Response of Drip Irrigation and Fertigation on Cumin Yield, Quality, and Water-Use Efficiency Grown under Arid Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Site and Details
2.2. Soil Analysis
2.3. Meteorological Observation and Cumulative Pan Evaporation
2.4. Water and Fertilizer Application
2.5. Analyses of Plant Growth, Biomass, and Yield
2.6. Analysis of Water Studies
2.7. Economics Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Drip Irrigation Levels on Cumin Plant Growth, Yield-Attributing Characteristics, and Yield
3.2. Effect of Fertigation Levels on Cumin Plant Growth, Yield-Attributing Characteristics, and Yield
3.3. Effect of Drip Irrigation Levels on Oil Content of Cumin Seed
3.4. Effect of Fertigation Levels on Oil Content of Cumin Seed
3.5. Economic Analysis in Relation to Drip Irrigation
3.6. Economic Analysis in Relation to Fertigation Levels
3.7. Water Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morshedi, D.; Aliakbari, F.; Tayaranian-Marvian, A.; Fassihi, A.; Pan-Montojo, F.; Pérez-Sánchez, H. Cuminaldehyde as the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. J. Food Sci. 2015, 80, H2336–H2345. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhang, X.; Bi, Y.; Miao, R.; Zhang, Z.; Su, H. Anti-inflammatory effects of cumin essential oil by blocking JNK, ERK, and NF-κB signaling pathways in LPS-stimulated RAW 264.7 cells. Evid. Based Complement. Altern. Med. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merah, O.; Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Cerny, M.; Grivot, S.; Evon, P.; Hijazi, A. Biochemical composition of cumin seeds, and biorefining study. Biomolecules 2020, 10, 1054. [Google Scholar] [CrossRef]
- Al-Kassi, G.A.M. Effect of feeding cumin (Cuminum cyminum) on the performance and some blood traits of broiler chicks. Pak. J. Nutr. 2010, 9, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H.; Anjum, M.A.; Parveen, A.; Khawaja, T.; Ashraf, N.M. Effects of black cumin seed (Nigella sativa L.) on performance and immune system in newly evolved crossbred laying hens. Vet. Q. 2013, 33, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Fatima, T.; Beenish, B.N.; Gani, G.; Qadri, T.; Bhat, T.A. Antioxidant potential and health benefits of cumin. J. Med. Plants 2018, 6, 232–236. [Google Scholar]
- Singh, R.P.; Gangadharappa, H.V.; Mruthunjaya, K. Cuminum cyminum-A popular spice: An updated review. Pharmacogn. J. 2017, 9, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Jaganmohan, M. Production of Cumin Seed India 2019 by State. Available online: https://www.statista.com/statistics/870972/cumin-production-by-state-india (accessed on 11 August 2020).
- Khosh-Khui, M.; Bonyanpour, A.R. Effects of some variables on seed germination and seedling growth of cumin (Cuminum cyminum L.). Int. J. Agric. Res. 2010, 5, 365–369. [Google Scholar]
- Kamkar, B.; Koocheki, A.; Mahallati, M.N.; Da Silva, J.A.T.; Moghaddam, P.R.; Kafi, M. Fungal diseases and inappropriate sowing dates, the most important reducing factors in cumin fields of Iran, a case study in Khorasan provinces. Crop Prot. 2011, 30, 208–215. [Google Scholar] [CrossRef]
