Effect of Saline Conditions on Chemical Profile and the Bioactive Properties of Three Red-Colored Basil Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Samples Preparation
2.2. Nutritional Value and Energy
2.3. Chemical Characterization
2.4. Preparation of Hydroethanolic Extracts
Extracts Preparation
- Step 1
- −35 °C for 2 h at atmospheric pressure (1000 mbar);
- Step 2
- From −35 °C to −20 °C in 6 h under vacuum (0.150 mbar);
- Step 3
- From −20 °C to 0 °C in 12 h under vacuum (0.150 mbar);
- Step 4
- From 0 °C to 10 °C in 12 h under vacuum (0.150 mbar);
- Step 5
- From 10 °C to 25 °C in 12 h under vacuum (0.150 mbar).
2.5. Analysis of Phenolic Compounds
2.6. Evaluation of Bioactive Properties
2.6.1. Antioxidant Activity
2.6.2. Antimicrobial Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Crop Performance and Color Parameters
3.2. Chemical Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Makri, O.; Kintzios, S. Ocimum sp. (Basil): Botany, Cultivation, Pharmaceutical Properties, and Biotechnology. J. Herbs. Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Da Costa, A.S.; Arrigoni-Blank, M.D.F.; Carvalho Filho, J.L.S.D.; De Santana, A.D.D.; Santos, D.D.A.; Alves, P.B.; Blank, A.F. Chemical diversity in basil (Ocimum sp.) Germplasm. Sci. World J. 2014, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, Y.; An, X.; Wang, S.; Sun, M.; Zhou, H. Basil polysaccharides: A review on extraction, bioactivities and pharmacological applications. Bioorg. Med. Chem. 2019, 28, 115179. [Google Scholar] [CrossRef] [PubMed]
- Primi, R.; Ruggeri, R.; Ronchi, B.; Bernabucci, U.; Rossini, F.; Martin-Pedrosa, M.; Danieli, P.P. Sowing date and seeding rate affect bioactive compound contents of chickpea grains. Animals 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Beszterda, M.; Nogala-Kałucka, M. Current Research Developments on the Processing and Improvement of the Nutritional Quality of Rapeseed (Brassica napus L.). Eur. J. Lipid Sci. Technol. 2019, 121, 1–18. [Google Scholar] [CrossRef]
- Rubio, F.; Nieves-Cordones, M.; Horie, T.; Shabala, S. Doing ‘business as usual’ comes with a cost: Evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytol. 2019, 1097–1104. [Google Scholar] [CrossRef] [Green Version]
- Scagel, C.F.; Lee, J.; Mitchell, J.N. Salinity from NaCl changes the nutrient and polyphenolic composition of basil leaves. Ind. Crop. Prod. 2019, 127, 119–128. [Google Scholar] [CrossRef]
- Ahl, H.S.; Mahmoud, A.A. Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean J. Appl. Sci. 2010, 3, 97–111. [Google Scholar]
- Dias, A.; Neto, D.A.; Menezes, R.V.; Gheyi, H.R.; Conceição, P.C.; Mitsue, A.; Cova, W.; Ribas, R.F.; Ribeiro, M.D.O. Salt-induced changes in solutes, pigments and essential oil of two basil (Ocimum basilicum L.) genotypes under hydroponic cultivation. Aust. J. Crop Sci. 2019, 13, 1856–1864. [Google Scholar]
