Siliceous Natural Nanomaterials as Biorationals—Plant Protectants and Plant Health Strengtheners
Abstract
:1. Introduction
2. Siliceous Natural Nanomaterials Structure
3. Siliceous Natural Nanomaterials as Plant Protectants
4. Siliceous Natural Nanomaterials as Plant Strengtheners
4.1. Mediated Plant Strengthening Effects
4.2. Direct Plant Strengthening Effects
Release of Soluble Silicon Species
5. Conclusions and Further Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Mumpton, F.A. La roca magica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. USA 1999, 96, 3463–3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghobara, M.M.; Mohamed, A. Diatomite in Use: Nature, Modifications, Commercial Applications and Prospective Trends; Scrivener Publishing Llc: Beverly, CA, USA, 2019; pp. 471–509. [Google Scholar]
- Ivkovic, S.; Deutsch, U.; Silberbach, A.; Walraph, E.; Mannel, M. Dietary supplementation with the tribomechanically activated zeolite clinoptilolite in immunodeficiency: Effects on the immune system. Adv. Ther. 2004, 21, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Kraljević Pavelić, S.; Simović Medica, J.; Gumbarević, D.; Filošević, A.; Pržulj, N.; Pavelić, K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, A.; Świderski, F. Sources, Bioavailability, and Safety of Silicon Derived from Foods and Other Sources Added for Nutritional Purposes in Food Supplements and Functional Foods. Appl. Sci. 2020, 10, 6255. [Google Scholar] [CrossRef]
- Additives, E.P.O. Scientific Opinion on the safety and efficacy of clinoptilolite of sedimentary origin for all animal species. Efsa J. 2013, 11, 3039. [Google Scholar]
- Olteanu, M.; Saracila, M.; Ropota, M.; Turcu, R.P.; Dragotoiu, D.; Marin, M.P.; Pogurschi, E.N. Volcanic tuff, potential source of minerals in dairy cows feeding. Agro Life Sci. J 2019, 8, 206–213. [Google Scholar]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.C.; Fremy, J.M.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. Efsa Support. Publ. 2009, 6, 22E. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Lupu, C.; Delian, E.; CHIRA, L.; Chira, A. New insights into the multiple protective functions of diatomaceous earth during storage of agricultural products. Sci. Pap. Ser. A-Agron. 2018, 61, 487–496. [Google Scholar]
- Dos Anjos, F.R.; Ledoux, D.R.; Rottinghaus, G.E.; Chimonyo, M. Efficacy of Mozambican bentonite and diatomaceous earth in reducing the toxic effects of aflatoxins in chicks. World Mycotoxin J. 2016, 9, 63–72. [Google Scholar] [CrossRef]
- Martinovic, S.; Vlahovic, M.; Boljanac, T.; Pavlovic, L. Preparation of filter aids based on diatomites. Int. J. Miner. Process. 2006, 80, 255–260. [Google Scholar] [CrossRef]
- Braun, F.; Hildebrand, N.; Wilkinson, S.; Back, W.; Krottenthaler, M.; Becker, T. Large-scale study on beer filtration with combined filter aid additions to cellulose fibres. J. Inst. Brew. 2011, 117, 314–328. [Google Scholar] [CrossRef]
- Gómez, J.; Gil, M.L.A.; de la Rosa-Fox, N.; Alguacil, M. Diatomite releases silica during spirit filtration. Food Chem. 2014, 159, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, F.; Carstensen, C. Efficacy and risks of ”biorationals“. J. Plant Dis. Prot. 2018, 125, 517–521. [Google Scholar] [CrossRef]
- Matyjaszczyk, E. “Biorationals” in integrated pest management strategies. J. Plant Dis. Prot. 2018, 125, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Commision, E. Regulation (EC) No 1107/2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32009R1107&from=EN (accessed on 10 October 2020).
- Anastassiadou, M.; Arena, M.; Auteri, D.; Brancato, A.; Bura, L.; Carrasco Cabrera, L.; Chaideftou, E.; Chiusolo, A.; Marques, D.C. Peer review of the pesticide risk assessment of the active substance kieselgur (diatomaceous earth). Efsa J. 2020, 18, e06054. [Google Scholar]
- Sandhya, K.; Prakash, N.B.; Meunier, J.D. Diatomaceous earth as source of silicon on the growth and yield of rice in contrasted soils of Southern India. J. Soil Sci. Plant Nutr. 2018, 18, 344–360. [Google Scholar] [CrossRef] [Green Version]
- Riotte, J.; Sandhya, K.; Prakash, N.B.; Audry, S.; Zambardi, T.; Chmeleff, J.; Buvaneshwari, S.; Meunier, J.D. Origin of silica in rice plants and contribution of diatom Earth fertilization: Insights from isotopic Si mass balance in a paddy field. Plant Soil 2018, 423, 481–501. [Google Scholar] [CrossRef]
- Balakhnina, T.I.; Bulak, P.; Matichenkov, V.V.; Kosobryukhov, A.A.; Wlodarczyk, T.M. The influence of Si-rich mineral zeolite on the growth processes and adaptive potential of barley plants under cadmium stress. Plant Growth Regul. 2015, 75, 557–565. [Google Scholar] [CrossRef]
- Ramesh, K.; Biswas, A.K.; Patra, A.K. Zeolitic farming. Indian J. Agron. 2015, 60, 185–191. [Google Scholar]
- Li, D.Y.; Joo, Y.K.; Christians, N.E.; Minner, D.D. Inorganic soil amendment effects on sand-based sports turf media. Crop Sci. 2000, 40, 1121–1125. [Google Scholar] [CrossRef]
- Pratt, C.; Kingston, K.; Laycock, B.; Levett, I.; Pratt, S. Geo-Agriculture: Reviewing Opportunities through Which the Geosphere Can Help Address Emerging Crop Production Challenges. Agronomy 2020, 10, 971. [Google Scholar] [CrossRef]
- Korunić, Z.; Liška, A.; Lucić, P.; Hamel, D.; Rozman, V. Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J. Stored Prod. Res. 2020, 86, 101565. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Sakka, M.; Berillis, P.; Athanassiou, C.G. Insecticidal potential of zeolite formulations against three stored-grain insects, particle size effect, adherence to kernels and influence on test weight of grains. J. Stored Prod. Res. 2016, 68, 93–101. [Google Scholar] [CrossRef]
- Mortazavi, H.; Toprak, U.; Emekci, M.; Bagci, F.; Ferizli, A.G. Persistence of diatomaceous earth, SilicoSec® against three stored grain beetles. J. Stored Prod. Res. 2020, 89, 101724. [Google Scholar] [CrossRef]
- Fallik, E. Physical control of mycotoxigenic fungi. In Mycotoxins in Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2008; pp. 297–310. [Google Scholar]
