Alkaloid Contents in Epichloë Endophyte-Infected Elymus tangutorum Sampled along an Elevation Gradient on the Qinghai-Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area
2.2. Plant Material
2.3. Determination of Ergot Alkaloid and Peramine Concentration
2.4. Collection of Climate Data
2.5. Statistical Analysis
3. Results
3.1. Climate Factors and Relationships with Elevation
3.2. Alkaloid Concentration of E+ E. tangutorum
3.3. The Relationship between Alkaloid Concentration and Elevation
3.4. The Relationship between Alkaloid Concentration and Climatic Factors
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berthelot, C.; Leyval, C.; Foulon, J.; Chalot, M.; Blaudez, D. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement anagement sites. FEMS Microbiol. Ecol. 2016, 92, fiw144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novas, M.; Collantes, M.; Cabral, D. Environmental effects on grass-endophyte associations in the harsh conditions of south Patagonia. FEMS Microbiol. Ecol. 2010, 61, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Pinto-Carbó, M.; Gademann, K.; Eberl, L.; Carlier, A. Leaf nodule symbiosis: Function and transmission of obligate bacterial endophytes. Curr. Opin. Plant Biol. 2018, 44, 23. [Google Scholar] [CrossRef] [PubMed]
- Wurzburger, N.; Brookshire, E.N.J.; Mccormack, M.L.; Lankau, R.A. Mycorrhizal fungi as drivers and modulators of terrestrial ecosystem processes. New Phytol. 2017, 213, 996–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schardl, C.L. Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet. Biol. 2002, 33, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Leuchtmann, A.; Bacon, C.W.; Schardl, C.L.; White, J.F.; Tadych, M. Nomenclatural realignment of Neotyphodium species with genus Epichloё. Mycologia 2014, 106, 202–215. [Google Scholar] [CrossRef]
- Gundel, P.E.; Rudgers, J.A.; Ghersa, C.M. Incorporating the process of vertical transmission into understanding of host-symbiont dynamics. Oikos 2011, 120, 1121–1128. [Google Scholar] [CrossRef]
- Song, H.; Nan, Z.B.; Song, Q.Y.; Xia, C.; Li, X.Z.; Yao, X.; Xu, W.B.; Kuang, Y.; Tian, P.; Zhang, Q.P. Advances in research on Epichloё endophytes in Chinese native grasses. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Tadych, M.; Bergen, M.S.; White, J.F. Epichloë spp. associated with grasses: New insight on life cycles, dissemination and evolution. Mycologia 2014, 106, 181–201. [Google Scholar] [CrossRef]
- Gibert, A.; Volaire, F.; Barre, P.; Hazard, L. A fungal endophyte reinforces population adaptive differentiation in its host grass species. New Phytol. 2012, 194, 561–571. [Google Scholar] [CrossRef]
- Schardl, C.L.; Leuchtmann, A.; Spiering, M.J. Symbioses of grasses with seed-borne fungal endophytes. Annu. Rev. Plant Biol. 2004, 55, 315–340. [Google Scholar] [CrossRef] [PubMed]
- Zabalgogeazcoa, Í.; Ciudad, A.G.; Aldana, V.D.; Criado, B.G. Effects of the infection by the fungal endophyte Epichloë festucae in the growth and nutrient content of Festuca rubra. Eur. J. Agron. 2006, 24, 374–384. [Google Scholar] [CrossRef]
- Song, M.L.; Chai, Q.; Li, X.Z.; Yao, X.; Li, C.L.; Christensen, M.J.; Nan, Z.B. An asexual Epichloё, endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 2015, 387, 153–165. [Google Scholar] [CrossRef]
- Pérez, L.I.; Gundel, P.E.; Ghersa, C.M.; Omacini, M. Family issues: Fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol. 2013, 6, 379–386. [Google Scholar] [CrossRef]