- Tarchoune, I.; Sgherri, C.; Baâtour, O.; Izzo, R.; Lachaâl, M.; Izzo, F.; Ouerghi, Z. Phenolic acids and total antioxidant activity in Ocimum basilicum L. grown under Na2SO4 medium. J. Med. Plant Res. 2012, 6, 5868–5875. [Google Scholar]
- Talebi, M.; Moghaddam, M.; Ghasemi, A. Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiol. Plant. 2018, 40, 1–11. [Google Scholar] [CrossRef]
- Bekhradi, F.; Delshad, M.; Marín, A.; Luna, M.C.; Garrido, Y.; Kashi, A.; Babalar, M.; Gil, M.I. Effects of salt stress on physiological and postharvest quality characteristics of different Iranian genotypes of basil. Hortic. Environ. Biotechnol. 2015, 56, 777–785. [Google Scholar] [CrossRef]
- Omer, E.A.; Said-Al Ahl, H.A.H.; Hendawy, S.F. Production, Chemical Composition and Volatile Oil of Different Basil Species/Varieties Cultivated under Egyptian Soil Salinity Conditions. Res. J. Agric. Biol. Sci. 2008, 4, 293–300. [Google Scholar]
- Akbari, G.A.; Soltani, E.; Binesh, S.; Amini, F. Cold tolerance, productivity and phytochemical diversity in sweet basil (Ocimum basilicum L.) accessions. Ind. Crop. Prod. 2018, 124, 677–684. [Google Scholar] [CrossRef]
- Fernandes, Â.; Polyzos, N.; Ardohain, E.; Moreira, G.; Petropoulos, S.A.; Pinela, J.; Ferreira, I.C.F.R.; Barros, L. Phytochemical Composition and Nutritional Value of of Pot-Grown Turnip-Rooted and Plain and Curly-Leafed Parsley Cultivars. Agronomy 2020, 10, 1416. [Google Scholar] [CrossRef]
- Cruz, L.R.O.; Fernandes, Â.; Di Gioia, F.; Petropoulos, S.A.; Polyzos, N.; Dias, M.I.; Pinela, J.; Kostíc, M.; Sokovíc, M.D.; Ferreira, I.C.F.R.; et al. The effect of nitrogen input on chemical profile and bioactive properties of green- and red-colored basil cultivars. Antioxidants 2020, 9, 1036. [Google Scholar] [CrossRef]
- Mclellan, M.R.; Lind, L.R.; Kime, R.W. Hue Angle Determinations and Statistical. J. Food Qual. 1994, 18, 235–240. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef]
- Maia, S.S.S.; Silva, R.C.P.; De Oliveira, F.D.A.; Otaciana, M.; Silva, P.; Silva, A.C.; Candido, W.S. Responses of basil cultivars to irrigation water salinity. Rev. Bras. Eng. Agrícola Ambient. 2017, 21, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Bione, M.A.A.; Paz, V.P.S.; Silva, F.; Ribas, R.F.; Soares, T.M. Growth and production of basil in NFT hydroponic system under salinity. Rev. Bras. Eng. Agrícola Ambient. 2014, 18, 1228–1234. [Google Scholar] [CrossRef]
- Elhindi, K.; Al-Amri, S.; Abdel-Salam, E.; Al-Shaibani, N. Effectiveness of salicylic acid in mitigating salt- induced adverse effects on different physio- biochemical attributes in sweet basil (Ocimum basilicum L.). J. Plant Nutr. 2017, 40, 908–919. [Google Scholar] [CrossRef]
- Kaur, G.; Singla, N.; Singh, A. Effect of Vacuum Drying on Nutrient Retention of Some Commonly Consumed Herbs. Stud. Ethno Med. 2019, 13, 62–70. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Rajesh, D.; Srividya, N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J. Food Compos. Anal. 2020, 91, 103495. [Google Scholar] [CrossRef]