- Maheria, S.P.; Lal, G.; Mehta, R.S.; Meena, S.S.; Saxena, S.N.; Sharma, Y.K.; Kant, K.; Meena, R.S.; Vishal, M.K.; Singh, R. Enhancing water use efficiency in cumin (Cuminum cyminum L.). Int. J. Seed Spices 2012, 2, 34–38. [Google Scholar]
- Meena, M.; Sagarka, B.K.; Man, M.K. Influence of drip irrigation along with nitrogen levels on yield attributes, yield and quality parameters of rabi drill fennel (Foeniculum vulgare Mill). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2115–2121. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Lal, G.; Maheria, S.P.; Choudhary, S.; Mehta, R.S.; Singh, B. Effect of irrigation techniques and planting methods on yield and water productivity of cumin (Cuminum cyminum L.). Int. J. Seed Spices 2015, 5, 92–94. [Google Scholar]
- Asad, M.E.; Clemente, S.R.; Gupta, A.D.; Loof, R.; Hansen, K.G. Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thialand. Agric. Water Manag. 2002, 52, 197–213. [Google Scholar] [CrossRef]
- Elfving, D.C. Crop response to trickle irrigation. Hortic. Rev. 1982, 4, 1–48. [Google Scholar]
- Kumar, A.; Singh, A.K. Improving nutrient and water use efficiency through fertigation. J. Water Manag. 2002, 10, 42–48. [Google Scholar]
- Clark, G.A.; Stanley, C.D.; Maynard, D.N.; Hochmuth, G.J.; Hanlon, E.A.; Haman, D.Z. Water and fertilizer management of micro irrigated fresh market tomatoes. Trans. ASAE 1991, 34, 429–435. [Google Scholar] [CrossRef]
- Loganathan, V.; Latha, K.R. Effect of drip fertigation on nutrient uptake and seed yield of pigeonpea [Cajanus cajan (L.) Mill sp.] under western agro climatic zones of Tamil Nadu. Legume Res. 2016, 39, 780–785. [Google Scholar]
- Subbiah, B.; Asija, G. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, V.C.; Watamable, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil by Extraction with NaHCO3 Circular; United States Department of Agriculture: Washington, DC, USA, 1954; p. 939.
- Standfold, S.; English, L. Use of flame photometer in rapid soil test for K and Ca. Agron. J. 1949, 41, 446–447. [Google Scholar]
- Singh, D.; Chhonkar, P.K.; Pandey, R.N. Soil Reaction in Soil, Plant, Water Analysis Method: Manual; ICAR-IARI: New Delhi, India, 1999. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Method of Analysis; AOAC: Champaign, IL, USA, 1990. [Google Scholar]
- Viets, F.G. Fertilizers and the efficient use of water. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 1962; Volume 14, pp. 223–264. [Google Scholar]
- Panse, V.G.; Sukhatme, P.V. Statistical Methods for Agricultural Workers; Indian Council of Agricultural Research: New Delhi, India, 1985; pp. 87–89. [Google Scholar]
- Kunapara, A.N.; Subbaiah, R.; Prajapati, G.V. Response of trickle irrigation regimes and lateral spacing on cumin productivity under triangular emitter configurations. J. Pharmacogn. Phytochem. 2018, 7, 1832–1835. [Google Scholar]