- Chulze, S. Strategies to reduce mycotoxin levels in maize during storage: A review. Food Addit. Contam. 2010, 27, 651–657. [Google Scholar] [CrossRef]
- El-Wakeil, N.E.; Saleh, S.A. Effects of neem and diatomaceous earth against Myzus persicae and associated predators in addition to indirect effects on artichoke growth and yield parameters. Arch. Phytopathol. Plant Prot. 2009, 42, 1132–1143. [Google Scholar] [CrossRef]
- Ulrichs, C.; Mewis, I.; Schnitzler, W. Efficacy of neem and diatomaceous earth against cowpea aphids and their deleterious effect on predating Coccinelidae. J. Appl. Entomol. 2001, 125, 571–575. [Google Scholar] [CrossRef]
- De Smedt, C.; Van Damme, V.; De Clercq, P.; Spanoghe, P. Insecticide effect of zeolites on the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Insects 2016, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Leahy, J.; Mendelsohn, M.; Kough, J.; Jones, R.; Berckes, N. Biopesticide oversight and registration at the US Environmental Protection Agency. In Biopesticides: State of the Art and Future Opportunities; ACS Publications: Washington, DC, USA, 2014; pp. 3–18. [Google Scholar]
- Tőkés, G.; Ripka, G. Regulation and use of biological control agents in Hungary. Eppo Bull. 2016, 46, 263–269. [Google Scholar] [CrossRef]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant Biostimulant Regulatory Framework: Prospects in Europe and Current Situation at International Level. J. Plant Growth Regul. 2019, 38, 438–448. [Google Scholar] [CrossRef]
- La Torre, A.; Battaglia, V.; Caradonia, F. An overview of the current plant biostimulant legislations in different European Member States. J. Sci. Food Agric. 2016, 96, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.; Battaglia, V.; Caradonia, F. Legal aspects of the use of plant strengtheners (biostimulants) in Europe. Bulg. J. Agric. Sci 2013, 19, 1183–1189. [Google Scholar]
- Król, M. Natural vs. Synthetic Zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water Air Soil Pollut. 2017, 228, 34. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Panwar, V.; Dutta, T. Diatom biogenic silica as a felicitous platform for biochemical engineering: Expanding frontiers. ACS Appl. Bio Mater. 2019, 2, 2295–2316. [Google Scholar] [CrossRef]
- Spinde, K.; Pachis, K.; Antonakaki, I.; Paasch, S.; Brunner, E.; Demadis, K.D. Influence of polyamines and related macromolecules on silicic acid polycondensation: Relevance to “Soluble Silicon Pools”? Chem. Mater. 2011, 23, 4676–4687. [Google Scholar] [CrossRef]
- Lechner, C.C.; Becker, C.F.W. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation. Mar. Drugs 2015, 13, 5297–5333. [Google Scholar] [CrossRef] [Green Version]
- Gautier, C.; Livage, J.; Coradin, T.; Lopez, P.J. Sol–gel encapsulation extends diatom viability and reveals their silica dissolution capability. Chem. Commun. 2006, 44, 4611–4613. [Google Scholar] [CrossRef]
- Medarevic, D.P.; Losic, D.; Ibric, S.R. Diatoms—Nature materials with great potential for bioapplications. Hem. Ind. 2016, 70, 613–627. [Google Scholar] [CrossRef] [Green Version]
- Korunic, Z. Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 1998, 34, 87–97. [Google Scholar] [CrossRef]
- McCoy, E.L. Commercial Amendments for Sand-based Root Zones: Review and Interpretation. HortTechnology 2013, 23, 803–813. [Google Scholar] [CrossRef]
- De Smedt, C.; Steppe, K.; Spanoghe, P. Beneficial effects of zeolites on plant photosynthesis. Adv. Mater. Sci. 2017, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liška, A.; Rozman, V.; Korunić, Z.; Halamić, J.; Galović, I.; Lucić, P.; Baličević, R. The potential of Croatian diatomaceous earths as grain protectant against three stored-product insects. Integr. Prot. Stored Prod. Iobc-Wprs Bull. 2015, 111, 107–113. [Google Scholar]
- Vayias, B.; Athanassiou, C. Factors affecting the insecticidal efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused flour beetle, Tribolium confusum DuVal (Coleoptera: Tenebrionidae). Crop Prot. 2004, 23, 565–573. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Tsaganou, F.C.; Vayias, B.J.; Dimizas, C.B.; Buchelos, C.T. Effect of grain type on the insecticidal efficacy of SilicoSec against Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Crop Prot. 2003, 22, 1141–1147. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Tsakiri, J.B.; Xyrafidis, S.N.; Vayias, B.J. Effect of Temperature and Humidity on Insecticidal Effect of SilicoSec Against Ephestia kuehniella (Lepidoptera: Pyralidae) Larvae. J. Econ. Entomol. 2006, 99, 1520–1524. [Google Scholar] [CrossRef]
- Korunic, Z.; Fields, P. Diatomaceous Earth Insecticidal Composition. U.S. Patent 5773017, 6 June 1998. [Google Scholar]
- Arnaud, L.; Tran Thi Lan, H.; Brostaux, Y.; Haubruge, E. Efficacy of diatomaceous earth formulations admixed with grain against populations of Tribolium castaneum. J. Stored Prod. Res. 2005, 41, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Athanassiou, C.G.; Kavallieratos, N.G. Insecticidal effect and adherence of PyriSec® in different grain commodities. Crop Prot. 2005, 24, 703–710. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Chiriloaie, A.; Vassilakos, T.N.; Fatu, V.; Drosu, S.; Ciobanu, M.; Dudoiu, R. Insecticidal efficacy of natural diatomaceous earth deposits from Greece and Romania against four stored grain beetles: The effect of temperature and relative humidity. Bull. Insectol. 2016, 69, 25–34. [Google Scholar]
- Aldryhim, Y.N. Efficacy of the amorphous silica dust, Dryacide, against Tribolium confusum Duv. and Sitophilus granarius (L.) (Coleoptera: Tenebrionidae and Curculionidae). J. Stored Prod. Res. 1990, 26, 207–210. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Economou, L.P.; Dimizas, C.B.; Vayias, B.J.; Tomanović, S.; Milutinović, M. Persistence and Efficacy of Three Diatomaceous Earth Formulations Against Sitophilus oryzae (Coleoptera: Curculionidae) on Wheat and Barley. J. Econ. Entomol. 2005, 98, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Korunić, Z. Overview of undesirable effects of using diatomaceous earths for direct mixing with grains. Pestic. I Fitomedicina 2016, 31, 9–18. [Google Scholar] [CrossRef]
