.) Cronquist. S. Afr. J. Bot. 2019, 121, 248–256. [Google Scholar] [CrossRef]
- Vargas, L.; Silva, D.R.O.; Agostinetto, D.; Matallo, M.B.; Santos, F.M.; Almeida, S.D.B.; Chavarria, G.; Silva, D.F.P. Glyphosate influence on the physiological parameters of Conyza bonariensis biotypes. Planta Daninha 2014, 32, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Nandula, V.K.; Eubank, T.W.; Poston, D.H.; Koger, C.H.; Reddy, K.N. Factors affecting germination of horseweed (Conyza canadensis). Weed Sci. 2006, 54, 898–902. [Google Scholar] [CrossRef]
- Tozzi, E.; Beckie, H.; Weiss, R.; Gonzalez-Andujar, J.L.; Storkey, J.; van Acker, R.C. Seed germination response to temperature for a range of international populations of Conyza canadensis. Weed Res. 2014, 54, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Valencia-Gredilla, F.; Supiciche, M.L.; Chantre, G.R.; Recasens, J.; Royo-Esnal, A. Germination behaviour of Conyza bonariensis to constant and alternating temperatures across different populations. Ann. Appl. Biol. 2020, 176, 36–46. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014; 1600p. [Google Scholar]
- Marcos Filho, J. Seed vigor testing: An overview of the past, present and future perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Beres, Z.T.; Owen, M.D.K.; Snow, A.A. No evidence for early fitness penalty in glyphosate-resistant biotypes of Conyza canadensis: Common garden experiments in the absence of glyphosate. Ecol. Evol. 2019, 9, 13678–13689. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hasanuzzaman, M.; Wen, H.; Zhang, J.; Peng, T.; Sun, H.; Zhao, Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 2019, 256, 1217–1227. [Google Scholar] [CrossRef]
- Peerzada, A.M.; Chauhan, B.S. Thermal weed control: History, mechanisms, and impacts. In Non-Chemical Weed Control, 1st ed.; Peerzada, A.M., Chauhan, B.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 9–31. [Google Scholar]
- Vidotto, F.; De Palo, F.; Ferrero, A. Effect of short-duration high temperatures on weed seed germination. Ann. Appl. Biol. 2013, 163, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Dahlquist, R.M.; Prather, R.M.; Stapleton, J.J. Time and temperature requirements for weed seed thermal death. Weed Sci. 2007, 55, 619–625. [Google Scholar] [CrossRef]
- Bauer, M.V.; Marx, C.; Bauer, F.B.; Flury, D.M.; Ripken, T.; Streit, B. Thermal weed control technologies for conservation agriculture—A review. Weed Res. 2020, 60, 241–250. [Google Scholar] [CrossRef]
Site | Municipality/State | Biotype | Coordinates |
---|---|---|---|
A | Passo Fundo, Rio Grande do Sul | S1 | −28°20′03″ S and −52°17′00″ W |
R1 | −28°19′56″ S and −52°17′10″ W | ||
B | Palmeira, Paraná | S2 | −25°24′26″ S and −50°00′13″ W |
R2 | −25°24′32″ S and −50°00′11″ W | ||
C | Matão, São Paulo | S3 | −21°36′05″ S and −48°25′56″ W |
R3 | −21°36′18″ S and −48°26′10″ W |
Site /1 Biotype | Parameters /2 | GR50 | RF50 | GR80 | RF80 | |||||
---|---|---|---|---|---|---|---|---|---|---|
min | max | Hillslope | R2 | p-Value | ||||||
A | S1 | 24.3 | 98.7 | 3.0 | 0.9773 | <0.001 | 90.6 | 6.9 | 145.1 | 7.1 |
R1 | 52.8 | 99.4 | 2.8 | 0.9765 | <0.001 | 628.0 | 1030.1 | |||
B | S2 | 14.6 | 97.9 | 1.9 | 0.9756 | <0.001 | 78.5 | 4.5 | 161.8 | 4.3 |
R2 | 36.6 | 98.9 | 2.0 | 0.9747 | <0.001 | 349.5 | 697.9 | |||
C | S3 | 23.3 | 98.6 | 2.2 | 0.9722 | <0.001 | 88.1 | 5.8 | 164.9 | 4.6 |
R3 | 41.9 | 96.7 | 3.6 | 0.9691 | <0.001 | 510.8 | 754.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, G.d.S.; Cruz, R.A.-d.l.; Costa, F.R.d.; Coelho, C.M.M.; Prado, R.D.; Carvalho, L.B.d. Stressful Conditions Affect Seed Quality in Glyphosate Resistant Conyza bonariensis (L.). Agronomy 2020, 10, 1706. https://doi.org/10.3390/agronomy10111706
Amaral GdS, Cruz RA-dl, Costa FRd, Coelho CMM, Prado RD, Carvalho LBd. Stressful Conditions Affect Seed Quality in Glyphosate Resistant Conyza bonariensis (L.). Agronomy. 2020; 10(11):1706. https://doi.org/10.3390/agronomy10111706
Chicago/Turabian StyleAmaral, Gabriel da Silva, Ricardo Alcántara-de la Cruz, Flávia Regina da Costa, Cileide Maria Medeiros Coelho, Rafael De Prado, and Leonardo Bianco de Carvalho. 2020. "Stressful Conditions Affect Seed Quality in Glyphosate Resistant Conyza bonariensis (L.)" Agronomy 10, no. 11: 1706. https://doi.org/10.3390/agronomy10111706
APA StyleAmaral, G. d. S., Cruz, R. A. -d. l., Costa, F. R. d., Coelho, C. M. M., Prado, R. D., & Carvalho, L. B. d. (2020). Stressful Conditions Affect Seed Quality in Glyphosate Resistant Conyza bonariensis (L.). Agronomy, 10(11), 1706. https://doi.org/10.3390/agronomy10111706