Comparative Study of the Convertibility of Agricultural Residues and Other Cellulose-Containing Materials in Hydrolysis with Penicillium verruculosum Cellulase Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples of CCM
2.2. Substrates
2.3. Enzyme Preparations
2.4. Analytical Procedures
2.4.1. Enzyme Activity Assays
2.4.2. Enzymatic Hydrolysis
2.5. Pretreatment Conditions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lynd, L.R.; Wyman, C.E.; Gerngross, T.U. Biocommodity Engineering. Biotechnol. Prog. 1999, 15, 777–793. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994; ISBN 1501732358. [Google Scholar]
- Sarkanen, K.V.; Ludwig, C.H. Liguins. Occurrence, Formation, Structure, and Reactions; John Wiley & Sons, Inc.: New York, NY, USA, 1971; ISBN 0471754226. [Google Scholar]
- McMillan, J.D. Bioethanol production: Status and prospects. Renew. Energy 1997, 10, 295–302. [Google Scholar] [CrossRef]
- Sánchez, Ó.J.; Cardona, C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 2008, 99, 5270–5295. [Google Scholar] [CrossRef] [PubMed]
- Van den Born, G.J.; van Minnen, J.G.; Olivier, J.G.J.; Ros, J.P.M. Integrated analysis of global biomass flows in search of the sustainable potential for bioenergy production. PBL 2014, 1509, 24. [Google Scholar]
- Kadam, K.; McMillan, J. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 2003, 88, 17–25. [Google Scholar] [CrossRef]
- Pippo, W.A.; Luengo, C.A. Sugarcane energy use: Accounting of feedstock energy considering current agro-industrial trends and their feasibility. Int. J. Energy Environ. Eng. 2013, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Kuramshin, A.I.; Kuramshina, E.A. Preparation of microcrystalline cellulose from sugar beet pulp and its properties. Uchenye Zap. Kazan. Univ. 2015, 157, 18–26. [Google Scholar]
- Porous ecology. Agriculture Produces 250 Million Tons of Waste per Year. Available online: https://www.agroinvestor.ru/technologies/article/29525-dyryavaya-ekologiya (accessed on 22 March 2018).
- Graham, R.; Nelson, R.; Sheehan, J.; Perlack, R.D.; Wright, L. Current and Potential U.S. Corn Stover Supplies. Agron. J. 2007, 99, 1–11. [Google Scholar] [CrossRef]
- Searle, S.; Malins, C. Availability of Cellulosic Residues and Wastes in the EU; White Paper; International Council on Clean Transportation: Washington, DC, USA, 2013. [Google Scholar]
- Mokhirev, A.P.; Zyryanov, M.A. Logging operation technology with felling residue sorting. Syst. Methods. Technol. 2015, 3, 118–122. [Google Scholar]
- Mustafa, A.F.; McKinnon, J.J.; Christensen, D.A. Chemical characterization and in vitro crude protein degradability of thin stillage derived from barley- and wheat-based ethanol production. Anim. Feed Sci. Technol. 1999, 80, 247–256. [Google Scholar] [CrossRef]
- Davis, L.; Jeon, Y.-J.; Svenson, C.; Rogers, P.; Pearce, J.; Peiris, P. Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Biomass Bioenergy 2005, 29, 49–59. [Google Scholar] [CrossRef]
- Prückler, M.; Siebenhandl-Ehn, S.; Apprich, S.; Höltinger, S.; Haas, C.; Schmid, E.; Kneifel, W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT-Food Sci. Technol. 2014, 56, 211–221. [Google Scholar] [CrossRef]