- Perisic, V.; Perisic, V.; Hadnadev, M.; Dekic, V.; Dapcevic-Hadnadev, T.; Vukovic, S.; Vukajlovic, F. Impact of diatomaceous earth application on the rheological properties of wheat, triticale and rye flour dough. J. Stored Prod. Res. 2019, 82, 91–97. [Google Scholar] [CrossRef]
- Kljajić, P.; Andrić, G.; Adamović, M.; Bodroža-Solarov, M.; Marković, M.; Perić, I. Laboratory assessment of insecticidal effectiveness of natural zeolite and diatomaceous earth formulations against three stored-product beetle pests. J. Stored Prod. Res. 2010, 46, 1–6. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Boukouvala, M.C.; Rumbos, C.I. Acaricidal effect of three zeolite formulations on different life stages of Tyrophagus putrescentiae (Schrank) and Acarus siro L. (Sarcoptiformes: Acaridae). J. Stored Prod. Res. 2018, 78, 39–44. [Google Scholar] [CrossRef]
- Floros, G.D.; Kokkari, A.I.; Kouloussis, N.A.; Kantiranis, N.A.; Damos, P.; Filippidis, A.A.; Koveos, D.S. Evaluation of the Natural Zeolite Lethal Effects on Adults of the Bean Weevil Under Different Temperatures and Relative Humidity Regimes. J. Econ. Entomol. 2017, 111, 482–490. [Google Scholar] [CrossRef]
- Eroglu, N.; Sakka, M.K.; Emekci, M.; Athanassiou, C.G. Effects of zeolite formulations on the mortality and progeny production of Sitophilus oryzae and Oryzaephilus surinamensis at different temperature and relative humidity levels. J. Stored Prod. Res. 2019, 81, 40–45. [Google Scholar] [CrossRef]
- Bohinc, T.; Horvat, A.; Andrić, G.; Golić, M.P.; Kljajić, P.; Trdan, S. Natural versus synthetic zeolites for controlling the maize weevil (Sitophilus zeamais)–like Messi versus Ronaldo? J. Stored Prod. Res. 2020, 88, 101639. [Google Scholar] [CrossRef]
- Paponja, I.; Rozman, V.; Liška, A. Natural Formulation Based on Diatomaceous Earth and Botanicals against Stored Product Insects. Insects 2020, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Korunic, Z. Evaluation of two new diatomaceous earth formulations, enhanced with abamectin and bitterbarkomycin, against four stored-grain beetle species. J. Stored Prod. Res. 2007, 43, 468–473. [Google Scholar] [CrossRef]
- Gad, H.A.; Al-Anany, M.S.; Abdelgaleil, S.A.M. Enhancement the efficacy of spinosad for the control Sitophilus oryzae by combined application with diatomaceous earth and Trichoderma harzianum. J. Stored Prod. Res. 2020, 88, 101663. [Google Scholar] [CrossRef]
- Gad, H.A.; Al-Anany, M.S.M.; mohamed Sameer, W.; Al-Anany, F.S.M. Control of Acanthoscelides obtectus with Trichoderma harzianum applied alone or in combination with diatomaceous earth on a stored common bean. Plant Prot. Sci. 2020, 56, 107–115. [Google Scholar]
- Wakil, W.; Riasat, T.; Ghazanfar, M.U.; Kwon, Y.J.; Shaheen, F.A. Aptness of Beauveria bassiana and enhanced diatomaceous earth (DEBBM) for control of Rhyzopertha dominica F. Entomol. Res. 2011, 41, 233–241. [Google Scholar] [CrossRef]
- Akbar, W.; Lord, J.C.; Nechols, J.R.; Howard, R.W. Diatomaceous Earth Increases the Efficacy of Beauveria bassiana Against Tribolium castaneum Larvae and Increases Conidia Attachment. J. Econ. Entomol. 2004, 97, 273–280. [Google Scholar] [CrossRef]
- Yang, F.-L.; Liang, G.-W.; Xu, Y.-J.; Lu, Y.-Y.; Zeng, L. Diatomaceous earth enhances the toxicity of garlic, Allium sativum, essential oil against stored-product pests. J. Stored Prod. Res. 2010, 46, 118–123. [Google Scholar] [CrossRef]
- Mohale, S.; Allotey, J.; Siame, B. Control of Tribolium confusum J. du Val by diatomaceous earth (Protect It™) on stored groundnut (Arachis hypogaea) and aspergillus flavus link spore dispersal. Afr. J. Food Agric. Nutr. Dev. 2010, 10, 2678–2694. [Google Scholar] [CrossRef]
- Di Gregorio, M.C.; Neeff, D.V.d.; Jager, A.V.; Corassin, C.H.; Carão, Á.C.d.P.; Albuquerque, R.d.; Azevedo, A.C.d.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Wielogórska, E.; MacDonald, S.; Elliott, C. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. World Mycotoxin J. 2016, 9, 419–433. [Google Scholar] [CrossRef]
- Khaled, W.; Ben Fekih, I.; Chaieb, I.; Souissi, R.; Harbaoui, I.; Boukhris-Bouhachem, S. Insecticidal activity assessment of Thymus capitatus essential oils in combination with natural abrasives against Myzus persicae. Tunis. J. Plant Prot. 2017, 12, 49–59. [Google Scholar]
- Kilpinen, O.; Steenberg, T. Inert dusts and their effects on the poultry red mite (Dermanyssus gallinae). In Control of Poultry Mites (Dermanyssus); Springer: Berlin, Germany, 2009; pp. 51–62. [Google Scholar]
- Ulrichs, C.; Krause, F.; Rocksch, T.; Goswami, A.; Mewis, I. Electrostatic application of inert silica dust based insecticides onto plant surfaces. Commun. Agric. Appl. Biol. Sci. 2006, 71, 171–178. [Google Scholar] [PubMed]
- Wakil, W.; Ghazanfar, M.U.; Kwon, Y.J.; Ullah, E.; Islam, S.; Ali, K. Testing Paecilomyces lilacinus, diatomaceous earth and Azadirachta indica alone and in combination against cotton aphid (Aphis gossypii Glover)(Insecta: Homoptera: Aphididae). Afr. J. Biotechnol. 2012, 11, 821–828. [Google Scholar]
- Singh, B.; Singh, V. Laboratory and Field Studies Demonstrating the Insecticidal Potential of Diatomaceous Earth against Wheat Aphids in Rice-wheat Cropping System of Punjab (India). Cereal Res. Commun. 2016, 44, 435–443. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar] [CrossRef]
- Speiser, B.; Tamm, L. Regulation of plant protection in organic farming. In Regulation of Biological Control Agents; Springer: Berlin, Germany, 2011; pp. 113–125. [Google Scholar]
- Ozbahce, A.; Tari, A.F.; Gönülal, E.; Simsekli, N.; Padem, H. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci. 2015, 61, 615–626. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, T.; Wu, Q.; Yu, J.; Chen, W.; Chen, Y.; Siddique, K.H.M.; Meng, W.; Chi, D.; Xia, G. Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress. Agric. Water Manag. 2018, 206, 241–251. [Google Scholar] [CrossRef]