- Sharma, S.; Patel, R.H.; Sharma, O.P. Effect of irrigation scheduling and organic manures on moisture extraction pattern, consumptive use, water use efficiency and yield of fenugreek. Int. J. Seed Spices 2016, 6, 13–18. [Google Scholar]
- Lal, G.; Saini, I.P.; Mehta, R.S.; Maheria, S.P.; Sharma, Y. Effect of irrigation and different seed treatment methods on growth and yield of fenugreek (Trigonella foenum-graecum L.). Int. J. Seed Spices 2013, 3, 29–33. [Google Scholar]
- Bafna, A.M.; Dafturdar, S.Y.; Khade, K.K.; Patel, P.V.; Dhatre, R.S. Utilization of nitrogen and water by tomato under drip irrigation system. J. Water Manag. 1993, 1, 1–5. [Google Scholar]
- Raina, J.N.; Thakur, B.C.; Verma, M.L. Effect of drip irrigation and polyethylene mulch on yield, quality and water use efficiency of tomato. Indian J. Agric. Sci. 1999, 69, 430–433. [Google Scholar]
- Lal, G.; Singh, R.; Metha, R.S.; Meena, N.K.; Maheriya, S.P.; Choudhary, M.K. Study on irrigation levels based on IW/CPE ratio and irrigation methods on growth and yield of fenugreek (Trigonella foenium-graecum L.). Legume Res. 2019. [Google Scholar] [CrossRef]
- Kunapara, A.N.; Subbaiah, R.; Prajapati, G.V.; Makwana, J.J. Influence of drip irrigation regimes and lateral spacing on cumin productivity. Curr. World Environ. 2016, 11, 333–337. [Google Scholar] [CrossRef]
- Kanwar, K.; Harisha, C.B.; Singh, R.; Aadityendra. Growth, seed yield, protein content and water use efficiency of fenugreek (Trigonella foenum graceum L.) as influenced by drip irrigation regimes and fertigation levels. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 997–1003. [Google Scholar] [CrossRef]
- Lakpale, R.; Shrivastava, G.K.; Tripathi, R.S. Effect of irrigation schedule on growth, yield and economics of spice crops. Indian J. Agric. Sci. 2007, 77, 170–173. [Google Scholar]
- Bhunia, S.R.; Verma, I.M.; Sahu, M.P.; Sharma, N.C.; Balai, K. Effect of drip irrigation and bioregulators on yield, economics and water use of fenugreek (Trigonella foenum-graecum). J. Spices Aromat. Crops 2015, 24, 102–105. [Google Scholar]
- Bhunia, S.R.; Chauhan, R.P.S.; Yadav, B.S. Effect of nitrogen and irrigation on water use, moisture-extraction pattern, nutrient uptake and yield of fennel (Foeniculum vulgare). Indian J. Agron. 2005, 50, 73–76. [Google Scholar]
- Singh, J.; Babar, S.; Deshmukh, R.; Bharambe, P.R.; Singandhupe, R.B. Drip fertigation effect on yield, water use efficiency and economics of bt cotton in semi-arid region. PKV Res. J. 2012, 36, 27–31. [Google Scholar]
- Solanki, R.M.; Vasava, M.S.; Gohil, B.S. Influence of drip irrigation and fertility levels on growth, yield and water use efficiency of drilled rabi fennel (Foeniculum vulgare mill.). Int. J. Sci. Environ. Technol. 2017, 6, 1972–1978. [Google Scholar]
- Jat, M.L.; Shivran, A.C.; Puniya, M.M.; Boori, P.K.; Ola, B.L.; Verma, H.P. Effect of drip irrigation scheduling on growth and seed production of fennel (Foeniculum vulgare Mill.) under semi-arid agro-climatic condition. Int. J. Seed Spices 2015, 5, 67–73. [Google Scholar]
