Multiple Resistance to Glyphosate and 2,4-D in Carduus acanthoides L. from Argentina and Alternative Control Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Glyphosate and 2,4-D Dose–Response Assay
2.3. Shikimic Acid Accumulation
2.4. Ethylene Accumulation
2.5. Foliar Retention and Efficacy of Herbicides
2.6. Alternative Chemical Control
2.7. Statistical Analysis
3. Results
3.1. Dose–Response Assays
3.2. Shikimic Acid Accumulation
3.3. Ethylene Accumulation
3.4. Foliar Retention and the Efficacy of Herbicides
3.5. Alternative Chemical Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cruz-Hipolito, H.; Rojano-Delgado, A.; Domínguez-Valenzuela, J.A.; Heredia, A.; de Castro, M.D.L.; de Prado, R. Glyphosate tolerance by Clitoria ternatea and Neonotonia wightii plants involves differential absorption and translocation of the herbicide. Plant Soil 2011, 347, 221–230. [Google Scholar] [CrossRef]
- Orcaray, L.; Zulet, A.; Zabalza, A.; Royuela, M. Impairment of carbon metabolism induced by the herbicide glyphosate. J. Plant Physiol. 2012, 169, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinrücken, H.C.; Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980, 94, 1207–1212. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonny, S. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact. Environ. Manag. 2016, 57, 31–48. [Google Scholar] [CrossRef]
- Heap, I.; Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018, 74, 1040–1049. [Google Scholar] [CrossRef]
- Powles, S.B.; Lorraine-Colwill, D.F.; Dellow, J.J.; Preston, C. Evolved Resistance to Glyphosate in Rigid Ryegrass (Lolium rigidum) in Australia. Weed Sci. 1998, 46, 604–607. [Google Scholar] [CrossRef]
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: www.weedscience.org (accessed on 1 October 2020).
- SENASA. Servicio Nacional de Sanidad y Calidad Agroalimentaria. Available online: https://www.argentina.gob.ar/senasa (accessed on 26 September 2020).
- Vara, A. Transgénicos en Argentina: Más allá del boom de la soja. CTS Rev. Iberoam. Ciencia Tecnol. Y Soc. 2004, 1, 101–129. [Google Scholar]
- Busi, R.; Goggin, D.E.; Heap, I.M.; Horak, M.J.; Jugulam, M.; Masters, R.A.; Napier, R.M.; Riar, D.S.; Satchivi, N.M.; Torra, J.; et al. Weed resistance to synthetic auxin herbicides. Pest Manag. Sci. 2018, 74, 2265–2276. [Google Scholar] [CrossRef]
- Mithila, J.; Hall, J.C.; Johnson, W.G.; Kelley, K.B.; Riechers, D.E. Evolution of Resistance to Auxinic Herbicides: Historical Perspectives, Mechanisms of Resistance, and Implications for Broadleaf Weed Management in Agronomic Crops. Weed Sci. 2011, 59, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Rey-Caballero, J.; Menéndez, J.; Giné-Bordonaba, J.; Salas, M.; Alcántara, R.; Torra, J. Unravelling the resistance mechanisms to 2,4-D (2,4-dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas). Pestic. Biochem. Physiol. 2016, 133, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Riar, D.S.; Burke, I.C.; Yenish, J.P.; Bell, J.; Gill, K. Inheritance and Physiological Basis for 2,4-D Resistance in Prickly Lettuce (Lactuca serriola L.). J. Agric. Food Chem. 2011, 59, 9417–9423. [Google Scholar] [CrossRef]
- Hilton, H.W. Herbicide tolerant strains of weeds. In Hawaiian Sugar Planters Association Annual Report; Hawaiian Sugar Planters Association, Ed.; University of Hawaii, Manoa Library: Honolulu, HI, USA, 1957; pp. 69–72. [Google Scholar]
- Switzer, C.M. The existence of 2,4--D resistant strains of wild carrot. Proc. Northeast Weed Control Conf. 1957, 11, 315–318. [Google Scholar]