- Mlitan, A.M.; Sasi, M.S.; Alkherraz, A.M. Proximate and Minor Mineral Content in Some Selected Basil Leaves of Ocimum gratissimum L., in Libya. Int. J. Chem. Eng. Appl. 2014, 5, 502–505. [Google Scholar]
- Danso-Boateng, E. Effect of drying methods on nutrient quality of Basil (Ocimum viride) leaves cultivated in Ghana. Int. Food Res. J. 2013, 20, 1569–1573. [Google Scholar]
- Nurzyńska-Wierdak, R.; Rożek, E.; Borowski, B. Response of different basil cultivars to nitrogen and potassium fertilization: Total and mineral nitrogen content in herb. Acta Sci. Pol. Hortorum Cultus 2011, 10, 217–232. [Google Scholar]
- Tarchoune, I.; Sgherri, C.; Baâtour, O.; Izzo, R.; Lachaâl, M.; Navari-Izzo, F.; Ouerghi, Z. Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Ann. Appl. Biol. 2013, 163, 23–32. [Google Scholar] [CrossRef]
- Naiji, M.; Souri, M.K. Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Sci. Pol. Hortorum Cultus 2018, 17, 167–175. [Google Scholar] [CrossRef]
- Ribas, J.C.R.; Matumoto-Pintro, P.T.; Vital, A.C.P.; Saraiva, B.; Anjo, F.; ALves, R.; Santos, N.; Machado, E.; Agustinho, B.; Zeoula, L. Influence of basil (Ocimum basilicum Lamiaceae) addition on functional, technological and sensorial characteristics of fresh cheeses made with organic buffalo milk. J. Food Sci. Technol. 2019, 56, 5214–5224. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Barros, L.; Barreira, J.C.M.; Calhelha, R.C.; Soković, M.; Fernández-Ruiz, V.; Buelga, C.S.; Morales, P.; Ferreira, I.C.F.R. Basil as functional and preserving ingredient in “Serra da Estrela” cheese. Food Chem. 2016, 207, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, F.; Pereira, E.; Círić, A.; Soković, M.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Ocimum basilicum var. purpurascens leaves (red rubin basil): A source of bioactive compounds and natural pigments for the food industry. Food Funct. 2019, 10, 3161–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.A.; Daferera, D.; Polissiou, M.G.; Passam, H.C. The effect of salinity on the growth, yield and essential oils of turnip-rooted and leaf parsley cultivated within the Mediterranean region. J. Sci. Food Agric. 2009, 89, 1534–1542. [Google Scholar] [CrossRef]
- Becker, C.; Urli, B.; Juki, M.; Kläring, H. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing. PLoS ONE 2015, 10, e0142867. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules 2020, 25, 2204. [Google Scholar] [CrossRef]
- Inoue, T.; Tatemori, S.; Muranaka, N.; Hirahara, Y.; Homma, S.; Nakane, T.; Takano, A.; Nomi, Y.; Otsuka, Y. The Identification of Vitamin E Homologues in Medicinal Plant Samples Using ESI(+)-LC-MS3. J. Agric. Food Chem. 2012, 60, 9581–9588. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, chemical composition and cytotoxic properties of common purslane (Portulaca oleracea L.) in relation to harvesting stage and plant part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I.C.F.R. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.C.; Teixeira, M.; Brodelius, M. Effect of salt stress on purslane and potential health benefits: Oxalic acid and fatty acids profile. In Proceedings of the International Plant Nutrition Colloquium XVI, Sacramento, CA, USA, 26–30 August 2009; pp. 1–5. [Google Scholar]