- Xia, C.; Li, N.N.; Zhang, Y.W.; Li, C.J.; Zhang, X.X.; Nan, Z.B. Role of Epichloё endophytes in defense responses of cool-season grasses to pathogens: A review. Plant Dis. 2018, 102, 2016–2073. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Xia, C.; Li, C.J.; Nan, Z.B. Chemical composition and antifungal activity of the volatile oil from Epichloë gansuensis, endophyte-infected and non-infected Achnatherum inebrians. Sci. China Life Sci. 2015, 58, 512–514. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, K.G.; Matthew, C.; McKenzie, C.M.; Popay, A.J. Impact of Epichloё endophytes on adult Argentine stem weevil damage to perennial ryegrass seedlings. Entomol. Exp. Appl. 2017, 163, 328–337. [Google Scholar] [CrossRef]
- Faeth, S.H.; Oberhofer, M.; Saari, S.; Haskins, K.E.; Shymanovich, T. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environment? Ecology 2017, 98, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Oberhofer, M.; Güsewell, S.; Leuchtmann, A. Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytol. 2014, 201, 242–253. [Google Scholar] [CrossRef]
- Peng, Q.Q.; Li, C.J.; Song, M.L.; Nan, Z.B. Effects of seed hydropriming on growth of Festuca sinensis, infected with Neotyphodium, endophyte. Fungal Ecol. 2013, 6, 83–91. [Google Scholar] [CrossRef]
- Song, M.L.; Li, X.Z.; Saikkonen, K.; Li, C.J.; Nan, Z.B. An asexual Epichloё, endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecol. 2015, 13, 44–52. [Google Scholar] [CrossRef]
- Zhang, X.X.; Li, C.J.; Nan, Z.B. Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci. China Life Sci. 2012, 55, 793–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schardl, C.L.; Florea, S.; Pan, J.; Nagabhyru, P.; Sladana, B.; Calie, P.J. The pichloae: Alkaloid diversity and roles in symbiosis with grasses. Curr. Opin. Plant Biol. 2013, 16, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerre, P. Ergot alkaloids produced by endophytic fungi of the genus Epichloë. Toxins 2015, 7, 773–790. [Google Scholar] [CrossRef] [Green Version]
- Zbib, N.; Repussard, C.; Tardieu, D.; Guerre, P. Toxicité des mycotoxines produites par des champignons endophytes du genre Neotyphodium. Rev. Méd. Vét. 2014, 165, 116–135. [Google Scholar]
- Johnson, J.S.; Bryant, J.K.; Scharf, B.; Kishore, D.K.; Coate, E.A.; Eichen, P.A.; Keisler, D.H.; Spiers, D.E. Regional differences in the fescue toxicosis response of Bos taurus cattle. Int. J. Biometeorol. 2015, 59, 385–396. [Google Scholar] [CrossRef]
- Stowe, H.M.; Miller, M.; Burns, M.G.; Calcatera, S.M.; Andrae, J.G.; Aiken, G.E.; Schrick, F.N.; Cushing, T. Effects of fescue toxicosis on bull growth, semen characteristics, and breeding soundness evaluation. J. Anim. Sci. 2013, 91, 3686–3692. [Google Scholar] [CrossRef] [Green Version]
- Poole, D.P.; Littler, R.A.; Smith, B.L.; McLeay, L.M. Effects and mechanisms of action of the ergopeptides ergotamine and ergovaline and the effects of peramine on reticulum motility of sheep. Am. J. Vet. Res. 2009, 70, 270–276. [Google Scholar] [CrossRef]
- Hettiarachchige, K.I.; Elkins, A.C.; Reddy, P.; Mann, R.C.; Guthridge, M.K.; Sawbridge, T.I.; Forester, J.W.; Spangenberg, G.C. Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis. Mol. Genet. Genom. 2019, 294, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Guerre, P. Lolitrem B and indole diterpene alkaloids produced by endophytic fungi of the genus Epichloë and their toxic effects in livestock. Toxins 2016, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Barker, G.M.; Patchett, B.J.; Cameron, N.E. Epichloë uncinate infection and loline contene afford Festulolium grassed protection from black beetle (Heteronychus arator). N. Z. J. Agric. Res. 2014, 58, 35–56. [Google Scholar] [CrossRef]