- Gaskin, R.E.; Holloway, P.J. Some physicochemical factors influencing foliar uptake enhancement of glyphosatemono(isopropylammonium) by polyoxyethylene surfactants. Pestic. Sci. 1992, 34, 195–206. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Vazquez-Garcia, J.G.; Travlos, I.; Tataridas, A.; Kanatas, P.; Domínguez-Valenzuela, J.A.; de Prado, R. Effect of Adjuvant on Glyphosate Effectiveness, Retention, Absorption and Translocation in Lolium rigidum and Conyza Canadensis. Plants 2020, 9, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaner, D.L.; Nadler-Hassar, T.; Henry, W.B.; Koger, C.H. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 2005, 53, 769–774. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Song, Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J. Integr. Plant Biol. 2014, 56, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, B.K.; Alcántara-de la Cruz, R.; Alcántara, E.; Torra, J.; Domínguez-Valenzuela, J.A.; Cruz-Hipólito, H.E.; Rojano-Delgado, A.M.; De Prado, R. Multiple Resistance Evolution in Bipyridylium-Resistant Epilobium ciliatum After Recurrent Selection. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Tornisielo, V.L.; Botelhoi, R.G.; de Alves, P.A.T.; Bonfleur, E.J.; Monteiro, S.H. Pesticide Tank Mixes: An Environmental Point of View. In Herbicides—Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; InTech: Rijeka, Croatia, 2013; pp. 473–787. ISBN 978-953-51-1112-2. [Google Scholar]
- Neve, P.; Powles, S. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theor. Appl. Genet. 2005, 110, 1154–1166. [Google Scholar] [CrossRef]
- Radosevich, S.R.; Ghersa, C.; Holt, J.S. Weed Ecology: Implications for Management, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [Green Version]
- Délye, C.; Jasieniuk, M.; Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013, 29, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Desrochers, A.M.; Bain, J.F.; Warwick, S.I. The Biology Of Canadian Weeds.: 89. Carduus nutans L. and Carduus acanthoides L. Can. J. Plant Sci. 1988, 68, 1053–1068. [Google Scholar] [CrossRef] [Green Version]
- Montoya, J.; Berhongaray, G.; Romano, N. Weed management in perennial pastures based on legumes. Ed. INTA 2018, 1–36. [Google Scholar]
- Mora, A.D.; Rosario, J.; Rojano-Delgado, A.M.; Palma-Bautista, C.; Torra, J.; Alcántara-De La Cruz, R.; De Prado, R. Multiple Resistance to Synthetic Auxin Herbicides and Glyphosate in Parthenium hysterophorus Occurring in Citrus Orchards. J. Agric. Food Chem. 2019, 67, 10010–10017. [Google Scholar] [CrossRef]
- Shimabukuro, R.H.; Hoffer, B.L. Induction of ethylene as an indicator of senescence in the mode of action of diclofop-methyl. Pestic. Biochem. Physiol. 1996, 54, 146–158. [Google Scholar] [CrossRef]
- Gauvrit, C. Glyphosate Response to Calcium, Ethoxylated Amine Surfactant, and Ammonium Sulfate. Weed Technol. 2003, 17, 799–804. [Google Scholar] [CrossRef]
- González-Torralva, F.; Gil-Humanes, J.; Barro, F.; Domínguez-Valenzuela, J.A.; de Prado, R. First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards. Agron. Sustain. Dev. 2014, 34, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Vanhala, P.; Kurstjens, D.; Ascard, J.; Bertram, A.; Cloutier, D.C.; Mead, A.; Raffaelli, M.; Rasmussen, J. Guidelines for physical weed control research: Flame weeding, weed harrowing and intra-row cultivation. In Proceedings 6th EWRS Workshop on Physical and Cultural Weed Control; European Weed Research Society: Lillehammer, Norway, 2004; pp. 194–225. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- Frans, R.; Talbert, R.; Marx, D.; Crowley, H. Experimental Design and Techniques for Measuring and Analyzing Plant Responses to Weed Control Practices. In Research Methods in Weed Science; Camper, N.D., Ed.; WSSA: Champaign, IL, USA, 1986; pp. 29–46. [Google Scholar]
- Nunes, A.L.; Vidal, R.A.; Trezzi, M.M.; Kalsing, A.; Goulart, I.C.G.R. Herbicides to control Chloris distichophylla (False-Star-Grass). Rev. Bras. Herbic. 2007, 6, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Green, J.M. Current state of herbicides in herbicide-resistant crops. Pest Manag. Sci. 2014, 70, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cornejo, J.; Caswell, M.F. The First Decade of Genetically Engineered Crops in the United States. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=899582 (accessed on 10 August 2020).
