Drought Stress Response of Turf-Type Perennial Ryegrass Genotypes in a Mediterranean Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meyer, W.A.; Funk, C.R. Progress and benefits to humanity from breeding cool-season grasses for turf. Contrib. Breed. Forage Turf Grasses 1989, 15, 31–48. [Google Scholar]
- Turgeon, A.J. Turfgrass Management, 7th ed.; Prentice Hall: Englwood Cliffs, NJ, USA, 2005. [Google Scholar]
- Bonos, S.A. Commerically available cool-season turfgrass species and cultivar resource list. Rutgers Turfgrass Proc. 2007, 38, 159–178. [Google Scholar]
- Perennial Ryegrass. Available online: https://www.tgwca.org/perennial-ryegrass.html (accessed on 23 September 2020).
- Pornaro, C.; Barolo, E.; Rimi, F.; Macolino, S.; Richardson, M. Performance of various cool-season turfgrasses as influenced by simulated traffic in northeastern Italy. Eur. J. Hortic. Sci. 2016, 81, 27–36. [Google Scholar] [CrossRef]
- Fry, J.; Huang, B. Applied Turfgrass Science and Physiology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kopp, K.L.; Jiang, Y. Turfgrass water use and physiology. Turfgrass Biol. Use Manag. 2013, 56, 319–345. [Google Scholar]
- Shearman, R.C.; Kenna, M.P. Developing turfgrasses with drought resistance and heat and salinity stress tolerance. In Turfgrass Water Conservation, 2nd ed.; Cockerham, S.T., Leinauer, B., Eds.; UCANR Publication: Davis, CA, USA, 2011; Volume 3523, pp. 31–42. [Google Scholar]
- Beard, J.B. Turfgrass water stress: Drought resistance components, physiological mechanisms, and species-genotype diversity. In Proceedings of the 6th International Turfgrass Research Conference, Tokyo, Japan, 31 July–5 August 1989; Japanese Society of Turfgrass Science: Tokyo, Japan, 1989. [Google Scholar]
- Huang, B. Mechanisms and strategies for improving drought resistance in turfgrass. Acta Hortic. 2008, 783, 221. [Google Scholar] [CrossRef]
- Wilkins, P.W. Breeding perennial ryegrass for agriculture. Euphytica 1991, 52, 201–214. [Google Scholar] [CrossRef]
- Richardson, M.D.; Karcher, D.E.; Hignight, K.; Hignight, D. Irrigation requirements of tall fescue and Kentucky bluegrass cultivars selected under acute drought stress. Appl. Turfgrass Sci. 2012, 9, 1–13. [Google Scholar]
- Feldhake, C.M.; Danielson, R.E.; Butler, J.D. Turfgrass evapotranspiration. 11. Responses to deficit irrigation 1. Agron. J. 1984, 76, 85–89. [Google Scholar] [CrossRef]
- Kneebone, W.R.; Kopec, D.M.; Mancino, C.F. Water requirements and irrigation. Turfgrass 1992, 32, 441–472. [Google Scholar]
- Morari, F. Drainage flux measurement and errors associated with automatic tension-controlled suction plates. Soil Sci. Soc. Am. J. 2006, 70, 1860–1871. [Google Scholar] [CrossRef]
- Sheffer, K.M.; Dunn, J.H.; Minner, D.D. Summer drought responses and rooting depth of three cool-season turfgrasses. HortSci. 1987, 22, 296–297. [Google Scholar]
- Jaafar, H.H.; Ahmad, F. Evaluating atmometer performance for estimating reference evapotranspiration in ventilated and unventilated greenhouses. J. Irrig. Drain. Eng. 2018, 144, 04018014. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Cocco, E.; Lazzaro, B.; Berti, A.; Morari, F. Assessing the role of agri-environmental measures to enhance the environment in the Veneto Region, Italy, with a model-based approach. Agr. Ecosyst. Environ. 2016, 232, 312–325. [Google Scholar] [CrossRef]