- Godara, S.R.; Verma, I.M.; Gaur, J.K.; Bairwa, S.; Yadav, P.K. Effect of different levels of drip irrigation along with various fertigation levels on growth, yield and water use efficiency in fennel (Foeniculum vulgare Mill.). Asian J. Hortic. 2013, 8, 758–762. [Google Scholar]
- Meena, M.; Sagarka, B.K.; Das, T.; Poonia, T.C. Effect of drip irrigation and nitrogen levels on growth parameters and yield of drilled rabi fennel (Foeniculum vulgare Mill.) in Saurashtra region of Gujarat. Res. Environ. Life Sci. 2016, 9, 97–99. [Google Scholar]
- Pandey, A.K.; Singh, A.K.; Kumar, A.; Singh, S.K. Effect of drip irrigation, spacing and nitrogen fertigation on productivity of Chilli (Capsicum annum L.). Ecol. Environ. 2013, 31, 139–142. [Google Scholar]
- Sampath, K.T.; Krishnaswamy, S.; Veerbadran, V.; Shyamsundar, K. Effect of drip, surface irrigation method on yield and yield attributing characters in summer cotton. Res. Crops 2006, 7, 120–122. [Google Scholar]
- Veerputhrin, R.; Karadsamy, O.S.; Suredrasingh, S.D. Effect of drip irrigation and fertigation on growth, yield of hybrid cotton. J. Agric. Resour. Manag. 2002, 1, 88–97. [Google Scholar]
- Wang, J.D.; Gong, S.H.; Sui, J.; Xu, H.; Yu, Y.D. Effects of drip irrigation frequency on the farmland soil water heat distribution and spring maize growth in North Chin. Trans. CSAE 2008, 24, 39–45. [Google Scholar]
- Gao, J.P.; Zhang, W.Z.; Sui, C.H.; Yao, C.; Gao, M.C.; Zhao, M.H. Relationship between temperature difference and yield and quality of rice at jointing and booting stage under water stress. J. Nucl. Agric. Sci. 2016, 30, 596–604. [Google Scholar]
- Honnappa, A.; Harisha, C.B.; Singh, R. Precision irrigation and fertigation for higher productivity and water use efficiency in fenugreek (Trigonella foenum-graecum L.) in semi-arid conditions of Rajasthan. Bioscan 2017, 12, 591–594. [Google Scholar]
- Jangir, R.P.; Jat, B.L.; Rathore, M.S. Comparative efficacy of sprinkler and surface methods of irrigation in cumin (Cuminum cyminum) under arid western Rajasthan condition. Indian J. Agron. 2007, 52, 83–85. [Google Scholar]
- Mahalakshmi, M.; Kumar, N.; Jeyakumar, P.; Soorianathasundaram, K. Fertigation Studies in Banana under high density planting system. South Indian Hortic. 2001, 49, 80–85. [Google Scholar]
- Koyani, C.R.; Chovatia, P.K.; Gohil, G.S. Effect of nitrogen and phosphorus on growth, yield attributes and yields of rabi fennel (Foeniculum vulgare Mill). In Agriculture towards a New Paradigm of Sustainability; Excellent Publishing House: New Delhi, India, 2014; pp. 167–171. [Google Scholar]
- Ghanta, P.K.; Dhua, R.S.; Mitra, S.K. Effect of varying levels of nitrogen, phosphorus and potassium on growth, yield and quality of papaya (Carica papaya L.). Ann. Agric. Res. 1995, 16, 405–408. [Google Scholar]
- Manohar, K.R. Evolution of Capsicum (Capsicum annum) Genotypes and Effect of Source of Fertilizers and Levels of Fertigation under Cost Effective Green House. Ph.D. Thesis, University of Agricultural Sciences, Bangalore, India, 2002. [Google Scholar]