- Faccini, D.; Puricelli, E.; Alonso, D.; Clemente, M.; Gabbi, G.; Zallocco, L. Control of Carduus acanthoides and Cirsium vulgare with different doses of post-emergent herbicides. Agromensajes Fac. 2006, 20, 14–15. [Google Scholar]
- Bracamonte, E.; da Silveira, H.M.; Alcántara-de la Cruz, R.; Domínguez-Valenzuela, J.A.; Cruz-Hipolito, H.E.; De Prado, R. From tolerance to resistance: Mechanisms governing the differential response to glyphosate in Chloris barbata. Pest Manag. Sci. 2018, 74, 1118–1124. [Google Scholar] [CrossRef]
- García, M.J.; Palma-Bautista, C.; Rojano-Delgado, A.M.; Bracamonte, E.; Portugal, J.; Alcántara-de la Cruz, R.; De Prado, R. The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus. Int. J. Mol. Sci. 2019, 20, 2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracamonte, E.; Fernández-Moreno, P.T.; Barro, F.; De Prado, R. Glyphosate-Resistant Parthenium hysterophorus in the Caribbean Islands: Non Target Site Resistance and Target Site Resistance in Relation to Resistance Levels. Front. Plant Sci. 2016, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Palma-Bautista, C.; Rojano-Delgado, A.M.; Dellaferrera, I.; Rosario, J.M.; Vigna, M.R.; Torra, J.; de Prado, R. Resistance Mechanisms to 2,4-D in Six Different Dicotyledonous Weeds Around the World. Agronomy 2020, 10, 566. [Google Scholar] [CrossRef] [Green Version]
- Torra, J.; Rojano-Delgado, A.M.; Rey-Caballero, J.; Royo-Esnal, A.; Salas, M.L.; De Prado, R. Enhanced 2,4-D metabolism in two resistant Papaver rhoeas populations from Spain. Front. Plant Sci. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nalewaja, J.D.; Devillers, B.; Matysiak, R. Surfactant and salt affect glyphosate retention and absorption. Weed Res. 1996, 36, 241–247. [Google Scholar] [CrossRef]
- Sharma, S.D.; Chandrasena, N.; Singh, M. Glyphosate-adjuvant interactions: A review of recent experiences. In Proceedings of the 20th Asia-Pacific Weed Science Society Conference, Ho-Chi-Minh City, Vietnam, 7–11 November 2005; pp. 434–442. [Google Scholar]
- Liebman, M.; Dyck, E. Crop Rotation and Intercropping Strategies for Weed Management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef]
- Zand, E.; Ali Baghestani, M.; Soufizadeh, S.; PourAzar, R.; Veysi, M.; Bagherani, N.; Barjasteh, A.; Mehdi Khayami, M.; Nezamabadi, N. Broadleaved weed control in winter wheat (Triticum aestivum L.) with post-emergence herbicides in Iran. Crop Prot. 2007, 26, 746–752. [Google Scholar] [CrossRef]
- Kumar, V.; Jha, P. Effective Preemergence and Postemergence Herbicide Programs for Kochia Control. Weed Technol. 2015, 29, 24–34. [Google Scholar] [CrossRef]
- LeClere, S.; Wu, C.; Westra, P.; Sammons, R.D. Cross-resistance to dicamba, 2,4-D, and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene. Proc. Natl. Acad. Sci. USA 2018, 115, E2911–E2920. [Google Scholar] [CrossRef] [Green Version]