- Singh, D.P.; Trivedi, R.K. Biofuel from Wastes an Economic and Environmentally Feasible Resource. Energy Procedia 2014, 54, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Guan, X.; Zhu, D.; Sun, J. Optimization of the enzymatic pretreatment in oat bran protein extraction by particle swarm optimization algorithms for response surface modeling. LWT-Food Sci. Technol. 2008, 41, 1913–1918. [Google Scholar] [CrossRef]
- Bals, B.; Dale, B.; Balan, V. Enzymatic Hydrolysis of Distiller’s Dry Grain and Solubles (DDGS) Using Ammonia Fiber Expansion Pretreatment. Energy Fuels 2006, 20, 2732–2736. [Google Scholar] [CrossRef]
- FAO. Forest Products 2017; Rowman & Littlefield: Lanham, MD, USA, 2017; ISBN 9789251317174. [Google Scholar]
- Jin, Y.; Jameel, H.; Chang, H.; Phillips, R. Green Liquor Pretreatment of Mixed Hardwood for Ethanol Production in a Repurposed Kraft Pulp Mill. J. Wood Chem. Technol. 2010, 30, 86–104. [Google Scholar] [CrossRef]
- Mandels, M.; Hontz, L.; Nystrom, J. Enzymatic hydrolysis of waste cellulose. Biotechnol. Bioeng. 1974, 16, 1471–1493. [Google Scholar] [CrossRef]
- Solov’eva, I.V.; Okunev, O.N.; Vel’kov, V.V.; Koshelev, A.V.; Bubnova, T.V.; Kondrat’eva, E.G.; Skomarovskii, A.A.; Sinitsyn, A.P. The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Mikrobiologiia 2005, 74, 172–178. [Google Scholar] [CrossRef]
- Dotsenko, A.S.; Rozhkova, A.M.; Gusakov, A.V. Properties and N-glycosylation of recombinant endoglucanase II from Penicillium verruculosum. Moscow Univ. Chem. Bull. 2015, 70, 283–286. [Google Scholar] [CrossRef]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Sinitsyna, O.A.; Bukhtoyarov, F.E.; Gusakov, A.V.; Okunev, O.N.; Bekkarevitch, A.O.; Vinetsky, Y.P.; Sinitsyn, A.P. Isolation and Properties of Major Components of Penicillium canescens Extracellular Enzyme Complex. Biochemical 2003, 68, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
- Gusakov, A.; Sinitsyn, A.; Salanovich, T.; Bukhtojarov, F.; Markov, A.; Ustinov, B.; Zeijl, C.; Punt, P.; Burlingame, R. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzyme Microb. Technol. 2005, 36, 57–69. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar]
- Sinitsyn, A.P.; Chernoglazov, V.M.; Gusakov, A.V. Methods for Study and Properties of Cellulolytic Enzymes; VINITI: Moscow, Russia, 1993. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Van Heiningen, A. Converting a Kraft pulp mill into an integrated forest biorefinery. Pulp Pap. Canada 2006, 107, 38–43. [Google Scholar]
- Aksenov, A.S.; Tyshkunova, I.V.; Poshina, D.N.; Guryanova, A.A.; Chukhchin, D.G.; Sinelnikov, I.G.; Terentyev, K.Y.; Skorik, Y.A.; Novozhilov, E.V.; Synitsyn, A.P. Biocatalysis of industrial kraft pulps: Similarities and differences between hardwood and softwood pulps in hydrolysis by enzyme complex of penicillium verruculosum. Catalysts 2020, 10, 536. [Google Scholar] [CrossRef]
- Novozhilov, E.V.; Aksenov, A.S.; Demidov, M.L.; Chukhchin, D.G.; Dotsenko, G.S.; Osipov, D.O.; Sinitsyn, A.P. Application of complex biocatalysts based on recombinant Penicillium verruculosum enzyme preparations in the hydrolysis of semichemical hardwood pulp. Catal. Ind. 2014, 6, 348–354. [Google Scholar] [CrossRef]