- Basavaraju, T.B.; Bhagya, H.P.; Prashanth, M.; Arulraj, S.; Maheswarappa, H.P. Effect of fertigation on the productivity of coconut. J. Plant. Crops 2014, 42, 198–204. [Google Scholar]
- Mmolawa, K.; Or, D. Water and solute dynamics under a drip-irrigated crop: Experiments and analytical model. Trans. ASAE 2000, 43, 1597–1608. [Google Scholar] [CrossRef]
- Mohammad, M.J. Utilization of applied fertilizer nitrogen and irrigation water by drip-fertigated squash as determined by nuclear and traditional techniques. Nutr. Cycl. Agroecosyst. 2004, 68, 1–11. [Google Scholar] [CrossRef]
- Mohammad, M.J. Squash yield nutrient content and soil fertility parameters in response to fertilizer application and rates of nitrogen fertigation. Nutr. Cycl. Agroecosyst. 2004, 68, 99–108. [Google Scholar] [CrossRef]
- Shigure, P.S.; Lallan, R.; Marathe, R.A.; Yadav, K.P.; Ram, L. Effect of nitrogen fertigation as vegetative growth and leaf nutrient content of acid lime (Citrus aurantifolia, Swingle) in Central India. Indian J. Soil Conserv. 1999, 27, 45–49. [Google Scholar]
- Balasubramanian, V.S.; Palanaiappan, S.P.; Chelliah, S. Increasing water use efficiency through fertigation in cotton. J. Indian Soc. Cotton Improv. 2000, 25, 92–95. [Google Scholar]
- Harisha, C.B.; Diwakar, Y.; Aishwath, O.P.; Singh, R.; Asangi, H. Soil fertility and micronutrient uptake by fennel (Foeniculum vulgare Mill.) as influenced by micronutrients fertilization. Environ. Ecol. 2017, 35, 514–518. [Google Scholar]
- Laribi, B.; Bettaieb, I.; Kouki, K.; Sahli, A.; Mougou, A.; Marzouk, B. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind. Crops Prod. 2009, 31, 34–42. [Google Scholar] [CrossRef]
- Jordan, M.J.; Martinez, R.M.; Cases, M.A.; Sotomayor, J.A. Watering level effect on Thymus hyemalislange essential oil yield and composition. J. Agric. Food Chem. 2003, 51, 5420–5427. [Google Scholar] [CrossRef] [PubMed]
- Khazaie, H.R.; Nadjafi, E.; Bannayan, M. Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus officinalis). Ind. Crops Prod. 2008, 27, 315–321. [Google Scholar] [CrossRef]
- Naresha, R.; Laxminarayana, P.; Suneetha Devi, K.B.; Sailaja, V. Quality, yield and economics of rabi groundnut as influenced by irrigation scheduling and phosphogypsum levels. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3292–3303. [Google Scholar] [CrossRef]
- Chattopaddhyay, S.; Ghosh, G.K. Response of rapeseed to various sources and levels of sulphur in red and lateritic soils of west Bengal, India. Int. J. Plant Anim. Environ. Sci. 2012, 2, 50–59. [Google Scholar]
- Patel, G.N.; Patel, P.T.; Patel, P.H.; Patel, D.M.; Patil, D.K.; Patil, R.M. Yield attributes, yield, quality and uptake of nutrients by summer groundnut, Arachis hypogaea L. as influenced by sources and levels of sulphur under varying irrigation schedules. J. Oilseeds Res. 2009, 26, 119–122. [Google Scholar]
- Satyanarayan, V.; Reddy, E.V.R.; Dutt, K. Effect of graded levels of N, P, plant spacing on sunflower. J. Oilseed Res. 1986, 3, 116–119. [Google Scholar]