- Richardson, M.D.; Karcher, D.E.; Purcell, L.C. Quantifying turfgrass cover using digital image analysis. Crop. Sci. 2001, 41, 1884–1888. [Google Scholar] [CrossRef]
- Krans, J.V.; Morris, K. Determining a profile of protocols and standards used in the visual field assessment of turfgrasses: A survey of national turfgrass evaluation program-sponsored university scientists. Appl. Turfgrass Science 2007, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Leinauer, B.; Van Leeuwen, D.M.; Serena, M.; Schiavon, M.; Sevostianova, E. Digital image analysis and spectral reflectance to determine turfgrass quality. Agron. J. 2014, 106, 1787–1794. [Google Scholar] [CrossRef] [Green Version]
- Studer, B.; Jensen, L.B.; Hentrup, S.; Brazauskas, G.; Kölliker, R.; Lübberstedt, T. Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor. App. Genet. 2008, 117, 781–791. [Google Scholar] [CrossRef]
- R Development Core Team. R 3.3. 4. R Project for Statistical Computing; R Development Core Team: Vienna, Austria, 2017. [Google Scholar]
- Pornaro, C.; Menegon, A.; Macolino, S. Stolon development in four turf-type perennial ryegrass cultivars. Agron. J. 2018, 110, 2159–2164. [Google Scholar] [CrossRef] [Green Version]
- Pornaro, C.; Macolino, S.; Richardson, M.D. Rhizome and stolon development of bermudagrass cultivars in a transition-zone environment. Acta Agric. Scand. Section B Soil Plant Sci. 2019, 69, 657–666. [Google Scholar] [CrossRef]
- Schiavon, M.; Macolino, S.; Leinauer, B.; Ziliotto, U. Seasonal changes in carbohydrate and protein content of seeded bermudagrasses and their effect on spring green-up. J. Agron. Crop. Sci. 2016, 202, 151–160. [Google Scholar] [CrossRef]
- Karsten, H.D.; MacAdam, J.W. Effect of drought on growth, carbohydrates, and soil water use by perennial ryegrass, tall fescue, and white clover. Crop. Sci. 2001, 41, 156–166. [Google Scholar] [CrossRef]
- Chai, Q.; Jin, F.; Merewitz, E.; Huang, H. Growth and physiological traits associated with drought survival and post-drought recovery in perennial turfgrass species. J. Am. Soc. Hortic. Sci. 2010, 135, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Huang, B. Turfgrass water requirements and factors affecting water usage. Water quality and quantity issues for turfgrass in urban landscapes. Council Agric. Sci. Technol. Spec. Publ. 2008, 27, 193–205. [Google Scholar]
- Biran, I.; Bravdo, B.; Bushkin-Harav, I.; Rawitz, E. Water consumption and growth rate of 11 turfgrasses as affected by mowing height, irrigation frequency, and soil moisture. Agron. J. 1981, 73, 85–90. [Google Scholar] [CrossRef]
- Kim, K.S. Comparative Evapotranspiration Rates of Thirteen Turfgrasses Grown under both Non-Limiting Soil Moisture and Progressive Water Stress Conditions. Master’s Thesis, Texas A&M University, College Station, TX, USA, 1983. [Google Scholar]
- DaCosta, M.; Huang, B. Minimum water requirements for creeping, colonial, and velvet bentgrass under fairway conditions. Crop Sci. 2006, 46, 81–89. [Google Scholar] [CrossRef]
- Demirel, K.; Kavdır, Y. Effect of soil water retention barriers on turfgrass growth and soil water content. Irrig. Sci. 2013, 31, 689–700. [Google Scholar] [CrossRef]
- Handreck, K.A.; Black, N.D.; Black, N. Growing Media for Ornamental Plants and Turf; UNSW Press: Kensington, UK, 2010; p. 551. [Google Scholar]