- Eubank, T.W.; Poston, D.H.; Nandula, V.K.; Koger, C.H.; Shaw, D.R.; Reynolds, D.B. Glyphosate-resistant Horseweed (Conyza canadensis) Control Using Glyphosate-, Paraquat-, and Glufosinate-Based Herbicide Programs. Weed Technol. 2008, 22, 16–21. [Google Scholar] [CrossRef]
- Kaur, S.; Sandell, L.D.; Lindquist, J.L.; Jhala, A.J. Glyphosate-Resistant Giant Ragweed (Ambrosia trifida) Control in Glufosinate-Resistant Soybean. Weed Technol. 2014, 28, 569–577. [Google Scholar] [CrossRef]
- Copeland, P.J.; Allmaras, R.R.; Crookston, R.K.; Nelson, W.W. Corn-Soybean Rotation Effects on Soil Water Depletion. Agron. J. 1993, 85, 203–210. [Google Scholar] [CrossRef]
- Crookston, R.K.; Kurle, J.E.; Copeland, P.J.; Ford, J.H.; Lueschen, W.E. Rotational Cropping Sequence Affects Yield of Corn and Soybean. Agron. J. 1991, 83, 108–113. [Google Scholar] [CrossRef]
- Edwards, J.H.; Thurlow, D.L.; Eason, J.T. Influence of Tillage and Crop Rotation on Yields of Corn, Soybean, and Wheat. Agron. J. 1988, 80, 76–80. [Google Scholar] [CrossRef]
- Pedersen, P.; Lauer, J.G. Influence of Rotation Sequence on the Optimum Corn and Soybean Plant Population. Agron. J. 2002, 94, 968–974. [Google Scholar] [CrossRef]
Herbicide | HRAC Group | Trade Name | Application Time | Recommended Field Dose (g ai ha−1) |
---|---|---|---|---|
Dicamba | O | Banvel® (Dicamba 57.8% SL) | postemergence | 150 |
Fluroxypyr | O | Starane® (Fluroxypyr 20% p/v EC) | postemergence | 150 |
Bromoxynil | C | Buctril® (Bromoxynil 21.8% w/w) | postemergence | 400 |
Atrazine | C | Gesaprim® (Atrazine 90% WG) | postemergence | 2000 |
Diflufenican | F1 | Mamut® (Diflufenican 50% p/v SC) | pre- and postemergence | 150 |
Fomesafen | E | Flex 25 SL® (Fomesafen 25% p/v EC) | postemergence | 76 |
Tembotrione | F2 | Laudis® (Tembotrione 42% SC) | postemergence | 120 |
Flazasulfuron | B | Terafit® (Flazasulfuron 25% WG) | pre- and postemergence | 50 |
Glufosinate | H | Finale® (Glufosinate 15% p/v SL) | postemergence | 500 |
Paraquat | D | Gramoxone® (Paraquat 27.6% SL) | postemergence | 400 |
Herbicide | Population | b | d | GR50 (g ae ha−1) | p-Value | RI |
Fresh weight | ||||||
Glyphosate | R | 1.10 | 101.15 | 534.59 ± 89.82 | <0.001 | 4.60 |
S | 2.26 | 97.79 | 115.37 ± 17.26 | <0.001 | - | |
2,4-D | R | 1.32 | 101.28 | 266.56 ± 19.87 | <0.001 | 6.88 |
S | 1.49 | 99.71 | 38.71 ± 8.29 | <0.001 | - | |
Dry weight | ||||||
Glyphosate | R | 1.06 | 102.54 | 594.12 ± 98.48 | <0.001 | 4.67 |
S | 2.06 | 97.28 | 127.13 ± 18.56 | <0.001 | - | |
2,4-D | R | 1.25 | 101.16 | 246.01 ± 45.48 | <0.001 | 5.48 |
S | 1.62 | 99.72 | 44.85 ± 9.84 | <0.001 | - | |
Plant survival | ||||||
Herbicide | b | d | LD50 (g ae ha−1) | p-value | RI | |
Glyphosate | R | 3.05 | 99.45 | 1854.27 ± 141.05 | <0.001 | 9.48 |
S | 3.11 | 100.89 | 195.56 ± 87.01 | <0.001 | - | |