- Premi, O.P.; Kandpal, B.K.; Rathore, S.S.; Shekhawat, K.; Chauhan, J.S. Green manuring, mustard residue recycling and fertilizer application affects productivity and sustainability of Indian mustard (Brassica juncea L.) in Indian semi-arid tropics. Ind. Crops Prod. 2013, 41, 423–429. [Google Scholar] [CrossRef]
- Jain, N.K.; Meena, H.N.; Bhaduri, D.; Yadav, R.S. Drip fertigation and irrigation interval effects on growth, productivity, nutrient, and water economy in summer peanut. Commun. Soil Sci. Plant Anal. 2018, 49, 2406–2417. [Google Scholar] [CrossRef]
- Rao, S.S.; Singh, Y.V.; Regar, P.L.; Chand, K. Effect of micro-irrigation on productivity and water use of cumin (Cuminum cyminum) at varying fertility levels. Indian J. Agric. Sci. 2010, 80, 507–511. [Google Scholar]
- Sadarunnisa, S.; Madhumathi, C.; Rao, G.S.; Sreenivasulu, B. Effect of fertigation on growth and yield of turmeric cv. Mydukur. J. Hortic. Sci. 2010, 5, 78–80. [Google Scholar]
- Giana, G.K.; Shivran, A.C.; Verma, H.P. Effect of drip irrigation and fertigation on yield and economics of fennel. Int. J. Chem. Stud. 2019, 7, 52–54. [Google Scholar]
- Ankush, S.S. Yield, quality, nutrient and water use efficiency of tomato as affected by different fertigation rates through drip irrigation system. Indian J. Agric. Res. 2017, 51, 478–482. [Google Scholar]
- Pawar, D.D.; Dingre, S.K.; Surve, U.S. Growth, yield and water use in sugarcane (Saccharum officinarum) under drip Fertigation. Indian J. Agron. 2013, 58, 396–401. [Google Scholar]
- Rathore, S.S.; Shekhawat, K.; Kandpal, B.K.; Premi, O.P. Micro-irrigation and fertigation improves gas exchange, productivity traits and economics of Indian mustard (Brassica juncea L. Czern) and Cosson) under semi-arid conditions. Aust. J. Crop Sci. 2014, 8, 582–595. [Google Scholar]
- Datta, S.; Chatterjee, R.; Sinha, A.C. Effect of irrigation level on growth, yield and evapo-transpiration in coriander. Indian J. Hortic. 2006, 63, 428–432. [Google Scholar]
- Bandyopadhyay, K.K.; Ghosh, P.K.; Hati, K.M.; Mishra, A.K. Efficient utilization of limited available water in wheat through proper irrigation scheduling and integrated nutrient management under different cropping systems in a vertisol. J. Indian Soc. Soil Sci. 2009, 57, 121–128. [Google Scholar]
- Wang, X.; Yanyan, S.; Ying, S.M.J.; Jun, G.; Zhang, Q. Recovery of 15N-labeled urea and soil nitrogen dynamics as affected by irrigation management and nitrogen application rate in a double rice cropping system. Plant Soil 2001, 343, 195–208. [Google Scholar] [CrossRef]
- Kar, G.; Singh, R.; Verma, H.N. Phenological based irrigation scheduling and determination of crop coefficient of winter maize in rice fallow of eastern India. Agric. Water Manag. 2005, 75, 169–183. [Google Scholar] [CrossRef]
- Turner, N.C. Crop water deficits: A decade of progress. Adv. Agron. 1987, 39, 1–51. [Google Scholar]
- Kipkorir, E.C.; Raes, D.; Massawe, B. Seasonal water production functions and yield response factors for maize and onion in Perkerra, Kenya. Agric. Water Manag. 2002, 56, 229–240. [Google Scholar] [CrossRef]