- Zhang, D.X.; Stromberg, A.J.; Spiering, M.J.; Schardl, C.L. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures. Fungal Genet. Biol. 2009, 46, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Popay, A.J.; Tapper, B.A.; Podmore, C. Endophyte-infected meadow fescue and loline alkaloids affect argentine stem weevil larvae. N. Z. Plant Protect. 2009, 62, 19–27. [Google Scholar] [CrossRef]
- Schardl, C.L.; Grossman, R.B.; Nagabhyru, P.; Faulkner, J.P.; Mallik, U.P. Loline alkaloids: Currencies of mutualism. Phytochemistry 2007, 68, 980–996. [Google Scholar] [CrossRef] [PubMed]
- Patchett, S.J.; Chapman, R.B.; Fletcher, L.R.; Gooneratne, S.R. Endophyte-infected Festuca pratensis containing loline alkaloids deters feeding by Listronotus Bonariensis. N. Z. Plant Protect. 2008, 61, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.P.; Ji, Y.J.; Bruijn, K.D.; Liang, G.L.; Yan, H.B. Preliminary evaluation of native grasses collected from alpine rangelands in Qinghai province, China, as materials for breeding grazing-tolerant fine herbage. Grassl. Sci. 2008, 55, 41–45. [Google Scholar] [CrossRef]
- Shao, X.O.; Wang, K.; Dong, S.K.; Huang, X.X.; Kang, M.Y. Regionalisation of suitable herbages for grassland recon struction in agro-pastoral transition zone of northern China. N. Z. J. Agric. Res. 2006, 49, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Nan, Z.B. Origin, divergence, and phylogeny of asexual Epichloё-endophyte in Elymus species from Western China. PLoS ONE 2015, 10, e0127096. [Google Scholar] [CrossRef] [Green Version]
- Song, H. Phylogeny of Nine Elymus Species and Related Asexual Epichloë Endophyte. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2015. [Google Scholar]
- Zhang, Y.P.; Nan, Z.B. Distribution of Epichloё endophytes in Chinese populations of Elymus dahuricus and variation in peramine levels. Symbiosis 2007, 43, 13–19. [Google Scholar]
- Shi, C.; An, S.Z.; Yao, Z.P.; Young, C.A.; Panaccione, D.G.; Lee, S.T.; Schardl, L. Toxin-producing Epichloë bromicola strains symbiotic with the forage grass Elymus dahuricus in China. Mycologia 2017, 109, 847–859. [Google Scholar] [CrossRef]
- Sun, H.; Niu, Y.; Chen, Y.S.; Song, B.; Liu, C.Q.; Peng, D.L.; Chen, J.G. Survival and reproduction of plant species in the Qinghai-Tibet Plateau. J. Syst. Evol. 2014, 52, 378–396. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits; Springer Science & Business Media: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Liu, J.Q.; Duan, Y.W.; Hao, G.; Ge, X.J.; Sun, H. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J. Syst. Evol. 2014, 52, 241–249. [Google Scholar] [CrossRef]
- Tang, N.; Mo, G.C.; van Tuyl, J.M.; Arens, P.; Liu, J.J.; Tang, D.C. Genetic diversity and structure of Lilium pumilum D C. in southeast of Qinghai-Tibet Plateau. Plant Syst. Evol. 2014, 300, 1453–1464. [Google Scholar] [CrossRef]
- Wang, L.Y.; Abbott, R.J.; Zheng, W.; Chen, P.; Wang, Y.J.; Liu, J.Q. History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Mol. Ecol. 2009, 18, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.J.; Li, Y.; Wang, W.J.; He, J.S.; Yang, R.H.; Wu, H.J.; Wang, X.L.; Jiao, L.; Tang, Z.Y.; Yao, L.J. Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biol. Conserv. 2017, 206, 143–150. [Google Scholar] [CrossRef]
- Meng, L.H.; Yang, J.; Guo, W.; Tian, B.; Chen, G.J.; Yang, Y.P.; Duan, Y.W. Differentiation in drought tolerance mirrors the geographic distributions of alpine plants on the Qinghai-Tibet Plateau and adjacent highlands. Sci. Rep. 2017, 7, 42466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Zhang, Y.X.; Wu, X.X.; Liu, Y.J. Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau of China. 3 Biotech 2018, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhigzhitzhapova, S.V.; Radnaeva, L.D.; Gao, Q.B.; Chen, S.L.; Fu, P.C.; Zhang, F.Q. Chemical composition of volatile organic compounds of Artemisia vulgaris L. (Asteraceae) from the Qinghai–Tibet Plateau. Ind. Crop Prod. 2014, 62, 293–298. [Google Scholar] [CrossRef]
