Improved Prediction of Leaf Emergence for Efficacious Crop Protection: Assessing Field Variability in Phyllotherms for Upper Leaves in Winter Wheat and Winter Barley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data
2.3. Simulations of Leaf Emergence
2.4. Statistical Analyses
3. Results
3.1. Prediction of Emergence of Leaves F-2, F-1 and F in Winter Wheat
3.2. Prediction of Emergence of Leaves F-2, F-1 and F in Winter Barley
3.3. Improvement of Leaf Emergence Prediction within the DSS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gooding, M.J.; Dimmock, J.P.R.E.; France, J.; Jones, S.A. Green leaf area decline of wheat flag leaves: The influence of fungicides and relationships with mean grain weight and grain yield. Ann. Appl. Biol. 2000, 136, 77–84. [Google Scholar] [CrossRef]
- AHDB. Barley Growth Guide; The Agriculture and Horticulture Development Board (AHDB) of the United Kingdom: Stoneleigh, UK, 2018. [Google Scholar]
- Bingham, I.J.; Young, C.; Bounds, P.; Paveley, N.D. In sink-limited spring barley crops, light interception by green canopy does not need protection against foliar disease for the entire duration of grain filling. Field Crops Res. 2019, 239, 124–134. [Google Scholar] [CrossRef]
- Thomas, M.R.; Cook, R.J.; King, J.E. Factors affecting development of Septoria tritici in winter wheat and its effect on yield. Plant Pathol. 1989, 38, 246–257. [Google Scholar] [CrossRef]
- Shaw, M.W.; Royle, D.J. Estimation and validation of a function describing the rate at which Mycosphaerella graminicola causes yield loss in winter wheat. Ann. Appl. Biol. 1989, 115, 425–442. [Google Scholar] [CrossRef]
- El Jarroudi, M.; Kouadio, L.; Beyer, M.; Junk, J.; Hoffmann, L.; Tychon, B.; Maraite, H.; Bock, C.H.; Delfosse, P. Economics of a decision–support system for managing the main fungal diseases of winter wheat in the Grand-Duchy of Luxembourg. Field Crops Res. 2015, 172, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Jalli, M.; Kaseva, J.; Andersson, B.; Ficke, A.; Nistrup-Jørgensen, L.; Ronis, A.; Kaukoranta, T.; Ørum, J.-E.; Djurle, A. Yield increases due to fungicide control of leaf blotch diseases in wheat and barley as a basis for IPM decision-making in the Nordic-Baltic region. Eur. J. Plant Pathol. 2020, 158, 315–333. [Google Scholar] [CrossRef]
- El Jarroudi, M.; Kouadio, L.; Junk, J.; Beyer, M.; Pasquali, M.; Bock, C.H.; Delfosse, P. Do single, double or triple fungicide sprays differentially affect the grain quality in winter wheat? Field Crops Res. 2015, 183, 257–266. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Alzueta, I.; Arisnabarreta, S.; Abeledo, L.G.; Miralles, D.J. A simple model to predict phenology in malting barley based on cultivar thermo-photoperiodic response. Comput. Electron. Agric. 2014, 107, 8–19. [Google Scholar] [CrossRef]
- French, R.; Schultz, J.; Rudd, C. Effect of time of sowing on wheat phenology in South Australia. Aust. J. Exp. Agric. 1979, 19, 89–96. [Google Scholar] [CrossRef]
- Brown, H.; Huth, N.; Holzworth, D. Crop model improvement in APSIM: Using wheat as a case study. Eur. J. Agron. 2018, 100, 141–150. [Google Scholar] [CrossRef]
- Wang, E.; Engel, T. Simulation of phenological development of wheat crops. Agric. Syst. 1998, 58, 1–24. [Google Scholar] [CrossRef]
- Van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Slafer, G.A.; Rawson, H.M. Sensitivity of wheat phasic development to major environmental factors: A re-examination of some assumptions made by physiologists and modellers. Func. Plant Biol. 1994, 21, 393–426. [Google Scholar] [CrossRef]
- Jame, Y.W.; Cutforth, H.W.; Ritchie, J.T. Interaction of temperature and daylength on leaf appearance rate in wheat and barley. Agric. For. Meteorol. 1998, 92, 241–249. [Google Scholar] [CrossRef]