- Mehta, R.S.; Patel, B.S.; Singh, R.K.; Meena, S.S.; Malhotra, S.K. Growth and yield of fenugreek (Trigonella foenum-graecum L.) as influenced by irrigation levels and weed management practices. J. Spices Aromat. Crops 2010, 19, 14–22. [Google Scholar]
Treatment | Plant Height (cm) | Number of Branches plant−1 | Number of Umbels plant−1 | Number of Umbellate umbel−1 | Number of Seeds umbellate−1 | Test Weight (g) |
---|---|---|---|---|---|---|
Irrigation levels | ||||||
Drip irrigation at 0.4 CPE (I0.4) | 29.8 | 6.90 | 46.1 | 4.93 | 5.06 | 4.44 |
Drip irrigation at 0.6 CPE (I0.6) | 31.4 | 7.11 | 50.4 | 5.07 | 5.34 | 4.60 |
Drip irrigation at 0.8 CPE (I0.8) | 30.7 | 6.98 | 48.8 | 5.00 | 5.20 | 4.45 |
SEm± | 0.2 | 0.08 | 0.5 | 0.02 | 0.03 | 0.04 |
CD (p = 0.05) | 0.6 | 0.27 | 1.7 | 0.08 | 0.10 | 0.13 |
Fertigation levels | ||||||
Fertigation with 60% RDF (F60) | 29.9 | 3.48 | 45.9 | 4.94 | 5.13 | 4.35 |
Fertigation with 80% RDF (F80) | 31.1 | 3.52 | 50.0 | 5.03 | 5.24 | 4.67 |
Fertigation with 100% RDF (F100) | 30.9 | 3.46 | 49.5 | 5.04 | 5.23 | 4.46 |
SEm± | 0.2 | 0.04 | 0.5 | 0.02 | 0.03 | 0.04 |
CD (p = 0.05) | 0.6 | 0.12 | 1.7 | 0.08 | 0.10 | 0.13 |
Control vs. Others | ||||||
Surface irrigation at 0.8 CPE with 100% RDF (S0.8 F100) | 27.4 | 3.26 | 37.6 | 4.60 | 4.70 | 3.99 |
Others | 30.6 | 3.49 | 48.4 | 5.00 | 5.20 | 4.49 |
SEm± | 0.3 | 0.06 | 0.9 | 0.04 | 0.05 | 0.07 |
CD (p = 0.05) | 1.0 | 0.20 | 3.0 | 0.14 | 0.17 | 0.23 |
C.V | ||||||
Fertigation (F) | * | * | * | * | * | |
Irrigation (I) | * | * | * | * | * | |
Fertigation × Irrigation (I × N) | * | * | * | |||
Control/others | * | * | * | * | * | * |
Treatment | Seed Yield (Kg/ha) | Oil Content (%) | ||||||
---|---|---|---|---|---|---|---|---|
2016–2017 | 2017–2018 | 2018–2019 | Pooled | 2016–2017 | 2017–2018 | 2018–2019 | Pooled | |
Irrigation levels | ||||||||
Drip irrigation at 0.4 CPE (I0.4) | 1252 | 857 | 695 | 934 | 3.53 | 3.51 | 3.21 | 3.42 |
Drip irrigation at 0.6 CPE (I0.6) | 1395 | 1007 | 786 | 1063 | 3.60 | 3.59 | 3.43 | 3.54 |
Drip irrigation at 0.8 CPE (I0.8) | 1374 | 1028 | 798 | 1067 | 3.61 | 3.50 | 3.42 | 3.51 |
SEm± | 21.5 | 30.7 | 15.6 | 14.4 | 0.07 | 0.07 | 0.10 | 0.04 |
CD (p = 0.05) | 64.0 | 91.1 | 46.4 | 40.8 | 0.20 | 0.21 | 0.29 | 0.12 |
Fertigation levels | ||||||||
Fertigation with 60% RDF (F60) | 1292 | 887 | 717 | 966 | 3.64 | 3.53 | 3.28 | 3.48 |
Fertigation with 80% RDF (F80) | 1372 | 1005 | 780 | 1052 | 3.67 | 3.56 | 3.34 | 3.52 |
Fertigation with 100% RDF (F100) | 1357 | 1001 | 782 | 1046 | 3.43 | 3.51 | 3.44 | 3.46 |
SEm± | 21.5 | 30.7 | 15.6 | 14.4 | 0.07 | 0.07 | 0.10 | 0.04 |
CD (p = 0.05) | 64.0 | 91.1 | 46.4 | 40.8 | 0.20 | 0.21 | 0.29 | 0.12 |
Control vs. Others | ||||||||
Surface irrigation at 0.8 CPE with 100% RDF (S0.8 F100) | 824 | 539 | 530 | 631 | 3.35 | 3.30 | 3.13 | 3.26 |
Others | 1340 | 964 | 760 | 1021 | 3.58 | 3.53 | 3.36 | 3.49 |
SEm± | 27.8 | 39.6 | 20.2 | 24.9 | 0.09 | 0.09 | 0.13 | 0.06 |
CD (p = 0.05) | 82.6 | 117.6 | 59.9 | 70.7 | 0.25 | 0.28 | 0.38 | 0.20 |
C.V | 5.60 | 6.17 | 8.93 | |||||
Fertigation (F) | * | * | * | * | * | |||
Irrigation (I) | * | * | * | * | ||||