- Aldaeus, F.; Larsson, K.; Srndovic, J.S.; Kubat, M.; Karlström, K.; Peciulyte, A.; Olsson, L.; Larsson, P.T. The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability. Cellulose 2015, 22, 3991–4002. [Google Scholar] [CrossRef]
- Grous, W.R.; Converse, A.O.; Grethlein, H.E. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb. Technol. 1986, 8, 274–280. [Google Scholar] [CrossRef]
- Laser, M.; Schulman, D.; Allen, S.G.; Lichwa, J.; Antal, M.J.; Lynd, L.R. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour. Technol. 2002, 81, 33–44. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Nitsos, C.; Rova, U.; Christakopoulos, P. Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies 2018, 11, 50. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; van Heiningen, A. Swelling of pulp fibers derived from the ethanol-based organosolv process. Tappi J. 1997, 80, 211–213. [Google Scholar]
- Teramura, H.; Sasaki, K.; Oshima, T.; Matsuda, F.; Okamoto, M.; Shirai, T.; Kawaguchi, H.; Ogino, C.; Hirano, K.; Sazuka, T.; et al. Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol. Biofuels 2016, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Mantanis, G.I.; Young, R.A.; Rowell, R.M. Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 1995, 2, 1–22. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Wyman, C.E.; Balan, V.; Dale, B.E.; Elander, R.T.; Falls, M.; Hames, B.; Holtzapple, M.T.; Ladisch, M.R.; Lee, Y.Y.; Mosier, N.; et al. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour. Technol. 2011, 102, 11052–11062. [Google Scholar] [CrossRef]
EP | Protein, mg/g | FP, U/g | Avicel, U/g | CMC, U/g | pNPG, U/g | Cellobiose, U/g | Xylan, U/g |
---|---|---|---|---|---|---|---|
B151 | 970 ± 26 | 760 ± 25 | 578 ± 17 | 16,542 ± 340 | 1074 ± 52 | 603 ± 47 | 17,532 ± 505 |
F10 | 655 ± 14 | 147 ± 5 | 853 ± 21 | 7007 ± 73 | 39,852 ± 926 | 46,663 ± 1134 | 3800 ± 39 |
Substrate | Convertibility, % |
---|---|
Agricultural residues | |
Wheat straw | 12 |
Wheat straw pretreated by dry fine ball-milling (<20 µm) | 45 |
Wheat straw pretreated by 1% NaOH, 85 °C | 55 |
Wheat straw pretreated by steam explosion | 75 |
Wheat straw steam pretreated by steam explosion with Ca(OH)2 | 69 |
Sugar beet pulp | 20 |
Sugar beet pulp extruded | 27 |
Oat husks | 5 |
Oat husks pretreated by steam explosion with Ca(OH)2 | 76 |
Soy bean husks | 38 |
Soy bean husks pretreated by steam explosion with Ca(OH)2 | 58 |
Sunflower peels | 3 |
Sunflower peels pretreated by dry fine ball-milling (<20 µm) | 7 |
Corn stalks | 10 |
Corn stalks pretreated by steam explosion with H2SO4 | 55 |
Corn stalks pretreated by steam explosion with Ca(OH)2 | 36 |
Sugar cane bagasse | 18 |
Sugar cane bagasse pretreated by dry fine ball-milling (<20 µm) | 42 |
Sugar cane bagasse pretreated by steam explosion with Ca(OH)2 | 41 |
Sugar cane bagasse pretreated by steam explosion with H2SO4 | 34 |
Food-industry waste | |
Brewing waste (rye-wheat) | 10 |
Wheat bran (destarched) | 14 |
Corn bran (destarched) | 12 |
Distillers grains wet (WDG) | 18 |
Distillers grains dried (DDG) | 16 |
Pulp and paper industry products | |
Never dried bleached softwood kraft pulp | 78 |
Never dried unbleached softwood kraft pulp | 68 |
Dried bleached softwood kraft pulp | 58 |
Dried unbleached softwood kraft pulp | 48 |
Never dried bleached hardwood kraft pulp | 66 |