- Ababutain, I.M. Antimicrobial Activity and Gas Chromatography- Mass Spectrometry (GC-MS) Analysis of Saudi Arabian Ocimum basilicum Leaves Extracts. J. Pure Appl. Microbiol. 2019, 13, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Suanarunsawat, T.; Anantasomboon, G.U.N.; Piewbang, C. Anti—diabetic and anti-oxidative activity of fixed oil extracted from Ocimum sanctum L. leaves in diabetic rats. Exp. Ther. Med. 2016, 11, 832–840. [Google Scholar] [CrossRef] [Green Version]
- Jensen, N.B.; Clausen, M.R.; Kjaer, K.H. Spectral quality of supplemental LED grow light permanently alters stomatal functioning and chilling tolerance in basil (Ocimum basilicum L.). Sci. Hortic. 2018, 227, 38–47. [Google Scholar] [CrossRef]
- Tarchoune, I.; Baâtour, O.; Harrathi, J.; Hamdaoui, G.; Lachaâl, M.; Ouerghi, Z.; Marzouk, B. Effects of two sodium salts on fatty acid and essential oil composition of basil (Ocimum basilicum L.) leaves. Acta Physiol. Plant. 2013, 35, 2365–2372. [Google Scholar] [CrossRef]
- Sgherri, C.; Pinzino, C.; Navari-izzo, F.; Izzo, R. Contribution of major lipophilic antioxidants to the antioxidant activity of basil extracts: An EPR study. J. Sci. Food Agric. 2011, 91, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Majdi, C.; Pereira, C.; Dias, M.I.; Calhelha, R.C.; Alves, M.J.; Rhourri-Frih, B.; Charrouf, Z.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv. ‘Cinnamon’) and Lemon Basil (Ocimum × citriodorum). Antioxidants 2020, 9, 369. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Niemeyer, E.D. Effects of Nitrogen Fertilization on the Phenolic Composition and Antioxidant Properties of Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2008, 56, 8685–8691. [Google Scholar] [CrossRef] [Green Version]
- Scagel, C.F.; Lee, J. Phenolic Composition of Basil Plants Is Differentially Altered by Plant Nutrient Status and Inoculation with Mycorrhizal Fungi. HortScience 2012, 47, 660–671. [Google Scholar] [CrossRef]
- Shen, Y.; Prinyawiwatkul, W.; Lotrakul, P.; Xu, Z. Comparison of phenolic profiles and antioxidant potentials of the leaves and seeds of Thai holy and sweet basils. Int. J. Food Sci. Technol. 2015, 50, 1651–1657. [Google Scholar] [CrossRef]
- Moghaddam, A.M.D.; Shayegh, J.; Mikaili, P.; Sharaf, J.D. Antimicrobial activity of essential oil extract of Ocimum basilicum L. leaves on a variety of pathogenic bacteria. J. Med. Plants Res. 2011, 5, 3453–3456. [Google Scholar]
- Ijaz, A.; Anwar, F.; Tufail, S.; Sherazi, H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Antimicrobial properties of basil and its possible application in food packaging. J. Agric. Food Chem. 2003, 51, 3197–3207. [Google Scholar] [CrossRef] [PubMed]