- Liu, L.; Hart, M.M.; Zhang, J.L.; Cai, X.B.; Gai, J.P.; Christie, P.; Li, X.L.; Klironomos, J.N. Altitudinal distribution patterns of am fungal assemblages in a tibetan alpine grassland. FEMS Microbiol. Ecol. 2015, 91. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.B.; Liu, Y.J.; He, X.H.; Kang, S.C.; Hou, Y.H.; An, L.Z.; Feng, H.Y. Arbuscular mycorrhizal and dark septate endophytic fungi at 5500 m on a glacier forefront in the Qinghai-Tibet Plateau, China. Symbiosis 2013, 60, 101–105. [Google Scholar] [CrossRef]
- Bourguignon, M.; Nelson, J.A.; Carlisle, E.; Ji, H.H.; Dinkins, R.D.P.; Hillips, T.D.; McCulley, R.L. Ecophysiological responses of tall fescue genotypes to fungal endophyte infection, elevated temperature, and precipitation. Crop Sci. 2015, 55, 2895–2909. [Google Scholar] [CrossRef] [Green Version]
- Hahn, H.; McManus, M.T.; Warnstorff, K.; Monahan, B.J.; Young, C.A.; Davies, E.; Tapper, B.A.; Scott, B. Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ. Exp. Bot. 2008, 63, 183–199. [Google Scholar] [CrossRef]
- Helander, M.; Phillips, T.; Faeth, S.H.; Bush, L.P.; McCulley, R.; Saloniemi, L.; Saikkonen, K. Alkaloid quantities in endophyte-infected tall fescue are affected by the plant-fungus combination and environment. J. Cheml. Ecol. 2016, 42, 118–126. [Google Scholar] [CrossRef] [Green Version]
- McCulley, R.L.; Bush, L.P.; Carlisle, A.E.; Ji, H.; Nelson, J.A. Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S. Front. Chem. 2014, 2, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repussard, C.; Zbib, N.; Tardieu, D.; Guerre, P. Ergovaline and lolitrem B concentrations in perennial ryegrass in field culture in southern france: Distribution in the plant and impact of climatic factors. J. Agric. Food Chem. 2014, 62, 12707–12712. [Google Scholar] [CrossRef] [PubMed]
- Ryan, G.D.; Rasmussen, S.; Xue, H.; Parsons, A.J.; Newman, J.A. Metabolite analysis of the effects of elevated CO2 and nitrogen fertilization on the association between tall fescue (Schedonorus arundinaceus) and its fungal symbiont Neotyphodium coenophialum. Plant Cell Environ. 2014, 37, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-de-Aldana, B.R.; García-Ciudad, A.; García-Criado, B.; Vicente-Tavera, S.; Zabalgogeazcoa, I. Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS ONE 2013, 8, e84539. [Google Scholar] [CrossRef]
- Vazquez-de-Aldana, B.R.; Zabalgogeazcoa, I.; Rubio de Casas, R.; Garcia-Ciudad, A.; Garcia-Criado, B. Relationships between the genetic distance of Epichloë festucae isolates and the ergovaline and peramine contents of their Festuca rubra hosts. Ann. Appl. Biol. 2010, 156, 51–61. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Li, C.J.; Zhang, X.X.; Johnson, R.; Bao, G.S.; Yao, X.; Chai, Q. Effects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecol. 2015, 14, 99–104. [Google Scholar] [CrossRef]
- Żurek, G.; Wiewióra, B.; Żurek, M.; Łyszczarz, R. Environmental effect on Epichloë endophyte occurrence and ergovaline concentration in wild populations of forage grasses in Poland. Plant Soil 2017, 410, 383–399. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, B.Y.; Zheng, D. A discussion on the boundary and areas of the Tibetan plateau in China. Geogr. Res. 2002, 21, 1–8. [Google Scholar] [CrossRef]