- Baker, C.K.; Gallagher, J.N.; Monteith, J.L. Daylength change and leaf appearance in winter wheat. Plant Cell Environ. 1980, 3, 285–287. [Google Scholar] [CrossRef]
- Jamieson, P.; Brooking, I.; Zyskowski, R.; Munro, C. The vexatious problem of the variation of the phyllochron in wheat. Field Crops Res. 2008, 108, 163–168. [Google Scholar] [CrossRef]
- Bonhomme, R. Bases and limits to using ‘degree.day’ units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar] [CrossRef]
- Cao, W.; Moss, D.N. Temperature effect on leaf emergence and phyllochron in wheat and barley. Crop Sci. 1989, 29, 1018–1021. [Google Scholar] [CrossRef]
- Cao, W.; Moss, D.N. Daylength effect on leaf emergence and phyllochron in wheat and barley. Crop Sci. 1989, 29, 1021–1025. [Google Scholar] [CrossRef]
- Hay, R.; Kirby, E. Convergence and synchrony-a review of the coordination of development in wheat. Aust. J. Agric. Res. 1991, 42, 661–700. [Google Scholar] [CrossRef]
- Miglietta, F. Simulation of wheat ontogenesis. I. Appearance of mainstem leaves in the field. Clim. Res. 1991, 1, 145–150. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Brooking, I.R.; Porter, J.R.; Wilson, D.R. Prediction of leaf appearance in wheat: A question of temperature. Field Crops Res. 1995, 41, 35–44. [Google Scholar] [CrossRef]
- Streck, N.A.; Weiss, A.; Xue, Q.; Baenziger, P.S. Incorporating a chronology response into the prediction of leaf appearance rate in winter wheat. Ann. Bot. 2003, 92, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirby, J.M.; Appleyard, M.; Fellows, G. Leaf emergence and tillering in barley and wheat. Agronomie 1985, 5, 193–2000. [Google Scholar] [CrossRef] [Green Version]
- Skinner, R.H.; Nelson, C.J. Elongation of the grass leaf and its relationship to the phyllochron. Crop Sci. 1995, 35, 4–10. [Google Scholar] [CrossRef]
- Gallagher, J.N. Field studies of cereal leaf growth: I. Initiation and expansion in relation to temperature and ontogeny. J. Exp. Bot. 1979, 30, 625–636. [Google Scholar] [CrossRef]
- Moreau, J.M.; Maraite, H. Integration of knowledge on wheat phenology and Septoria tritici epidemiology into a disease risk simulation model validated in Belgium. Asp. Appl. Biol. 1999, 55, 1–6. [Google Scholar]
- El Jarroudi, M.; Delfosse, P.; Maraite, H.; Hoffmann, L.; Tychon, B. Assessing the accuracy of simulation model for Septoria leaf blotch disease progress on winter wheat. Plant Dis. 2009, 93, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Moreau, J.M.; Maraite, H. Development of an interactive decision-support system on a Web site for control of Mycosphaerella graminicola in winter wheat. EPPO Bull. 2000, 30, 161–163. [Google Scholar] [CrossRef]
- BSA. Beschreibende Sortenliste 2018. Getreide, Mais, Ölfrüchte, Leguminosen (großkörnig) Hackfrüchte (außer Kartoffeln); Deutscher Landwirtschaftsverlag GmbH.: Hannover, Germany, 2018. [Google Scholar]
- Junk, J.; Görgen, K.; El Jarroudi, M.; Delfosse, P.; Pfister, L.; Hoffmann, L. Operational application and improvements of the disease risk forecast model PROCULTURE to optimize fungicides spray for the septoria leaf blotch disease in winter wheat in Luxembourg. Adv. Sci. Res. 2008, 2, 57–60. [Google Scholar] [CrossRef]
- Klepper, B.; Rickman, R.W.; Betfort, R.K. Leaf and tiller identification on wheat plants. Crop Sci. 1983, 23, 1002–1004. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- El Jarroudi, M.; Kouadio, L.; Delfosse, P.; Giraud, F.; Junk, J.; Hoffmann, L.; Maraite, H.; Tychon, B. Typology of the main fungal diseases affecting winter wheat in the Grand Duchy of Luxembourg. J. Agric. Sci. Technol. 2012, 2, 1386–1399. [Google Scholar]