- Kaya, I.; Yigit, N.; Benli, M. Antimicrobial activity of various extracts of Ocimum basilicum L. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. Afr. J. Tradit. Complementary Altern. Med. 2008, 5, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocić-Tanackov, S.; Dimić, G.; Lević, J.; Tanackov, I.; Tuco, D. Antifungal activities of basil (Ocimum basilicum L.) extract on Fusarium species. Afr. J. Biotechnol. 2011, 10, 10188–10195. [Google Scholar]
Crop Performance | Color Parameters | Nutritional Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Treatment * | Fresh Weight | L | a | b | Chroma (C) | Hue Angle (H) | Fat | Proteins | Ash | Carbohydrates | Energy |
Dark Opal Red | Control | 26 ± 3 Ba | 28 ± 2 Bc | −0.9 ± 0.3 Ba | 4.0 ±0.7 Bc | 4.2 ± 0.9 Bc | 98 ± 4 Ab | 1.70 ± 0.04 b | 46.4 ± 0.2 d | 12.4 ± 0.5 cd | 39.5 ± 0.6 c | 359 ± 1 a |
S1 | 26 ± 2 Ba | 33 ± 1 Bb | −5 ± 2 Bb | 10 ± 1 Bb | 11 ± 2 Bb | 114 ± 18 Aa | 2.08 ± 0.04 a | 41.2 ± 0.2 e | 15.5 ± 0.2 a | 41.22 ± 0.02 b | 348.4 ± 0.4 c | |
S2 | 27 ± 3 Aa | 34 ± 1 Aa | −6 ± 1 Cc | 11 ± 1 Aa | 12 ± 1 Aa | 120 ± 3 Aa | 2.10 ± 0.03 a | 38.4 ± 0.3 f | 15.2 ± 0.1 a | 44.3 ± 0.2 a | 349.7 ± 0.4 c | |
Red Basil | Control | 30 ± 3 Aa | 31 ± 2 Ac | −3.5 ± 1 Ca | 8 ± 4 Ac | 8.8 ± 0.4 Ac | 103 ± 14 Ab | 1.38 ± 0.02 e | 52.2 ± 0.6 a | 11.8 ± 0.3 e | 34.6 ± 0.6 f | 359.7 ± 0.9 a |
S1 | 29 ± 2 Aa | 34.4 ± 0.5 Aa | −7 ± 1 Cb | 11 ± 2 Aa | 13 ± 2 Aa | 118 ± 10 Aa | 1.57 ± 0.02 d | 50.9 ± 0.8 b | 13.1 ± 0.1 b | 34.4 ± 0.5 f | 355.3 ± 0.1 b | |
S2 | 2 ± 3 Ab | 33 ± 1 Bb | −4 ± 2 Ba | 9 ± 2 Ab | 10.1 ± 0.6 Bb | 110 ± 6 Bab | 1.55 ± 0.02 d | 49.2 ± 0.8 c | 12.8 ± 0.2 bc | 36.5 ± 0.4 d | 356.7 ± 0.5 b | |
Basilico Rosso | Control | 22.4 ± 0.8 Ca | 25.0 ± 0.7 Cc | 1.1 ± 0.3 Aa | 1.4 ± 0.6 Cc | 1.8 ± 0.4 Cc | 50 ± 18 Cc | 1.59 ± 0.08 cd | 51.10 ± 0.07 ab | 12.2 ± 0.1 de | 35.2 ± 0.2 ef | 359.3 ± 0.1 a |
S1 | 18 ± 2 Cb | 28 ± 2 Cb | −0.5 ± 0.7 Ab | 5 ± 1 Cb | 5 ± 1 Cb | 86 ± 13 Bb | 1.67 ± 0.04 bc | 49 ± 1 c | 13.2 ± 0.2 b | 36.4 ± 0.8 de | 355.7 ± 0.7 b | |
S2 | 22 ± 2 Ba | 31 ± 2 Ca | −2.2 ± 0.8 Ac | 7 ± 1 Ba | 8 ± 2 Ca | 104 ± 11 Ba | 1.70 ± 0.01 b | 46.5 ± 0.2 d | 12.9 ± 0.1 b | 38.9 ± 0.2 c | 356.9 ± 0.3 b |
Free Sugars | Organic Acids | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Treatment | Fructose | Glucose | Sucrose | Total Free Sugars | Oxalic Acid | Quinic Acid | Shikimic Acid | Ascorbic Acid | Total Organic Acids | |
Dark Opal Red | Control | 0.93 ± 0.03 e | 2.59 ± 0.02 h | 0.95 ± 0.01 h | 4.47 ± 0.01 i | 5.23 ± 0.08 c | 9.87 ± 0.03 c | 0.090 ± 0.001 f | tr | 15.2 ± 0.1 c | |
S1 | 1.65 ± 0.01 bc | 2.80 ± 0.01 f | 1.73 ± 0.04 e | 6.17 ± 0.03 e | 4.08 ± 0.01 g | 8.19 ± 0.08 f | 0.100 ± 0.001 e | tr | 12.38 ± 0.08 h | ||
S2 | 1.69 ± 0.01 b | 1.35 ± 0.06 i | 1.79 ± 0.02 d | 4.84 ± 0.08 h | 4.81 ± 0.02 f | 8.11 ± 0.03 f | 0.180 ± 0.002 a | tr | 13.11 ± 0.01 g | ||
Red Basil | Control | 1.52 ± 0.04 d | 2.67 ± 0.02 g | 0.88 ± 0.02 i | 5.08 ± 0.01 g | 5.49 ± 0.03 b | 10.5 ± 0.2 b | 0.110 ± 0.001 d | tr | 16.0 ± 0.2 b | |