2,4-D | R | 3.86 | 98.50 | 1577.18 ± 117.08 | <0.001 | 13.39 |
S | 3.31 | 101.28 | 111.78 ± 12.12 | <0.001 | - |
Treatment | Herbicide Dose | Foliar Retention (μL g−1 Dry Weight) | |
---|---|---|---|
R | S | ||
Gly a | 360 g ae ha−1 | 689.78 a | 684.57 a |
Gly + Retenol | 826.35 a | 779.26 a | |
Gly + Trend 90 | 853.83 a | 796.74 a | |
2,4-D | 400 g ae ha−1 | 348.52 a | 349.95 a |
2,4-D + Retenol | 396.93 a | 394.38 a | |
2,4-D + Trend 90 | 400.97 a | 396.26 a |
Treatment | % Dry Weight Reduction | |
---|---|---|
R (400 g ae ha−1) | S (200 g ae ha−1) | |
Gly a | 51.82 b | 47.04 b |
Gly + Retenol | 58.12 a | 54.08 ab |
Gly + Trend 90 | 61.72 a | 61.91 a |
R (200 g ae ha−1) | S (40 g ae ha−1) | |
2,4-D | 37.22 a | 37.02 a |
2,4-D + Retenol | 44.10 a | 45.50 a |
2,4-D + Trend 90 | 47.75 a | 47.20 a |
Herbicides | Field Doses (g ai ha−1) | Visual Evaluation a | % Survival b | % Fw Reduction | |||
---|---|---|---|---|---|---|---|
R | S | R | S | R | S | ||
Control | - | 0 | 0 | 100 | 100 | 0 | 0 |
Dicamba | 150 | 100 | 90 | 0 | 10 | 100 a | 98.31 a |
Fluroxypyr | 150 | 100 | 70 | 10 | 10 | 96.14 a | 97.47 a |
Bromoxynil | 400 | 100 | 100 | 0 | 0 | 100 a | 100 a |
Atrazine | 2000 | 100 | 100 | 0 | 0 | 100 a | 100 a |
Diflufenican | 150 | 50 | 50 | 50 | 50 | 63.12 b | 59.34 b |
Fomesafen | 76 | 50 | 50 | 50 | 50 | 80.97 b | 77.68 b |
Tembotrione | 120 | 100 | 100 | 0 | 0 | 100 a | 100 a |
Flazasulfuron | 50 | 100 | 100 | 0 | 0 | 100 a | 100 a |
Glufosinate | 500 | 100 | 100 | 0 | 0 | 100 a | 100 a |
Paraquat | 400 | 100 | 100 | 0 | 0 | 100 a | 100 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma-Bautista, C.; Belluccini, P.; Gentiletti, V.; Vázquez-García, J.G.; Cruz-Hipolito, H.E.; De Prado, R. Multiple Resistance to Glyphosate and 2,4-D in Carduus acanthoides L. from Argentina and Alternative Control Solutions. Agronomy 2020, 10, 1735. https://doi.org/10.3390/agronomy10111735
Palma-Bautista C, Belluccini P, Gentiletti V, Vázquez-García JG, Cruz-Hipolito HE, De Prado R. Multiple Resistance to Glyphosate and 2,4-D in Carduus acanthoides L. from Argentina and Alternative Control Solutions. Agronomy. 2020; 10(11):1735. https://doi.org/10.3390/agronomy10111735
Chicago/Turabian StylePalma-Bautista, Candelario, Pablo Belluccini, Valentin Gentiletti, José G. Vázquez-García, Hugo E. Cruz-Hipolito, and Rafael De Prado. 2020. "Multiple Resistance to Glyphosate and 2,4-D in Carduus acanthoides L. from Argentina and Alternative Control Solutions" Agronomy 10, no. 11: 1735. https://doi.org/10.3390/agronomy10111735
APA StylePalma-Bautista, C., Belluccini, P., Gentiletti, V., Vázquez-García, J. G., Cruz-Hipolito, H. E., & De Prado, R. (2020). Multiple Resistance to Glyphosate and 2,4-D in Carduus acanthoides L. from Argentina and Alternative Control Solutions. Agronomy, 10(11), 1735. https://doi.org/10.3390/agronomy10111735