- El Jarroudi, M.; Kouadio, L.; El Jarroudi, M.; Junk, J.; Bock, C.; Diouf, A.A.; Delfosse, P. Improving fungal disease forecasts in winter wheat: A critical role of intra-day variations of meteorological conditions in the development of Septoria leaf blotch. Field Crops Res. 2017, 213, 12–20. [Google Scholar] [CrossRef]
- Dimmock, J.P.R.E.; Gooding, M.J. The effects of fungicides on rate and duration of grain filling in winter wheat in relation to maintenance of flag leaf green area. J. Agric. Sci. 2002, 138, 1–16. [Google Scholar] [CrossRef]
- Pepler, S.; Gooding, M.J.; Ford, K.E.; Ellis, R.H.; Jones, S.A. Delaying senescence of wheat with fungicides has interacting effects with cultivar on grain sulphur concentration but not with sulphur yield or nitrogen:sulphur ratios. Eur. J. Agron. 2005, 22, 405–416. [Google Scholar] [CrossRef]
- Kirby, E.J.M.; Appleyard, M.; Fellowes, G. Variation in development of wheat and barley in response to sowing date and variety. J. Agric. Sci. 1985, 104, 383–396. [Google Scholar] [CrossRef]
- Abeledo, L.G.; Calderini, D.F.; Slafer, G.A. Leaf appearance, tillering and their coordination in old and modern barleys from Argentina. Field Crops Res. 2004, 86, 23–32. [Google Scholar] [CrossRef]
- Slafer, G.A.; Connor, D.J.; Halloran, G.M. Rate of leaf appearance and final number of leaves in wheat: Effects of duration and rate of change of photoperiod. Ann. Bot. 1994, 74, 427–436. [Google Scholar] [CrossRef]
- Davidson, J.; Christian, K.; Jones, D.; Bremner, P. Responses of wheat to vernalization and photoperiod. Aust. J. Agric. Res. 1985, 36, 347–359. [Google Scholar] [CrossRef]
- Miralles, D.J.; Slafer, G.A.; Richards, R.A.; Rawson, H.M. Quantitative developmental response to the length of exposure to long photoperiod in wheat and barley. J. Agric. Sci. 2003, 141, 159–167. [Google Scholar] [CrossRef] [Green Version]
- González, F.G.; Slafer, G.A.; Miralles, D.J. Vernalization and photoperiod responses in wheat pre-flowering reproductive phases. Field Crops Res. 2002, 74, 183–195. [Google Scholar] [CrossRef]
- Kernich, G.C.; Slafer, G.A.; Halloran, G.M. Barley development as affected by rate of change of photoperiod. J. Agric. Sci. 1995, 124, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, F. Effect of photoperiod and temperature on leaf initiation rates in wheat (Triticum spp.). Field Crops Res. 1989, 21, 121–130. [Google Scholar] [CrossRef]
- Alzueta, I.; Abeledo, L.G.; Mignone, C.M.; Miralles, D.J. Differences between wheat and barley in leaf and tillering coordination under contrasting nitrogen and sulfur conditions. Eur. J. Agron. 2012, 41, 92–102. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Miralles, D.J. Wheat development as affected by nitrogen and sulfur nutrition. Aust. J. Agric. Res. 2007, 58, 39–45. [Google Scholar] [CrossRef]
- Valle, S.R.; Calderini, D.F. Phyllochron and tillering of wheat in response to soil aluminum toxicity and phosphorus deficiency. Crop Pasture Sci. 2010, 61, 863–872. [Google Scholar] [CrossRef]
- Prystupa, P.; Slafer, G.A.; Savin, R. Leaf appearance, tillering and their coordination in response to NxP fertilization in barley. Plant Soil 2003, 255, 587–594. [Google Scholar] [CrossRef]
- Hall, A.J.; Savin, R.; Slafer, G.A. Is time to flowering in wheat and barley influenced by nitrogen?: A critical appraisal of recent published reports. Eur. J. Agron. 2014, 54, 40–46. [Google Scholar] [CrossRef]
- Rodríguez, D.; Pomar, M.C.; Goudriaan, J. Leaf primordia initiation, leaf emergence and tillering in wheat (Triticum aestivum L.) grown under low-phosphorus conditions. Plant Soil 1998, 202, 149–157. [Google Scholar] [CrossRef]