S1 | 1.61 ± 0.04 c | 2.90 ± 0.01 e | 1.11 ± 0.01 g | 5.63 ± 0.05 f | 4.97 ± 0.03 e | 8.77 ± 0.05 e | 0.100 ± 0.001 e | tr | 13.85 ± 0.02 f | ||
S2 | 1.92 ± 0.01 a | 3.15 ± 0.01 d | 1.57 ± 0.03 f | 6.64 ± 0.02 c | 4.97 ± 0.02 e | 7.4 ± 0.1 g | 0.130 ± 0.001 b | tr | 12.5 ± 0.1 h | ||
Basilico Rosso | Control | 0.52 ± 0.04 f | 3.71 ± 0.02 c | 2.09 ± 0.04 c | 6.32 ± 0.03 d | 5.80 ± 0.05 a | 11.97 ± 0.01 a | 0.120 ± 0.002 c | tr | 17.89 ± 0.06 a | |
S1 | 1.61 ± 0.02 c | 3.76 ± 0.01 b | 2.30 ± 0.01 b | 7.67 ± 0.02 b | 5.09 ± 0.07 d | 9.71 ± 0.05 c | 0.110 ± 0.001 d | tr | 14.90 ± 0.03 d | ||
S2 | 1.94 ± 0.02 a | 3.97 ± 0.03 a | 2.48 ± 0.03 a | 8.39 ± 0.04 a | 5.17 ± 0.06 cd | 9.33 ± 0.09 d | 0.090 ± 0.001 f | tr | 14.60 ± 0.04 e | ||
Main Fatty Acids | Fatty Acid Groups | Tocopherols | |||||||||
Cultivar | Treatment * | C16:0 | C18:2n6c | C18:3n3 | SFA | MUFA | PUFA | α-Tocopherol | γ-Tocopherol | δ-Tocopherol | Total Tocopherols |
Dark Opal Red | Control | 21.17 ± 0.01 f | 14.94 ± 0.02 e | 42.14 ± 0.05 f | 33.65 ± 0.05 c | 8.46 ± 0.01 a | 57.91 ± 0.06 f | 6.11 ± 0.04 b | 1.35 ± 0.04 a | 1.15 ± 0.09 a | 8.61 ± 0.08 b |
S1 | 21.8 ± 0.4 e | 18.29 ± 0.02 b | 40.5 ± 0.3 g | 32.8 ± 0.5 d | 7.8 ± 0.3 c | 59.3 ± 0.3 d | 3.49 ± 0.05 f | 1.04 ± 0.01 c | 0.49 ± 0.02 cd | 5.02 ± 0.04 d | |
S2 | 20.9 ± 0.2 g | 18.72 ± 0.03 a | 44.0 ± 0.1 d | 29.1 ± 0.2 f | 7.7 ± 0.1 c | 63.2 ± 0.1 b | 3.84 ± 0.05 e | 1.07 ± 0.04 | 0.40 ± 0.01 ef | 5.32 ± 0.08 c | |
Red Basil | Control | 19.6 ± 0.1 i | 14.4 ± 0.3 f | 49.2 ± 0.1 a | 28.7 ± 0.2 f | 7.3 ± 0.1 d | 64.1 ± 0.2 a | 7.07 ± 0.02 a | 1.12 ± 0.01 b | 1.12 ± 0.05 a | 9.31 ± 0.02 a |
S1 | 22.85 ± 0.01 c | 15.3 ± 0.1 d | 42.2 ± 0.1 f | 33.8 ± 0.1 c | 8.2 ± 0.1 b | 58.0 ± 0.1 f | 4.11 ± 0.02 c | 0.83 ± 0.02 d | 0.43 ± 0.02 de | 5.37 ± 0.02 c | |
S2 | 22.07 ± 0.33 d | 16.3 ± 0.3 c | 42.4 ± 0.1 e | 32.4 ± 0.4 d | 8.2 ± 0.1 b | 59.4 ± 0.4 d | 3.98 ± 0.07 d | 0.77 ± 0.01 e | 0.35 ± 0.01 f | 5.10 ± 0.06 d | |
Basilico Rosso | Control | 19.84 ± 0.01 h | 12.6 ± 0.1 g | 49.2 ± 0.1 a | 29.6 ± 0.1 e | 7.8 ± 0.1 c | 62.6 ± 0.1 c | 1.29 ± 0.02 g | 0.49 ± 0.04 f | 0.90 ± 0.02 b | 2.68 ± 0.03 e |
S1 | 30.16 ± 0.06 a | 10.3 ± 0.1 i | 47.3 ± 0.1 c | 36.5 ± 0.1 a | 5.4 ± 0.1 f | 58.1 ± 0.1 f | 1.07 ± 0.01 h | 0.47 ± 0.01 f | 0.53 ± 0.02 c | 2.07 ± 0.02 f | |
S2 | 29.86 ± 0.01 b | 10.67 ± 0.04 h | 47.59 ± 0.06 b | 35.7 ± 0.1 b | 5.7 ± 0.1 e | 58.7 ± 0.1 e | 0.75 ± 0.01 i | 0.41 ± 0.01 g | 0.38 ± 0.01 ef | 1.54 ± 0.01 g |
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MS2 (m/z) | Tentative Identification |
---|---|---|---|---|---|
1 | 8.91 | 323 | 179 | 135(100) | Caffeic acid |
2 | 14.96 | 323 | 473 | 313(61),293(100) | Chicoric acid |
3 | 16.8 | 334 | 609 | 301(100) | Quercetin-O-deoxyhexoside-hexoside |
4 | 19.5 | 290/325 | 535 | 491(100),287(34) | Eriodictyol-O-malonylhexoside |
5 | 20.76 | 282/327 | 719 | 359(100),197(31),179(42),161(50),135(5) | Sagerinic acid |