Never dried unbleached hardwood kraft pulp | 56 |
Dried bleached hardwood kraft pulp | 50 |
Dried unbleached hardwood kraft pulp | 42 |
Wood industry waste and forestry residues | |
Pine sawdust | 8 |
Pine sawdust (deresinated) pretreated by dry fine ball-milling (<20 µm) | 45 |
Larch sawdust | 6 |
Larch sawdust pretreated by dry fine ball-milling (<20 µm) | 22 |
Aspen sawdust | 8 |
Aspen sawdust pretreated by dry fine ball-milling (<20 µm) | 50 |
Hevea sawdust | 4 |
Hevea sawdust pretreated by dry fine ball-milling (<20 µm) | 14 |
Conditions | Convertibility, % | |||
---|---|---|---|---|
Aspen wood (200–300 µm) | 8 | |||
Dilute sulfuric acid pretreatment | ||||
Temperature, °C | Time, h | Acid concentration, % | ||
140 | 1 | 12.7 | 58.4 | |
8.7 | 58.4 | |||
4.4 | 44.2 | |||
1.8 | 42.9 | |||
0.9 | 41.6 | |||
Dilute nitric acid pretreatment | ||||
Temperature, °C | Time, h | Pressure, at | Acid concentration, % | |
100 | 1 | 6 | 4.8 | 61.2 |
130 | 5 | 1.1 | 62.8 | |
125 | 9 | 4.8 | 60.6 | |
125 | 14 | 4.8 | 65.1 | |
125 | 18 | 4.8 | 78.7 | |
125 | 22 | 4.8 | 78.6 | |
150 | 5 | 0.2 | 49.3 | |
160 | 5 | 0.5 | 45.6 | |
160 | 5 | 0.7 | 48.2 | |
160 | 5 | 0.3 | 46.9 | |
160 | 5 | 0.2 | 43.7 | |
Sulfuric acid organosolv | ||||
Temperature, °C | Time, h | Organic phase, % | Acid concentration, % | |
140 | 1 | 50% EtOH | 0.36 | 38.7 |
65% EtOH | 0.54 | 48.3 | ||
80% EtOH | 0.54 | 43.9 | ||
50% BtOH | 0.36 | 36.4 | ||
65% BtOH | 0.54 | 58.7 | ||
80% BtOH | 0.54 | 51.1 | ||
25% EtOH, 25% BtOH | 0.54 | 54.3 | ||
40% EtOH, 10% BtOH | 0.54 | 51.1 | ||
20% EtOH, 40% BtOH | 0.36 | 51.5 | ||
20% EtOH, 40% BtOH | 0.18 | 45.9 | ||
25% EtOH, 25% BtOH | 0.18 | 37.6 | ||
10% EtOH, 40% BtOH | 0.18 | 36.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipov, D.O.; Dotsenko, G.S.; Sinitsyna, O.A.; Kondratieva, E.G.; Zorov, I.N.; Shashkov, I.A.; Satrutdinov, A.D.; Sinitsyn, A.P. Comparative Study of the Convertibility of Agricultural Residues and Other Cellulose-Containing Materials in Hydrolysis with Penicillium verruculosum Cellulase Complex. Agronomy 2020, 10, 1712. https://doi.org/10.3390/agronomy10111712
Osipov DO, Dotsenko GS, Sinitsyna OA, Kondratieva EG, Zorov IN, Shashkov IA, Satrutdinov AD, Sinitsyn AP. Comparative Study of the Convertibility of Agricultural Residues and Other Cellulose-Containing Materials in Hydrolysis with Penicillium verruculosum Cellulase Complex. Agronomy. 2020; 10(11):1712. https://doi.org/10.3390/agronomy10111712
Chicago/Turabian StyleOsipov, Dmitrii O., Gleb S. Dotsenko, Olga A. Sinitsyna, Elena G. Kondratieva, Ivan N. Zorov, Igor A. Shashkov, Aidar D. Satrutdinov, and Arkady P. Sinitsyn. 2020. "Comparative Study of the Convertibility of Agricultural Residues and Other Cellulose-Containing Materials in Hydrolysis with Penicillium verruculosum Cellulase Complex" Agronomy 10, no. 11: 1712. https://doi.org/10.3390/agronomy10111712
APA StyleOsipov, D. O., Dotsenko, G. S., Sinitsyna, O. A., Kondratieva, E. G., Zorov, I. N., Shashkov, I. A., Satrutdinov, A. D., & Sinitsyn, A. P. (2020). Comparative Study of the Convertibility of Agricultural Residues and Other Cellulose-Containing Materials in Hydrolysis with Penicillium verruculosum Cellulase Complex. Agronomy, 10(11), 1712. https://doi.org/10.3390/agronomy10111712