- Carrow, R.N. Drought resistance aspects of turfgrasses in the Southeast: Evapotranspiration and crop coefficients. Crop Sci. 1995, 35, 1685–1690. [Google Scholar] [CrossRef]
Air Temperature (°C) | |||
---|---|---|---|
Month | 2016 | 2017 | 2018 |
January | - | 1 | 6 |
February | - | 6 | 4.2 |
March | - | 11.1 | 7.7 |
April | - | 14.4 | 16.9 |
May | - | 19.2 | 21.7 |
June | - | 25.1 | 24.9 |
July | - | 26.7 | 26.8 |
August | - | 26.4 | 26.8 |
September | 20.7 | 17.8 | - |
October | 13.3 | 13.7 | - |
November | 9.2 | 8.1 | - |
December | 3 | 2.8 | - |
Parameter | Sources | ||
---|---|---|---|
Cultivar | Sampling Date | Cultivar × Sampling Date | |
Green turf cover | *** | *** | *** |
NDVI | ** | *** | ns |
Soil moisture | ns | ** | ns |
Visual quality | *** | *** | ns |
Colour | *** | *** | ns |
Sampling Date (Week) | GDD | Cumulative ET | Soil Moisture | NDVI | Visual Quality | Colour | |
---|---|---|---|---|---|---|---|
Drought period | 1 | 1682 | 4.92 | 42.56 | 0.83 | 6.94 | 6.78 |
2 | 1886 | 20.49 | 34.54 | 0.84 | 6.85 | 6.72 | |
3 | 2068 | 55.38 | 24.09 | 0.81 | 6.76 | 6.65 | |
4 | 2255 | 91.66 | 20.71 | 0.77 | 6.33 | 6.32 | |
5 | 2426 | 124.05 | 17.69 | 0.75 | 6.03 | 6.11 | |
6 | 2617 | 160.52 | 15.37 | 0.69 | 5.44 | 5.44 | |
7 | 2785 | 192.76 | 15.16 | 0.64 | 4.83 | 4.78 | |
Recovery period | 8 | 2968 | 225.85 | 21.89 | 0.68 | 5.29 | 5.14 |
9 | 3175 | 263.04 | 19.98 | 0.69 | 5.49 | 5.43 | |
10 | 3564 | 297.92 | 23.94 | 0.71 | 5.67 | 5.65 | |
11 | 3376 | 331.35 | 22.92 | 0.76 | 6.21 | 6.14 | |
12 | 3744 | 351.79 | 21.48 | 0.78 | 6.35 | 6.24 | |
13 | 3963 | 373.67 | 20.03 | 0.82 | 6.52 | 6.38 | |
LSD | / | / | 1.91 | 0.02 | 0.21 | 0.25 |
Parameter | Variable | AIC | BIC | −2 Res Log-Likelihood |
---|---|---|---|---|
Green cover | Sampling date | −305 | 435 | 311 |
DOY | −741 | −614 | 398 | |
GDD | −665 | −537 | 359 | |
ET | −708 | −580 | 381 | |
Soil moisture | Sampling date | 2911 | 3657 | −1299 |
DOY | 3289 | 3417 | −1617 | |
GDD | 3378 | 3498 | −1658 | |
ET | 3332 | 3460 | −1639 | |
NDVI | Sampling date | −984 | −247 | 679 |
DOY | −1110 | −982 | 582 | |
GDD | −1029 | −901 | 541 | |
ET | −1087 | −965 | 553 | |
Visual quality | Sampling date | 545 | 798 | −312 |
DOY | 1021 | 915 | −407 | |
GDD | 943 | 852 | −375 | |
ET | 998 | 876 | −391 | |
Colour | Sampling date | 565 | 780 | −329 |
DOY | 1037 | 913 | −409 | |
GDD | 946 | 863 | −381 | |
ET | 1001 | 887 | −397 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pornaro, C.; Serena, M.; Macolino, S.; Leinauer, B. Drought Stress Response of Turf-Type Perennial Ryegrass Genotypes in a Mediterranean Environment. Agronomy 2020, 10, 1810. https://doi.org/10.3390/agronomy10111810
Pornaro C, Serena M, Macolino S, Leinauer B. Drought Stress Response of Turf-Type Perennial Ryegrass Genotypes in a Mediterranean Environment. Agronomy. 2020; 10(11):1810. https://doi.org/10.3390/agronomy10111810
Chicago/Turabian StylePornaro, Cristina, Matteo Serena, Stefano Macolino, and Bernd Leinauer. 2020. "Drought Stress Response of Turf-Type Perennial Ryegrass Genotypes in a Mediterranean Environment" Agronomy 10, no. 11: 1810. https://doi.org/10.3390/agronomy10111810
APA StylePornaro, C., Serena, M., Macolino, S., & Leinauer, B. (2020). Drought Stress Response of Turf-Type Perennial Ryegrass Genotypes in a Mediterranean Environment. Agronomy, 10(11), 1810. https://doi.org/10.3390/agronomy10111810