- Junk, J.; Goergen, K.; Krein, A. Future heat waves in different European capitals based on climate change indicators. Int. J. Environ. Res. Public Health 2019, 16, 3959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Site | Year | Wheat | Barley | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | CC a | Sowing Date | Previous Crop | Tillage | N Rate (N kg/ha) b | Cultivar | CC a | Sowing Date | Previous Crop | Tillage | N Rate (N kg/ha) | ||
Bettendorf | 2014 | Kerubino | 4 | 9 October 2013 | Oilseed rape | No | 150 | Leibniz | 6 | 24 September 2013 | Wheat | Yes | 220 |
2015 | Kerubino | 4 | 15 October 2014 | Oilseed rape | No | 170 | California | 6 | 28 September 2014 | Oilseed rape | Yes | 220 | |
2016 | Kerubino | 4 | 09 October 2015 | Oilseed rape | No | 160 | California | 6 | 28 September 2015 | Maize | Yes | 220 | |
2017 | Kerubino | 4 | 12 October 2016 | Oilseed rape | No | 160 | California | 6 | 30 September 2016 | Winter wheat | Yes | 220 | |
Achat | 6 | 12 October 2016 | Oilseed rape | No | 160 | ||||||||
2018 | Kerubino | 4 | 19 October 2017 | Oilseed rape | Yes | 150 | California | 6 | 30 September 2017 | Winter wheat | Yes | 220 | |
Desamo | 5 | 19 October 2017 | Oilseed rape | Yes | 150 | ||||||||
2019 | Kerubino | 4 | 24 October 2018 | Oilseed rape | No | 150 | California | 6 | 28 September 2018 | Winter wheat | Yes | 220 | |
Desamo | 5 | 24 October 2018 | Oilseed rape | No | 150 | ||||||||
Burmerange | 2014 | Asano | 4 | 3 October 2013 | Oilseed rape | No | 185 | Sandra | 5 | 27 September 2013 | Wheat | No | 140 |
2015 | Asano | 4 | 4 October 2014 | Maize | No | 190 | Leibniz | 6 | 18 September 2014 | Wheat | No | 140 | |
2016 | Kerubino | 4 | 4 October 2015 | Maize | No | 200 | Leibniz | 6 | 18 September 2015 | Wheat | No | 140 | |
2017 | Kerubino | 4 | 17 October 2016 | Oilseed rape | No | 190 | Wotan | 5 | 15 October 2016 | Wheat | Yes | 140 | |
2018 | Reform | 6 | 12 October 2017 | Oilseed rape. | Yes | 140 | Wotan | 5 | 15 October 2017 | Winter wheat | No | 140 | |
2019 | Kerubino | 4 | 18 October 2018 | Oilseed rape | Yes | 140 | California | 6 | 27 September 2018 | Spring triticale | No | 140 | |
Everlange | 2014 | Privilege | 6 | 3 October 2013 | Oilseed rape | No | 160 | Meridian | 5 | 26 September 2013 | Oilseed rape | No | 150 |
2015 | Desamo | 5 | 25 October 2014 | Maize | No | 180 | Souleika | 6 | 24 September 2014 | Triticale | Yes | 170 | |
2016 | Desamo | 5 | 25 October 2015 | Maize | No | 170 | Tamina | 6 | 20 September 2015. | Spring wheat | Yes | 160 | |
2017 | Manitou | 6 | 13 October 2016 | Maize | Yes | 160 | Tamina | 6 | 29 September 2016 | Ryegrass | Yes | 160 | |
2018 | Genius | 5 | 14 October 2017 | Peas | Yes | 140 | Meridian | 5 | 25 September 2017 | Oilseed rape | Yes | 150 | |
2019 | Kerubino | 4 | 16 October 2018 | Oilseed rape | Yes | 140 | Higgins | 5 | 28 September 2018 | Grass seed | Yes | 150 | |
Reuler | 2014 | Kerubino | 4 | 20 October 2013 | Maize | Yes | 180 | California | 6 | 30 September 2013 | Wheat | Yes | 200 |
2015 | Kerubino | 4 | 1 October 2014 | Oilseed rape | Yes | 190 | California | 6 | 30 September2014 | Spelled | Yes | 200 | |
2016 | Kerubino | 4 | 30 October 2015 | Maize | Yes | 200 | California | 6 | 29 September 2015 | Wheat | Yes | 200 | |
2017 | Kerubino | 4 | 3 October 2016 | Maize | Yes | 190 | California | 6 | 22 September 2016 | Oilseed rape | Yes | 200 | |
2018 | Kerubino | 4 | 19 October 2017 | Maize | No | 140 | California | 6 | 25 September 2017 | Oilseed rape | Yes | 200 | |
2019 | Kerubino | 4 | 12 October 2018 | Oilseed rape | Yes | 140 | California | 6 | 27 October 2018 | Maize | No | 150 |
Site | Year | Date of Observation | Percentage of Leaf Formed (%) a | ||
---|---|---|---|---|---|
Barley | Wheat | Barley | Wheat | ||