6 | 35.36 | 287/333 | 313 | 269(51),203(12),179(5),161(100),135(5) | Salvianolic acid F |
Peak Number * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment * | 1 | 2 | 3 | 4 | 5 | 6 | TPA | TF | TPC | |
Dark Opal Red | Control | 1.54 ± 0.04 d | 3.52 ± 0.04 a | 0.34 ± 0.01 g | 8.5 ± 0.2 b | 10.3 ± 0.3 e | 3.34 ± 0.03 b | 18.7 ± 0.3 cd | 8.9 ± 0.2 b | 27.6 ± 0.1 c |
S1 | 1.11 ± 0.02 f | 2.94 ± 0.01 c | 0.859 ± 0.001 d | 4.40 ± 0.06 f | 11.6 ± 0.5 d | 1.57 ± 0.01 g | 17.2 ± 0.5 e | 5.3 ± 0.1 f | 22.4 ± 0.6 e | |
S2 | 1.39 ± 0.04 e | 3.37 ± 0.01 b | 1.62 ± 0.03 a | 5.96 ± 0.03 c | 11.94 ± 0.01 d | 1.37 ± 0.08 i | 18.1 ± 0.1 d | 7.6 ± 0.1 c | 25.7 ± 0.2 d | |
Red Basil | Control | 2.18 ± 0.04 a | 1.98 ± 0.03 e | 0.429 ± 0.003 f | 8.4 ± 0.1 b | 16.51 ± 0.06 b | 4.99 ± 0.05 a | 25.7 ± 0.1 b | 8.9 ± 0.1 b | 34.5 ± 0.1 b |
S1 | 1.69 ± 0.01 c | 1.11 ± 0.03 g | 0.756 ± 0.004 e | 3.0 ± 0.2 g | 14.3 ± 0.6 c | 2.04 ± 0.02 e | 19.1 ± 0.6 c | 3.8 ± 0.2 g | 22.9 ± 0.4 e | |
S2 | 1.99 ± 0.03 b | 2.23 ± 0.04 d | 1.48 ± 0.01 b | 10.5 ± 0.3 a | 19.8 ± 0.2 a | 3.19 ± 0.02 c | 27.2 ± 0.2 a | 12.0 ± 0.3 a | 39.2 ± 0.1 a | |
Basilico Rosso | Control | 0.63 ± 0.01 g | 0.84 ± 0.02 i | 0.215 ± 0.003 i | 3.25 ± 0.05 g | 2.96 ± 0.01 g | 1.47 ± 0.04 h | 5.90 ± 0.01 h | 3.47 ± 0.05 h | 9.37 ± 0.06 h |
S1 | 1.65 ± 0.02 c | 1.05 ± 0.02 h | 1.12 ± 0.01 c | 5.35 ± 0.03 e | 6.5 ± 0.3 f | 1.82 ± 0.02 f | 11.1 ± 0.3 g | 6.47 ± 0.02 e | 17.5 ± 0.3 g | |
S2 | 1.66 ± 0.01 c | 1.25 ± 0.02 f | 1.43 ± 0.08 b | 5.67 ± 0.03 d | 6.6 ± 0.3 f | 2.28 ± 0.02 d | 11.8 ± 0.2 f | 7.1 ± 0.1 d | 18.9 ± 0.1 f |
Cultivar | Treatment * | TBARS (EC50, µg/mL) | OxHLIA (IC50 Values, µg/mL) | |
---|---|---|---|---|
Δt = 60 min | Δt = 120 min | |||
Dark Opal Red | Control | 13.0 ± 0.5 i | 66 ± 3 b | 155 ± 5 b |
S1 | 14.5 ± 0.4 h | 41 ± 1 e | 104 ± 3 c | |
S2 | 30 ± 1 f | 50 ± 1 d | 100 ± 2 c | |
Red Basil | Control | 24.6 ± 0.7 g | 35 ± 1 e | 73 ± 2 d |
S1 | 45.3 ± 0.5 c | 69 ± 2 b | 168 ± 13 b | |
S2 | 49.4 ± 0.6 b | 58 ± 3 c | 112 ± 3 c | |
Basilico Rosso | Control | 31.4 ± 0.2 e | 86 ± 5 a | 209 ± 4 a |
S1 | 35.6 ± 0.9 d | 38 ± 2 e | 99 ± 2 c | |
S2 | 51.0 ± 0.9 a | 51 ± 1 d | 100 ± 2 c | |
Trolox (positive control) | 5.4 ± 0.3 | 19.6 ± 0.7 | 41 ± 1 |
Cultivar | Treatment * | Antibacterial Activity | S. aureus | B. cereus | L. monocytogenes | E. coli | S. enterica Serovar Typhimurium | E. cloacae |
---|---|---|---|---|---|---|---|---|
Dark Opal Red | Control | MIC | 4 | 1 | 2 | 2 | 2 | 4 |
MBC | 8 | 2 | 4 | 4 | 4 | 8 | ||
S1 | MIC | 2 | 1 | 2 | 2 | 2 | 2 | |
MBC | 4 | 2 | 4 | 4 | 4 | 4 | ||
S2 | MIC | 2 | 1 | 1 | 2 | 2 | 2 | |
MBC | 4 | 2 | 2 | 4 | 4 | 4 | ||
Red Basil | Control | MIC | 1 | 1 | 1 | 1 | 2 | 1 |
MBC | 2 | 2 | 2 | 2 | 4 | 2 | ||
S1 | MIC | 2 | 1 | 1 | 2 | 2 | 2 | |
MBC | 4 | 2 | 2 | 4 | 4 | 4 | ||
S2 | MIC | 2 | 1 | 1 | 2 | 1 | 2 | |
MBC | 4 | 2 | 2 | 4 | 2 | 4 | ||
Basilico Rosso | Control | MIC | 2 | 0.5 | 1 | 2 | 1 | 2 |
MBC | 4 | 1 | 2 | 4 | 2 | 4 | ||
S1 | MIC | 1 | 0.5 | 1 | 2 | 2 | 1 | |