- Jankauskiene, J.; Brazaityte, A.; Kairiene, V.V.; Zalatorius, V. Effects of peat and peat-zeolite substrates on quality, growth indices of cucumber seedlings and crop productivity. Acta Sci. Pol.-Hortorum Cultus 2019, 18, 161–170. [Google Scholar] [CrossRef]
- Ramesh, K.; Reddy, D.D. Zeolites and their potential uses in agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 113, pp. 219–241. [Google Scholar]
- Nur Aainaa, H.; Haruna Ahmed, O.; Ab Majid, N.M. Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea Mays L. cultivated on an acid soil. PLoS ONE 2018, 13, e0204401. [Google Scholar] [CrossRef]
- Baghbani-Arani, A.; Modarres-Sanavy, S.A.M.; Mashhadi-Akbar-Boojar, M.; Mokhtassi-Bidgoli, A. Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Ind. Crop. Prod. 2017, 109, 346–357. [Google Scholar] [CrossRef]
- Hazrati, S.; Tahmasebi-Sarvestani, Z.; Mokhtassi-Bidgoli, A.; Modarres-Sanavy, S.A.M.; Mohammadi, H.; Nicola, S. Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agric. Water Manag. 2017, 181, 66–72. [Google Scholar] [CrossRef]
- Noori, M.; Zendehdel, M.; Ahmadi, A. Using natural zeolite for the improvement of soil salinity and crop yield. Toxicol. Environ. Chem. 2006, 88, 77–84. [Google Scholar] [CrossRef]
- Bybordi, A.; Saadat, S.; Zargaripour, P. The effect of zeolite, selenium and silicon on qualitative and quantitative traits of onion grown under salinity conditions. Arch. Agron. Soil Sci. 2018, 64, 520–530. [Google Scholar] [CrossRef]
- Saeed, Z.; Naveed, M.; Imran, M.; Bashir, M.A.; Sattar, A.; Mustafa, A.; Hussain, A.; Xu, M. Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS ONE 2019, 14, e0213016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farouk, S.; Al-Amri, S.M. Ameliorative roles of melatonin and/or zeolite on chromium-induced leaf senescence in marjoram plants by activating antioxidant defense, osmolyte accumulation, and ultrastructural modification. Ind. Crop. Prod. 2019, 142, 111823. [Google Scholar] [CrossRef]
- Shahbaz, A.K.; Adnan Ramzani, P.M.; Saeed, R.; Turan, V.; Iqbal, M.; Lewińska, K.; Abbas, F.; Saqib, M.; Tauqeer, H.M.; Iqbal, M.; et al. Effects of biochar and zeolite soil amendments with foliar proline spray on nickel immobilization, nutritional quality and nickel concentrations in wheat. Ecotoxicol. Environ. Safe. 2019, 173, 182–191. [Google Scholar] [CrossRef]
- do Nascimento, C.W.A.; de Souza Nunes, G.H.; Preston, H.A.F.; da Silva, F.B.V.; Preston, W.; Loureiro, F.L.C. Influence of Silicon Fertilization on Nutrient Accumulation, Yield and Fruit Quality of Melon Grown in Northeastern Brazil. Silicon 2020, 12, 937–943. [Google Scholar] [CrossRef]
- Alsar, Z.; Duskinova, B.; Insepov, Z. New Sorption Properties of Diatomaceous Earth for Water Desalination and Reducing Salt Stress of Plants. Eurasian Chem.-Technol. J. 2020, 22, 89–97. [Google Scholar] [CrossRef]
- Bello, O.S.; Adegoke, K.A.; Oyewole, R.O. Insights into the Adsorption of Heavy Metals from Wastewater using Diatomaceous Earth. Sep. Sci. Technol. 2014, 49, 1787–1806. [Google Scholar] [CrossRef]
- Sosa, G.L.; Fernández Morantes, C.; Flores, F.M.; Torres Sánchez, R.M.; Zalts, A.; Ramirez, S.A. Characterization of diatomaceous earth modified by organic ligands for enhanced zinc adsorption. J. Environ. Chem. Eng. 2019, 7, 103197. [Google Scholar] [CrossRef]
- Miretzky, P.; Muñoz, C.; Cantoral-Uriza, E. Cd2+ adsorption on alkaline-pretreated diatomaceous earth: Equilibrium and thermodynamic studies. Environ. Chem. Lett. 2011, 9, 55–63. [Google Scholar] [CrossRef]
- Salih, S.S.; Ghosh, T.K. Highly efficient competitive removal of Pb(II) and Ni(II) by chitosan/diatomaceous earth composite. J. Environ. Chem. Eng. 2018, 6, 435–443. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Ciarkowska, K.; Sołek-Podwika, K.; Filipek-Mazur, B.; Tabak, M. Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield. Geoderma 2017, 303, 85–92. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.-Y.; Shao, H.-B.; Shao, M.-A. The remediation of the lead-polluted garden soil by natural zeolite. J. Hazard. Mater. 2009, 169, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Şenbayram, M.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wan, Y.; Wang, Q.; Li, H. Effect of humic acid-based amendments with foliar application of and Se on Cd accumulation in tobacco. Ecotoxicol. Environ. Safe. 2017, 138, 286–291. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, R.; Koh, J. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. J. Co2 Util. 2020, 41, 101251. [Google Scholar] [CrossRef]
- Tang, X.; Houzé de l’Aulnoit, S.; Buelow, M.T.; Slack, J.; Singer, B.C.; Destaillats, H. Performance of a CO2 sorbent for indoor air cleaning applications: Effects of environmental conditions, sorbent aging, and adsorption of co-occurring formaldehyde. Indoor Air 2020. [Google Scholar] [CrossRef]
- Mphande, W.; Kettlewell, P.S.; Grove, I.G.; Farrell, A.D. The potential of antitranspirants in drought management of arable crops: A review. Agric. Water Manag. 2020, 236, 18. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.T.; Luzio, A.; Silva, E.; Goncalves, A.; Meijon, M.; Escandon, M.; Arrobas, M.; Rodrigues, M.A.; Moutinho-Pereira, J.; et al. Kaolin and salicylic acid alleviate summer stress in rainfed olive orchards by modulation of distinct physiological and biochemical responses. Sci. Hortic. 2019, 246, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Gullo, G.; Dattola, A.; Vonella, V.; Zappia, R. Effects of two reflective materials on gas exchange, yield, and fruit quality of sweet orange tree Citrus sinensis (L.) Osb. Eur. J. Agron. 2020, 118, 9. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P. Kaolin particle film applications can increase photosynthesis and water use efficiency of ‘Ruby red’ grapefruit leaves. J. Am. Soc. Hortic. Sci. 2003, 128, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Glenn, D.M.; Cooley, N.; Walker, R.; Clingeleffer, P.; Shellie, K. Impact of Kaolin Particle Film and Water Deficit on Wine Grape Water Use Efficiency and Plant Water Relations. Hortscience 2010, 45, 1178–1187. [Google Scholar] [CrossRef]