- Ge, Q.; Zheng, J.; Hao, Z.; Liu, Y.; Li, M. Recent advances on reconstruction of climate and extreme events in China for the past 2000 years. J. Geogr. Sci. 2016, 26, 827–854. [Google Scholar] [CrossRef] [Green Version]
- Han, B.H.; Kong, X.P.; Zhou, S.M.; Shi, M.M.; Zhao, H.H.; Niu, D.C.; Fu, H. Changes in phenology in the Tibetan plateau under climate change. Pratacultural Sci. 2019, 36, 2786–2795. [Google Scholar] [CrossRef]
- Zhang, N.J.; Xiao, T.G.; Jia, L. Spatial and temporal characteristics of precipitation in the Tibet plateau from 1979 to 2016. J. Arid Meteorol. 2018, 3, 373–382. [Google Scholar] [CrossRef]
- Cheplick, G.P. Persistence of endophytic fungi in cultivars of Lolium perenne grown from seeds stored for 22 years. Am. J. Bot. 2017, 104, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Li, C.J.; Nan, Z.B. Effects of cutting frequency and height on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Sci. China Life Sci. 2011, 54, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.Y.; Fang, J.Y. A review on the elevational patterns of plant species diversity. Biodivers. Sci. 2004, 12, 20–28. [Google Scholar] [CrossRef]
- Freitas, P.P.; Hampton, J.G.; Rolston, M.P.; Glare, T.R.; Miller, P.P.; Card, S.D. A tale of two grass species: Temperature affects the symbiosis of a mutualistic Epichloë endophyte in both tall fescue and perennial ryegrass. Front. Plant Sci. 2020, 11, 530. [Google Scholar] [CrossRef]
- Repussard, C.; Zbib, N.; Tardieu, D.; Guerre, P. Endophyte infection of tall fescue and the impact of climatic factors on ergovaline concentrations in field crops cultivated in southern France. J. Agric. Food Chem. 2014, 62, 9609–9614. [Google Scholar] [CrossRef]
- Galmán, A.; Abdala-Roberts, L.; Zhang, S.; Berny-Miery, T.; Jorge, C.; Rasmann, S.; Moreira, X. A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit, and climatic correlates. J. Ecol. 2017, 106, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Xoaquín, M.; Petry, W.K.; Mooney, K.A.; Rasmann, S.; Abdala-Roberts, L. Elevational gradients in plant defences and insect herbivory: Recent advances in the field and prospects for future research. Ecography 2018, 41, 1485–1496. [Google Scholar] [CrossRef] [Green Version]
- Brosi, G.B.; McCulley, R.L.; Bush, L.P.; Nelson, J.A.; Classen, A.T.; Norby, R.J. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: Infection frequency and tissue chemistry. New Phytol. 2011, 189, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.G.; Rasmussen, S.; Newton, P.C.D.; Parsons, A.J.; Newman, J.A. Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant. Cell Environ. 2005, 28, 1345–1354. [Google Scholar] [CrossRef]
- Malinowski, D.P.; Belesky, D.P.; Hill, N.S.; Baligar, V.C.; Fedders, J.M. Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea Schreb.). Plant Soil 1998, 53–61. [Google Scholar] [CrossRef]
- Saikkonen, K.; Young, C.A.; Helander, M.; Schardl, C.L. Endophytic Epichloë species and their grass hosts: From evolution to applications. Plant Mol. Biol. 2016, 90, 665–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takach, J.E.; Young, C.A. Alkaloid genotype diversity of tall fescue endophytes. Crop Sci. 2014, 54, 667–678. [Google Scholar] [CrossRef]
Site | Longitude (E) | Latitude (N) | Elevation (m) | Mean Daily Temperature (°C) | Mean Precipitation (mm) |
---|---|---|---|---|---|
Gansu Minle | 100°49′58″ | 38°25′50″ | 2313 | 13.9 ± 0.79 | 247 ± 40.70 |
Gansu Minle | 100°56′09″ | 38°12′02″ | 2922 | 13.0 ± 0.95 | 256 ± 46.93 |
Gansu Sunan | 99°26′27″ | 38°46′12″ | 2546 | 10.0 ± 0.38 | 225 ± 23.94 |
Gansu Sunan | 99°21′47″ | 38°47′32″ | 2740 | 9.4 ± 0.32 | 269 ± 23.69 |