MBC | 2 | 1 | 2 | 4 | 4 | 2 | ||
S2 | MIC | 2 | 1 | 1 | 2 | 2 | 2 | |
MBC | 4 | 2 | 2 | 4 | 4 | 4 | ||
Positive controls | E211 | MIC | 4 | 0.5 | 1 | 1 | 1 | 2 |
MBC | 4 | 0.5 | 2 | 2 | 2 | 4 | ||
E224 | MIC | 1 | 2.0 | 0.5 | 0.5 | 1 | 0.5 | |
MBC | 1 | 4.0 | 1 | 1 | 1 | 0.5 | ||
Cultivar | Treatment | Antifungal Activity | A. fumigatus | A. niger | A. versicolor | P. funiculosum | P. v. var. cyclopium | T. viride |
Dark Opal Red | Control | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 |
MFC | 1 | 1 | 1 | 1 | 1 | 0.5 | ||
S1 | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.25 | |
MFC | 1 | 1 | 1 | 1 | 2 | 0.5 | ||
S2 | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.25 | |
MFC | 1 | 1 | 1 | 1 | 2 | 0.5 | ||
Red Basil | Control | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 |
MFC | 1 | 1 | 1 | 1 | 1 | 0.5 | ||
S1 | MIC | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 0.25 | |
MFC | 1 | 1 | 1 | 2 | 1 | 0.5 | ||
S2 | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 | |
MFC | 1 | 1 | 1 | 1 | 1 | 0.5 | ||
Basilico Rosso | Control | MIC | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 |
MFC | 0.5 | 1 | 1 | 1 | 1 | 0.5 | ||
S1 | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.5 | |
MFC | 1 | 1 | 1 | 1 | 2 | 1 | ||
S2 | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.25 | |
MFC | 1 | 1 | 1 | 1 | 2 | 0.5 | ||
Positive controls | E211 | MIC | 1 | 1 | 2 | 1 | 2 | 1 |
MFC | 2 | 2 | 2 | 2 | 4 | 2 | ||
E224 | MIC | 1 | 1 | 1 | 0.5 | 1 | 0.5 | |
MFC | 1 | 1 | 1 | 0.5 | 1 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, L.R.O.; Polyzos, N.; Fernandes, Â.; Petropoulos, S.A.; Gioia, F.D.; Dias, M.I.; Pinela, J.; Kostić, M.; Soković, M.; Ferreira, I.C.F.R.; et al. Effect of Saline Conditions on Chemical Profile and the Bioactive Properties of Three Red-Colored Basil Cultivars. Agronomy 2020, 10, 1824. https://doi.org/10.3390/agronomy10111824
Cruz LRO, Polyzos N, Fernandes Â, Petropoulos SA, Gioia FD, Dias MI, Pinela J, Kostić M, Soković M, Ferreira ICFR, et al. Effect of Saline Conditions on Chemical Profile and the Bioactive Properties of Three Red-Colored Basil Cultivars. Agronomy. 2020; 10(11):1824. https://doi.org/10.3390/agronomy10111824
Chicago/Turabian StyleCruz, Luís R. O., Nikolaos Polyzos, Ângela Fernandes, Spyridon A. Petropoulos, Francesco Di Gioia, Maria Inês Dias, José Pinela, Marina Kostić, Marina Soković, Isabel C. F. R. Ferreira, and et al. 2020. "Effect of Saline Conditions on Chemical Profile and the Bioactive Properties of Three Red-Colored Basil Cultivars" Agronomy 10, no. 11: 1824. https://doi.org/10.3390/agronomy10111824
APA StyleCruz, L. R. O., Polyzos, N., Fernandes, Â., Petropoulos, S. A., Gioia, F. D., Dias, M. I., Pinela, J., Kostić, M., Soković, M., Ferreira, I. C. F. R., & Barros, L. (2020). Effect of Saline Conditions on Chemical Profile and the Bioactive Properties of Three Red-Colored Basil Cultivars. Agronomy, 10(11), 1824. https://doi.org/10.3390/agronomy10111824