Fertigation × Irrigation (I × N) | * | * | * | |||||
Control/others | * | * | * | * | * |
Treatment | Gross Returns (×103 ₹ ha−1) | Net Returns (×103 ₹ ha−1) | B:C | ||||||
---|---|---|---|---|---|---|---|---|---|
2016–2017 | 2017–2018 | 2018–2019 | Pooled | 2016–2017 | 2017–2018 | 2018–2019 | Pooled | Pooled | |
Irrigation levels | |||||||||
Drip irrigation at 0.4 CPE (I0.4) | 212.8 | 128.6 | 114.6 | 152.0 | 154.2 | 70.1 | 56.1 | 93.5 | 2.6 |
Drip irrigation at 0.6 CPE (I0.6) | 237.1 | 151.1 | 129.8 | 172.6 | 178.0 | 91.9 | 70.6 | 113.5 | 2.9 |
Drip irrigation at 0.8 CPE (I0.8) | 233.6 | 154.2 | 131.7 | 173.2 | 173.8 | 94.5 | 71.9 | 113.4 | 2.9 |
SEm± | 3.7 | 4.6 | 2.6 | 2.3 | 3.7 | 4.6 | 2.6 | 2.3 | |
CD (p = 0.05) | 10.9 | 13.7 | 7.7 | 10.9 | 13.7 | 7.7 | 6.4 | ||
Fertigation levels | |||||||||
Fertigation with 60% RDF (F60) | 219.7 | 133.1 | 118.4 | 157.0 | 161.3 | 74.7 | 60.0 | 98.7 | 2.7 |
Fertigation with 80% RDF (F80) | 233.2 | 150.8 | 128.7 | 170.9 | 174.1 | 91.6 | 69.5 | 111.7 | 2.9 |
Fertigation with 100% RDF (F100) | 230.6 | 150.1 | 129.0 | 169.9 | 170.7 | 90.1 | 69.0 | 110.0 | 2.8 |
SEm± | 3.7 | 4.6 | 2.6 | 2.3 | 3.7 | 4.6 | 2.6 | 2.3 | |
CD (p = 0.05) | 10.9 | 13.7 | 7.7 | 6.5 | 10.9 | 13.7 | 7.7 | 6.5 | |
Control vs. Others | |||||||||
Surface irrigation at 0.8 CPE with 100% RDF (S0.8 F100) | 140.1 | 80.8 | 87.5 | 102.8 | 96.1 | 36.7 | 43.4 | 58.7 | 2.3 |
Others | 227.8 | 144.6 | 125.3 | 165.9 | 168.7 | 85.5 | 66.2 | 106.8 | 2.8 |
SEm± | 4.7 | 5.9 | 3.3 | 3.9 | 4.7 | 5.9 | 3.3 | 3.9 | |
CD (p = 0.05) | 14.0 | 17.6 | 9.9 | 11.2 | 14.0 | 17.6 | 9.9 | 11.2 | |
C.V | 5.01 | 9.98 | 6.36 | 6.80 | 17.12 | 12.10 | |||
Fertigation (F) | * | * | * | * | * | * | * | ||
Irrigation (I) | * | * | * | * | * | * | * | * | |
Fertigation × Irrigation (I × N) | * | * | * | * | * | * | |||
Control/others | * | * | * | * | * | * | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lal Mehriya, M.; Geat, N.; Sarita; Singh, H.; A. Mattar, M.; O. Elansary, H. Response of Drip Irrigation and Fertigation on Cumin Yield, Quality, and Water-Use Efficiency Grown under Arid Climatic Conditions. Agronomy 2020, 10, 1711. https://doi.org/10.3390/agronomy10111711
Lal Mehriya M, Geat N, Sarita, Singh H, A. Mattar M, O. Elansary H. Response of Drip Irrigation and Fertigation on Cumin Yield, Quality, and Water-Use Efficiency Grown under Arid Climatic Conditions. Agronomy. 2020; 10(11):1711. https://doi.org/10.3390/agronomy10111711
Chicago/Turabian StyleLal Mehriya, Moti, Neelam Geat, Sarita, Hari Singh, Mohamed A. Mattar, and Hosam O. Elansary. 2020. "Response of Drip Irrigation and Fertigation on Cumin Yield, Quality, and Water-Use Efficiency Grown under Arid Climatic Conditions" Agronomy 10, no. 11: 1711. https://doi.org/10.3390/agronomy10111711
APA StyleLal Mehriya, M., Geat, N., Sarita, Singh, H., A. Mattar, M., & O. Elansary, H. (2020). Response of Drip Irrigation and Fertigation on Cumin Yield, Quality, and Water-Use Efficiency Grown under Arid Climatic Conditions. Agronomy, 10(11), 1711. https://doi.org/10.3390/agronomy10111711