- Mucha-Pelzer, T.; Mewis, I.; Ulrichs, C. Response of glucosinolate and flavonoid contents and composition of Brassica rapa ssp. chinensis (L.) Hanelt to silica formulations used as insecticides. J. Agric. Food Chem. 2010, 58, 12473–12480. [Google Scholar] [CrossRef]
- Garrido, A.; Serodio, J.; De Vos, R.; Conde, A.; Cunha, A. Influence of Foliar Kaolin Application and Irrigation on Photosynthetic Activity of Grape Berries. Agronomy 2019, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Frioni, T.; Saracino, S.; Squeri, C.; Tombesi, S.; Palliotti, A.; Sabbatini, P.; Magnanini, E.; Poni, S. Understanding kaolin effects on grapevine leaf and whole-canopy physiology during water stress and re-watering. J. Plant Physiol. 2019, 242, 12. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.T.; Moutinho-Pereira, J.; Correia, C. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Sci. Hortic. 2019, 250, 310–316. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Oljira, A.M.; Hussain, T.; Waghmode, T.R.; Zhao, H.; Sun, H.; Liu, X.; Wang, X.; Liu, B. Trichoderma Enhances Net Photosynthesis, Water Use Efficiency, and Growth of Wheat (Triticum aestivum L.) under Salt Stress. Microorganisms 2020, 8, 1565. [Google Scholar] [CrossRef]
- Şesan, T.E.; Oancea, A.O.; Ştefan, L.M.; Mănoiu, V.S.; Ghiurea, M.; Răut, I.; Constantinescu-Aruxandei, D.; Toma, A.; Savin, S.; Bira, A.F. Effects of Foliar Treatment with a Trichoderma Plant Biostimulant Consortium on Passiflora caerulea L. Yield and Quality. Microorganisms 2020, 8, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santaniello, A.; Scartazza, A.; Gresta, F.; Loreti, E.; Biasone, A.; Di Tommaso, D.; Piaggesi, A.; Perata, P. Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front. Plant Sci. 2017, 8, 1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dima, S.-O.; Neamțu, C.; Desliu-Avram, M.; Ghiurea, M.; Capra, L.; Radu, E.; Stoica, R.; Faraon, V.-A.; Zamfiropol-Cristea, V.; Constantinescu-Aruxandei, D. Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Tomatoes through Foliar Fertilization. Agronomy 2020, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Gaur, S.; Kumar, J.; Kumar, D.; Chauhan, D.K.; Prasad, S.M.; Srivastava, P.K. Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicol. Environ. Safe. 2020, 202, 12. [Google Scholar] [CrossRef]
- Pichyangkura, R.; Chadchawan, S. Biostimulant activity of chitosan in horticulture. Sci. Hortic. 2015, 196, 49–65. [Google Scholar] [CrossRef]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Moreno, M.B.M.; Reynaud, H.; Canaguier, R.; Trtilek, M.; et al. A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability. Front. Plant Sci. 2019, 10, 18. [Google Scholar] [CrossRef]
- Ye, Y.; Medina-Velo, I.A.; Cota-Ruiz, K.; Moreno-Olivas, F.; Gardea-Torresdey, J.L. Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicol. Environ. Safe. 2019, 184, 109671. [Google Scholar] [CrossRef]
- Roomi, S.; Masi, A.; Conselvan, G.B.; Trevisan, S.; Quaggiotti, S.; Pivato, M.; Arrigoni, G.; Yasmin, T.; Carletti, P. Protein Profiling of Arabidopsis Roots Treated With Humic Substances: Insights Into the Metabolic and Interactome Networks. Front. Plant Sci. 2018, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Hidangmayum, A.; Dwivedi, P.; Katiyar, D.; Hemantaranjan, A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Front. Plant Sci. 2019, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Kerchev, P.; van der Meer, T.; Sujeeth, N.; Verlee, A.; Stevens, C.V.; Van Breusegem, F.; Gechev, T. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 2020, 40, 107503. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.J.; Turkan, I.; Krieger-Liszkay, A. Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast. Plant Physiol. 2016, 171, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Guntzer, F.; Keller, C.; Meunier, J.D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2012, 32, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Katz, O. Beyond grasses: The potential benefits of studying silicon accumulation in non-grass species. Front. Plant Sci. 2014, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putra, R.; Powell, J.R.; Hartley, S.E.; Johnson, S.N. Is it time to include legumes in plant silicon research? Funct. Ecol. 2020, 34, 1142–1157. [Google Scholar] [CrossRef]
- Johnson, S.N.; Ryalls, J.M.; Gherlenda, A.N.; Frew, A.; Hartley, S.E. Benefits from below: Silicon supplementation maintains legume productivity under predicted climate change scenarios. Front. Plant Sci. 2018, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Mandlik, R.; Thakral, V.; Raturi, G.; Shinde, S.; Nikolić, M.; Tripathi, D.K.; Sonah, H.; Deshmukh, R. Significance of silicon uptake, transport, and deposition in plants. J. Exp. Bot. 2020. [Google Scholar] [CrossRef]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Bélanger, R.R. The controversies of silicon’s role in plant biology. New Phytol. 2019, 221, 67–85. [Google Scholar] [CrossRef]
- Savvas, D.; Ntatsi, G. Biostimulant activity of silicon in horticulture. Sci. Hortic. 2015, 196, 66–81. [Google Scholar] [CrossRef]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Cooke, J.; Leishman, M.R. Consistent alleviation of abiotic stress with silicon addition: A meta-analysis. Funct. Ecol. 2016, 30, 1340–1357. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Safe. 2018, 147, 881–896. [Google Scholar] [CrossRef] [PubMed]