Bettendorf | 2014 | 31 March | 14 April | 85 | 10 |
2015 | 16 April | 22 April | 70 | 60 | |
2016 | 11 April | 19 April | 25 | 50 | |
2017 | 18 April | 2 May | 67 | 95 | |
2018 | 16 April | 16 April | 40 | 9 | |
2019 | 8 April | 15 April | 90 | 13 | |
Burmerange | 2014 | 21 March | 14 April | 5 | 13 |
2015 | 13 April | 20 April | 32 | 32 | |
2016 | 8 April | 18 April | 14 | 60 | |
2017 | 19 April | 29 April | 15 | 90 | |
2018 | 13 April | 21 April | 15 | 2 | |
2019 | 3 April | 20 April | 12 | 16 | |
Everlange | 2014 | 5 March | 14 April | 80 | 18 |
2015 | 12 April | 20 April | 27 | 43 | |
2016 | 4 April | 25 April | 14 | 89 | |
2017 | 12 April | 2 May | 43 | 30 | |
2018 | 6 April | 16 April | 6 | 7 | |
2019 | 6 April | 28 April | 1 | 5 | |
Reuler | 2014 | 10 April | 22 April | 90 | 57 |
2015 | 13 April | 4 May | 36 | 70 | |
2016 | 18 April | 5 May | 80 | 5 | |
2017 | 23 April | 1 May | 90 | 5 | |
2018 | 9 April | 30 April | 13 | 24 | |
2019 | 5 April | 28 April | 5 | 6 |
Crop | Site | Leaf | FE a | FNE b | NFE c | POD d | FAR e | CSI f |
---|---|---|---|---|---|---|---|---|
Winter wheat | Bettendorf | F-2 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 |
F-1 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
F | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
Burmerange | F-2 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | |
F-1 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
F | 4 | 0 | 2 | 0.70 | 0.00 | 0.70 | ||
Everlange | F-2 | 5 | 1 | 0 | 1.00 | 0.16 | 0.84 | |
F-1 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
F | 5 | 0 | 1 | 0.84 | 0.00 | 0.84 | ||
Reuler | F-2 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | |
F-1 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
F | 5 | 0 | 1 | 0.84 | 0.00 | 0.84 | ||
Winter barley | Bettendorf | F-2 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 |
F-1 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
F | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
Burmerange | F-2 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | |
F-1 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
F | 5 | 0 | 1 | 0.84 | 0.00 | 0.84 | ||
Everlange | F-2 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | |
F-1 | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 | ||
F | 4 | 0 | 2 | 0.70 | 0.00 | 0.70 | ||
Reuler | F-2 | 5 | 1 | 0 | 1.00 | 0.16 | 0.84 | |
F-1 | 5 | 1 | 0 | 1.00 | 0.16 | 0.84 | ||
F | 6 | 0 | 0 | 1.00 | 0.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Jarroudi, M.; Kouadio, L.; Junk, J.; Bock, C.H. Improved Prediction of Leaf Emergence for Efficacious Crop Protection: Assessing Field Variability in Phyllotherms for Upper Leaves in Winter Wheat and Winter Barley. Agronomy 2020, 10, 1825. https://doi.org/10.3390/agronomy10111825
El Jarroudi M, Kouadio L, Junk J, Bock CH. Improved Prediction of Leaf Emergence for Efficacious Crop Protection: Assessing Field Variability in Phyllotherms for Upper Leaves in Winter Wheat and Winter Barley. Agronomy. 2020; 10(11):1825. https://doi.org/10.3390/agronomy10111825
Chicago/Turabian StyleEl Jarroudi, Moussa, Louis Kouadio, Jürgen Junk, and Clive H. Bock. 2020. "Improved Prediction of Leaf Emergence for Efficacious Crop Protection: Assessing Field Variability in Phyllotherms for Upper Leaves in Winter Wheat and Winter Barley" Agronomy 10, no. 11: 1825. https://doi.org/10.3390/agronomy10111825
APA StyleEl Jarroudi, M., Kouadio, L., Junk, J., & Bock, C. H. (2020). Improved Prediction of Leaf Emergence for Efficacious Crop Protection: Assessing Field Variability in Phyllotherms for Upper Leaves in Winter Wheat and Winter Barley. Agronomy, 10(11), 1825. https://doi.org/10.3390/agronomy10111825