Gansu Sunan | 99°32′15″ | 38°57′35″ | 2892 | 11.8 ± 0.97 | 186 ± 19.41 |
Gansu Sunan | 99°53′27″ | 38°54′05″ | 2240 | 14.5 ± 0.77 | 182 ± 25.28 |
Qinghai Gonghe | 100°52′18″ | 36°20′17″ | 3230 | 10.4 ± 0.49 | 339 ± 32.47 |
Qinghai Guide | 101°29′42″ | 36°21′56″ | 3351 | 9.8 ± 0.51 | 342 ± 45.18 |
Qinghai Guinan | 100°56′03″ | 36°53′58″ | 2842 | 11.0 ± 0.45 | 405 ± 37.88 |
Qinghai Guinan | 101°09′12″ | 35°51′53″ | 3383 | 11.1 ± 0.56 | 362 ± 40.94 |
Qinghai Guinan | 101°13′43″ | 35°44′36″ | 3392 | 10.9 ± 0.76 | 350 ± 46.79 |
Qinghai Guinan | 101°47′41″ | 35°20′17″ | 3920 | 9.9 ± 0.40 | 387 ± 51.98 |
Qinghai Huangzhong | 101°53′17″ | 36°56′01″ | 2384 | 10.8 ± 0.76 | 418 ± 43.16 |
Qinghai Maqin | 100°31′20″ | 34°32′56″ | 3620 | 9.1 ± 0.35 | 471 ± 55.35 |
Qinghai Ping’an | 102°07′19″ | 36°29′36″ | 2100 | 15.0 ± 0.85 | 366 ± 52.01 |
Qinghai Tongde | 100°43′38″ | 35°35′42″ | 3125 | 10.7 ± 0.58 | 404 ± 46.04 |
Qinghai Tongren | 102°01′25″ | 35°58′25″ | 2230 | 14.7 ± 0.83 | 350 ± 58.55 |
Qinghai Tongren | 102°04′01″ | 35°56′31″ | 2416 | 15.3 ± 0.76 | 347 ± 56.09 |
Qinghai Tongren | 102°05′07″ | 35°57′58″ | 2438 | 15.3 ± 0.76 | 347 ± 56.09 |
Qinghai Tongren | 102°03′28″ | 35°33′47″ | 2462 | 14.6 ± 0.70 | 375 ± 50.30 |
Qinghai Tongren | 102°04′12″ | 35°56′50″ | 2707 | 15.6 ± 0.99 | 278 ± 49.85 |
Qinghai Xinghai | 101°32′05″ | 35°55′32″ | 2765 | 13.7 ± 0.50 | 354 ± 45.97 |
Qinghai Xinghai | 100°47′51″ | 35°14′31″ | 3321 | 11.2 ± 0.59 | 418 ± 49.32 |
Qinghai Zeku | 101°55′44″ | 35°32′33″ | 2876 | 11.0 ± 0.55 | 378 ± 52.14 |
Qinghai Zeku | 101°56′23″ | 35°33′24″ | 3012 | 11.0 ± 0.55 | 378 ± 52.14 |
Correlation of Elevation with | R | Significance, p |
---|---|---|
Mean daily temperature | −0.715 | <0.001 |
Mean precipitation | 0.392 | 0.053 |
Canonical | Canonical Correlation | Eigenvalue | % Variance Explained # | F (d.f.) * | p |
---|---|---|---|---|---|
1 | 0.690 | 0.908 | 59.6/22.7 | 3.08 (9,46) | 0.006 |
2 | 0.603 | 0.573 | 37.6/8.7 | 2.91 (4,40) | 0.038 |
3 | 0.203 | 0.043 | 2.8/1.2 | 0.90 (1,21) | 0.354 |
Canonical 1 | Canonical 2 | |
---|---|---|
v1 | v2 | |
Ergonovine | 0.329 | −0.539 |
Ergine | 0.562 | −0.637 |
Peramine | 0.529 | 0.909 |
u1 | u2 | |
Elevation | −1.256 | −0.291 |
Mean daily temperature | −0.948 | 0.825 |
Mean precipitation | −0.300 | 0.437 |
Canonical 1 | Canonical 2 | |
---|---|---|
v1 | v2 | |
Ergonovine | 0.375 | −0.534 |
Ergine | 0.814 | −0.256 |
Peramine | 0.793 | 0.604 |
u1 | u2 | |
Elevation | −0.696 | −0.710 |
Mean daily temperature | 0.034 | 0.912 |
Mean precipitation | −0.527 | 0.093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Q.; Matthew, C.; Liu, W.; Nan, Z. Alkaloid Contents in Epichloë Endophyte-Infected Elymus tangutorum Sampled along an Elevation Gradient on the Qinghai-Tibetan Plateau. Agronomy 2020, 10, 1812. https://doi.org/10.3390/agronomy10111812
Shi Q, Matthew C, Liu W, Nan Z. Alkaloid Contents in Epichloë Endophyte-Infected Elymus tangutorum Sampled along an Elevation Gradient on the Qinghai-Tibetan Plateau. Agronomy. 2020; 10(11):1812. https://doi.org/10.3390/agronomy10111812
Chicago/Turabian StyleShi, Qian, Cory Matthew, Wenhui Liu, and Zhibiao Nan. 2020. "Alkaloid Contents in Epichloë Endophyte-Infected Elymus tangutorum Sampled along an Elevation Gradient on the Qinghai-Tibetan Plateau" Agronomy 10, no. 11: 1812. https://doi.org/10.3390/agronomy10111812
APA StyleShi, Q., Matthew, C., Liu, W., & Nan, Z. (2020). Alkaloid Contents in Epichloë Endophyte-Infected Elymus tangutorum Sampled along an Elevation Gradient on the Qinghai-Tibetan Plateau. Agronomy, 10(11), 1812. https://doi.org/10.3390/agronomy10111812