- Neu, S.; Schaller, J.; Dudel, E.G. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci. Rep. 2017, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.C.; Wong, J.W.C.; Wei, L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 2005, 58, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.A.; Shivaraj, S.M.; Singh, P.; Navadagi, D.B.; Tripathi, D.K.; Dash, P.K.; Solanke, A.U.; Sonah, H.; Deshmukh, R. Role of Silicon in Mitigation of Heavy Metal Stresses in Crop Plants. Plants-Basel 2019, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, R.J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 2014, 177, 831–844. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Functions and transport of silicon in plants. Cell. Mol. Life Sci. 2008, 65, 3049–3057. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Costa, R.R.; Moraes, J.C.; DaCosta, R.R. Feeding behaviour of the greenbug Schizaphis graminum on wheat plants treated with imidacloprid and/or silicon. J. Appl. Entomol. 2011, 135, 115–120. [Google Scholar] [CrossRef]
- Reynolds, O.L.; Keeping, M.G.; Meyer, J.H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 2009, 155, 171–186. [Google Scholar] [CrossRef]
- Massey, F.P.; Ennos, A.R.; Hartley, S.E. Herbivore specific induction of silica-based plant defences. Oecologia 2007, 152, 677–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muneer, S.; Park, Y.G.; Manivannan, A.; Soundararajan, P.; Jeong, B.R. Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress. Int. J. Mol. Sci. 2014, 15, 21803–21824. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, Y.C.; Flowers, T.J.; Gong, H.J. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J. Plant Physiol. 2013, 170, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Yeo, A.R.; Flowers, S.A.; Rao, G.; Welfare, K.; Senanayake, N.; Flowers, T.J. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ. 1999, 22, 559–565. [Google Scholar] [CrossRef]
- Tahir, M.A.; Rahmatullah; Aziz, T.; Ashraf, M.; Kanwal, S.; Maqsood, M.A. Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pak. J. Bot. 2006, 38, 1715–1722. [Google Scholar]
- Liang, Y.C.; Sun, W.C.; Zhu, Y.G.; Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Van Bockhaven, J.; De Vleesschauwer, D.; Hofte, M. Towards establishing broad-spectrum disease resistance in plants: Silicon leads the way. J. Exp. Bot. 2013, 64, 1281–1293. [Google Scholar] [CrossRef]
- Thaler, J.S.; Humphrey, P.T.; Whiteman, N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17, 260–270. [Google Scholar] [CrossRef]
- Robert-Seilaniantz, A.; Grant, M.; Jones, J.D.G. Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. In Annual Review of Phytopathology, Vol 49; VanAlfen, N.K., Bruening, G., Leach, J.E., Eds.; Annual Reviews: Palo Alto, CA, USA, 2011; Volume 49, pp. 317–343. [Google Scholar]
- Hauser, F.; Waadt, R.; Schroeder, J.I. Evolution of Abscisic Acid Synthesis and Signaling Mechanisms. Curr. Biol. 2011, 21, R346–R355. [Google Scholar] [CrossRef] [Green Version]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef]
- Gross, F.; Durner, J.; Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 2013, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerriero, G.; Hausman, J.-F.; Legay, S. Silicon and the plant extracellular matrix. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, D.M.; Sørensen, H.R.; Knudsen, N.O.; Meyer, A.S. Implications of silica on biorefineries – interactions with organic material and mineral elements in grasses. Biofuelsbioprod. Biorefining 2015, 9, 109–121. [Google Scholar] [CrossRef]
- Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Molec. Biol. 1999, 50, 641–664. [Google Scholar] [CrossRef]
- Patwardhan, S.V.; Tilburey, G.E.; Perry, C.C. Interactions of Amines with Silicon Species in Undersaturated Solutions Leads to Dissolution and/or Precipitation of Silica. Langmuir 2011, 27, 15135–15145. [Google Scholar] [CrossRef] [PubMed]
- Wedepohl, K.H. The composition of the continental-crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Sommer, M.; Kaczorek, D.; Kuzyakov, Y.; Breuer, J. Silicon pools and fluxes in soils and landscapes—A review. J. Plant Nutr. Soil Sci. -Z. Fur Pflanzenernahr. Und Bodenkd. 2006, 169, 310–329. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Scholle, G.A.; Wolters, V. Dynamics of mineral components in the forest floor of an acidic beech (Fagus sylvatica L.) forest. Eur. J. Soil Biol. 2009, 45, 285–289. [Google Scholar] [CrossRef]
- Hammer, E.C.; Nasr, H.; Pallon, J.; Olsson, P.A.; Wallander, H. Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 2011, 21, 117–129. [Google Scholar] [CrossRef]
- Bidle, K.D.; Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 1999, 397, 508–512. [Google Scholar] [CrossRef]
- Demadis, K.D.; Mavredaki, E.; Somara, M. Additive-Driven Dissolution Enhancement of Colloidal Silica. 2. Environmentally Friendly Additives and Natural Products. Ind. Eng. Chem. Res. 2011, 50, 13866–13876. [Google Scholar] [CrossRef]
- Belton, D.; Patwardhan, S.V.; Perry, C.C. Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chem. Commun. 2005, 3475–3477. [Google Scholar] [CrossRef] [PubMed]
- Belton, D.J.; Patwardhan, S.V.; Perry, C.C. Spermine, spermidine and their analogues generate tailored silicas. J. Mater. Chem. 2005, 15, 4629–4638. [Google Scholar] [CrossRef]
- Temirov, Y.V.; Esikova, T.Z.; Kashparov, I.A.; Balashova, T.A.; Vinokurov, L.M.; Alakhov, Y.B. A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Russ. J. Bioorgan. Chem. 2003, 29, 542–549. [Google Scholar] [CrossRef]
- Venturi, V.; Zennaro, F.; Degrassi, G.; Okeke, B.C.; Bruschi, C.V. Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology 1998, 144, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Singh, P.; Tiwari, R.; Meena, K.K.; Yandigeri, M.; Singh, D.P.; Arora, D.K. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol. Fertil. Soils 2011, 47, 907–916. [Google Scholar] [CrossRef]
- Cassán, F.; Maiale, S.; Masciarelli, O.; Vidal, A.; Luna, V.; Ruiz, O. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur. J. Soil Biol. 2009, 45, 12–19. [Google Scholar] [CrossRef]
- Nassar, A.H.; El-Tarabily, K.A.; Sivasithamparam, K. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Regul. 2003, 40, 97–106. [Google Scholar] [CrossRef]
- Xie, S.S.; Wu, H.J.; Zang, H.Y.; Wu, L.M.; Zhu, Q.Q.; Gao, X.W. Plant Growth Promotion by Spermidine-Producing Bacillus subtilis OKB105. Mol. Plant-Microbe Interact. 2014, 27, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Prentice, P. Efficacy of silica in increasing fields in Marocco. In Proceedings of the 7th International Conference on Silicon in Agriculture, Bengaluru, India, 24–28 October 2017; pp. 24–28. [Google Scholar]
- Encina Oliva, K.M.; Araújo do Nascimento, C.W.; Vieira da Silva, F.B.; Muniz Araújo, P.R.; Almeida de Oliveira, E.C.; Feitosa, M.M.; Vieira Lima, L.H. Biomass and concentration of nutrients and silicon in sugarcane grown on soil fertilized with diatomite. Braz. J. Agric. Sci./Rev. Bras. De Ciências Agrárias 2020, 15, 1–7. [Google Scholar]
- Kadalli, G.; Rudresha, B.; Prakash, N. Effect of diatomite as a silicon source on growth, yield and quality of potato. In Proceedings of the 7th International Conference on Silicon in Agriculture, Bengaluru, India, 24–28 October 2017; pp. 24–28. [Google Scholar]
- Barão, L.; Teixeira, R.; Vandevenne, F.; Ronchi, B.; Unzué-Belmonte, D.; Struyf, E. Silicon Mobilization in Soils: The Broader Impact of Land Use. Silicon 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Carey, J.C.; Fulweiler, R.W. Human appropriation of biogenic silicon–the increasing role of agriculture. Funct. Ecol. 2016, 30, 1331–1339. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, K.; Kurashita, H.; Arata, T.; Miyata, A.; Kawazoe, M.; Nobu, M.K.; Narihiro, T.; Ohike, T.; Hatamoto, M.; Maki, S.; et al. Influence of Green Tuff Fertilizer Application on Soil Microorganisms, Plant Growth, and Soil Chemical Parameters in Green Onion (Allium fistulosum L.) Cultivation. Agronomy 2020, 10, 929. [Google Scholar] [CrossRef]
- Aguirre, L.E.; Ouyang, L.; Elfwing, A.; Hedblom, M.; Wulff, A.; Inganäs, O. Diatom frustules protect DNA from ultraviolet light. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goessling, J.W.; Su, Y.; Cartaxana, P.; Maibohm, C.; Rickelt, L.F.; Trampe, E.C.; Walby, S.L.; Wangpraseurt, D.; Wu, X.; Ellegaard, M. Structure-based optics of centric diatom frustules: Modulation of the in vivo light field for efficient diatom photosynthesis. New Phytol. 2018, 219, 122–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, D.; Puterka, G.; Vanderzwet, T.; Byers, R.; Feldhake, C. Hydrophobic particle films: A new paradigm for suppression of arthropod pests and plant diseases. J. Econ. Entomol. 1999, 92, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Glenn, D.M.; Puterka, G.J. Particle films: A new technology for agriculture. Hortic. Rev. 2005, 31, 1–44. [Google Scholar]
- Domenico, P. Particle films: Chabazitic zeolites with added microorganisms in the protection and growth of tomato plants (Lycopersicon esculentum L.). Gsc Adv. Res. Rev. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Ge, W.; Du, G.; Zhang, L.; Li, Z.; Xiao, G.; Chen, B. The Time–Concentration–Mortality Responses of Western Flower Thrips, Frankliniella occidentalis, to the Synergistic Interaction of Entomopathogenic Fungus Metarhizium flavoviride, Insecticides, and Diatomaceous Earth. Insects 2020, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Amirkhani, M.; Mayton, H.; Chen, Z.; Taylor, A.G. Biostimulant Seed Coating Treatments to Improve Cover Crop Germination and Seedling Growth. Agronomy 2020, 10, 154. [Google Scholar] [CrossRef] [Green Version]
Commercial Name | Type of Diatomaceous Earth (DE) | Others (Active) Ingredients | Dose (mg/kg) | Commodity | Tested Insect Species | Mortality | Ref. |
---|---|---|---|---|---|---|---|
Celatom® MN-51 | Fresh water DE, dimension 15 µm, 83.7% SiO2, less than 1% crystalline SiO2 | none | 500 | wheat grains | Sitophilus oryzae | 100%, after 14 days, 30 °C, 70% RH 1 | [49] |
Tribolium castaneum | 100%, after 14 days, 30 °C, 70% RH 1 | ||||||
Rhyzopertha dominica | 100%, after 14 days, 30 °C, 70% RH 1 | ||||||
SilicoSec® | Fresh water DE, dimension 8-12 µm, 92% SiO2 less than 1% crystalline SiO2 | none | 1500 | Wheat flour | T. castaneum | 100%, 32 °C, 55% RH 1 | [50] |
1500 | Barley grain | S. oryzae | 1005, after 7 days | [51] | |||
1500 | Maize grain | >65%, after 14 days | |||||
800 | Wheat grain | Ephestia kuehniella | >85%, after 14 days, 32 °C >65%, after 14 days, 75% RH 1 | [52] | |||
900 | Wheat Barley | T. castaneum | >65%, after 21 days | [52] | |||
S. oryzae | 100%, after 21 days, 30 °C, 55% RH 1 | ||||||
R. dominica | 90%, after 21 days, 30 °C, 55% RH 1 | ||||||
Protect-It® | Marine DE, median dimension 5.4 µm, 83.7% SiO2, less than 0.9% crystalline SiO2 | Silica aerogel 10% | 300 | Wheat grain | T. castaneum | 100%, after 1 month, field test-variable temperature, 55% RH | [53] |
>400 | Wheat | T. castaneum | 100%, after 14 days, 30 °C, 65% RH 1 | [54] | |||
PyriSec® | Fresh water DE, dimension 8-12 µm, ~90% SiO2 less than 1% crystalline SiO2 (SilicoSec®, 95.7%) | 1.2% natural pyrethrum (25%), 3.1% piperonyl butoxide | 1500 | peeled barley | R. dominica | 84.2%, 26 °C, 55% RH 1 | [55] |
wheat, whole barley, oats, rye, triticale, rice, maize | >95%, 26 °C, 55% RH 1 | ||||||
300 | wheat barley | Oryzaephilus surinamensis | 100% after 7 days | [56] | |||
900 | wheat barley | T. castaneum | 100% after 21 days | ||||
900 | Wheat barley | S. oryzae, R. dominica | 100% and 90%, 14 days 30 °C, 55% RH | ||||
DryacideTM | Freshwater DE; 90% amorphous SiO2; mean particle size: 13–15 mm | none | 400 | wheat | S. oryzae | >95%, after 7 days, 30 °C, | [57] |
600 | T. castaneum | >90%, after 14 days, 30 °C, 65% RH 1 | [54] | ||||
Insecto® | Marine DE, median dimension 8.2 μm, 87% amorphous SiO2 | 10% food-grade bait | 400 | wheat | S. oryzae | 96%, after 14 days, 26 °C, 57% | [58] |
600 | T. castaneum | 90%, after 14 days, 30 °C, 65% RH 1 | [54] | ||||
Perma GuardTM | Freshwater DE; median dimension 93% SiO2 | none | 400 | wheat | S. oryzae | 77%, after 14 days, 26 °C, 57% | [58] |
1000 | wheat | T. castaneum | 100%, after 14 days, 30 °C, 65% RH 1 | [54] |
Type of SNNMs | Complementary Active Ingredients | Dose (mg/kg) | Commodity | Tested Insect Species | Mortality | Ref. |
---|---|---|---|---|---|---|
Diatomaceous earth (SilicoSec® 48% wt/wt) | Silica gel (24% wt/wt), bay leaves powder (20% wt/wt), corn oil (3% wt/wt), lavender Lavandula x intermedia essential oil (2% wt/wt), dried yeast up to 100% | 600 | wheat grain | T. castaneum | 100%, 14 days, 28 °C, 60% RH 1 | [66] |
S. oryzae | 100%, 14 days, 28 °C, 60% RH 1 | |||||
R. dominica | 100%, 4 days, 28 °C, 60% RH 1 | |||||
600 | barley grain | T. castaneum | >95%, 14 days, 28 °C, 60% RH 1 | |||
S. oryzae | >95%, 14 day, 28 °C, 60% RH 1 | |||||
R. dominica | 100%, 14 days, 28 °C, 60% RH 1 | |||||
Diatomaceous earth (Celatom® MN-51) | Amorphous silica gel (20%), lavandin EO, Torula yeast powder | 400 | wheat grains | S. oryzae | 100%, after 2 days, 28 °C, 65% RH 1 | [25] |
Diatomaceous earth (Celatom® MN-51) | Amorphous silica gel (3%), pyrethrin, flax oil, lavandin essential oil (EO), and Torula yeast powder | 125 | wheat grains | S. oryzae | 100%, after 2 days, 28 °C, 65% RH 1 | [25] |
125 | R. dominica | 81%, after 2 days, 28 °C, 65% RH 1 | ||||
100 | T. castaneum | 83%, after 6 days, 28 °C, 65% RH 1 | ||||
Fresh water DE 89% amorphous SiO2, 4.0%, dimension 10 μm, crystalline silica 0.1%. | Abamectin, 0.25% | 75 | wheat grain | S. oryzae | 100%, 14 days, 30 °C, 70% RH 1 | [67] |
150 | R. dominica | >95%, 14 days, 30 °C, 70% RH 1 | ||||
125 | T. castaneum | 100%, 14 days, 30 °C, 70% RH 1 | ||||
75 | Cryptolestes ferrugineus | 100%, 14 days, 30 °C, 70% RH 1 | ||||
Fresh water DE 89% amorphous SiO2, 4.0%, dimension 10 μm, crystalline silica 0.1%. | Bitter bark omycin, 0.05% | 125 | wheat grain | S. oryzae | 100%, 14 days, 30 °C, 70% RH 1 | [67] |
75 | R. dominica | >95%, 14 days, 30 °C, 70% RH 1 | ||||
150 | T. castaneum | 100%, 14 days, 30 °C, 70% RH 1 | ||||
125 | C. ferrugineus | 100%, 14 days, 30 °C, 70% RH 1 | ||||
Egyptian diatomaceous earth, 46.37% SiO2 | Spinosad (98%), 0.5 mg/kg | 100 | wheat grains | S. oryzae | 100%, after 14 days, 28 °C, 65% RH 1 | [68] |
Egyptian diatomaceous earth, 46.37% SiO2 | Trichoderma harzianum (Egyptian strain) | 800 | common beans | Acanthoscelides obtectus | >93%, after 7 days, 24 °C, 60% RH 1 | [69] |
DEBBM, mixture of Canadian diatomaceous earth, freshwater DE 89% SiO2 and bitter barkomycin | Bitter barkomycin, 0.05% Beauveria bassiana 6.69 × 1010 conidia | 30 | wheat grains | R. dominica | >90%, 15 days, 25 °C, 55% RH 1 | [70] |
Marine DE, median dimension 5.4 µm, 83.7% SiO2, (Protect-It®) | Beauveria bassiana. 2700 mg/kg | 190 | wheat grains | T. castaneum larvae | >90%, 8 days, 26 °C, 75% RH 1 | [71] |
Chinese diatomaceous earth, 93% SiO2 | Garlic essential oil (purity ≥ 90%), 20 mg/kg | 250 | rice grain | T. castaneum | 100%, 7 days, 27 °C, 70% RH 1 | [72] |
Type of SNNMs | Crop | Type of Soil/Growth Substrate-Stress | SNMM Dose | Main Effect | Ref. |
---|---|---|---|---|---|
Zeolites (clinoptilite) | Corn, Zea mays | Typic Paleudults, fine sandy clay loam | 280–350 kg/ha | Improved phosphorus dynamic and uptake | [87] |
Zeolites | Rice, Oryza sativa L. | Clay loam- Drought stress | 15 t/ha | Improved head rice rate; decreased chalk rice rate and chalkiness. | [84] |
Zeolites | Fenugreek, Trigonella foenum-graecum | Semi-arid area - Drought stress | 9 t/ha | Reduced effects of draught; Improved biological and seed yield | [88] |
Zeolites | Aloe vera L. (syn. Aloe barbadensis Miller) | Drought stress | 4 and 8 g/kg | Reduced drought stress effects; improved plant growth and yield | [89] |
Zeolites (clinoptilolite) | Radish, Raphanus sativus | Growing substrate, Greenhouse experiment–Salinity stress | 0.06 kg/m2 | Reduced salt uptake by plant; increased crop yield and quality | [90] |
Zeolites | Onion, Allium cepa L | Silt loam soil-Salinity stress | 4 and 8 t/ ha | Decreased number of small onion bulbs | [91] |
Zeolites | Rapeseed, Brassica napus | Soil-Cadmium (Cd) | 10 g/kg | Reduced Cd uptake by plant; Improved plant physiology | [92] |
Zeolites | Marjoram, Origanum majorana L. | Chromium-contaminated soil | 5 g/kg | Alleviation of (Cr-induced) leaf senescence | [93] |
Zeolites | Wheat, Triticum aestivum L. | Nickel (Ni)-contaminated soil | 100 g/kg | Reduced Ni uptake by plant; Improved plant physiology | [94] |
Diatomaceous earth (Melosira granulata) | Melon, Cucumis melo | Coarse texture, low nutrient and Si content | 200, 400, 600, and 800 kg/ha | Increased nutrient uptake and nutrient use efficiency; increased yield and quality of fruits | [95] |
Diatomaceous earth (biogenic silica, smectite, kaolinite and quartz), AgriPower Pvt. Ltd., Australia | Rice, Oryza sativa L., var. JGL 1798 | Acidic, Neutral and alkaline soil–drought (and salinity) stress | 150, 300, and 600 kg/ha | Improved water and nutrient-use efficiency; reduced stress effects; higher grain yield under stressed conditions; Si-uptake depending on soil type | [19] |
Deionized diatomaceous earth (Zalpak area) | Wheat, Triticum aestivum L. | Growth substrate with known mineral composition–salinity stress | 1 and 10 g/kg | Improved plant growth and yield compared with control, both with and without salinity stress | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantinescu-Aruxandei, D.; Lupu, C.; Oancea, F. Siliceous Natural Nanomaterials as Biorationals—Plant Protectants and Plant Health Strengtheners. Agronomy 2020, 10, 1791. https://doi.org/10.3390/agronomy10111791
Constantinescu-Aruxandei D, Lupu C, Oancea F. Siliceous Natural Nanomaterials as Biorationals—Plant Protectants and Plant Health Strengtheners. Agronomy. 2020; 10(11):1791. https://doi.org/10.3390/agronomy10111791
Chicago/Turabian StyleConstantinescu-Aruxandei, Diana, Carmen Lupu, and Florin Oancea. 2020. "Siliceous Natural Nanomaterials as Biorationals—Plant Protectants and Plant Health Strengtheners" Agronomy 10, no. 11: 1791. https://doi.org/10.3390/agronomy10111791
APA StyleConstantinescu-Aruxandei, D., Lupu, C., & Oancea, F. (2020). Siliceous Natural Nanomaterials as Biorationals—Plant Protectants and Plant Health Strengtheners. Agronomy, 10(11), 1791. https://doi.org/10.3390/agronomy10111791