Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture
Abstract
:1. Introduction
2. Composting Process
2.1. Process Parameters
2.2. Composting Stages
2.3. Stability and Maturity of Compost
3. Application of Compost in Agriculture
3.1. The Ideal Form of Nutrients in the Compost
3.2. Implication of Maturity and Stability on the Compost Quality in Agriculture
3.3. Effects of Compost on Biological and Enzymatic Activities in Soils
3.4. Effects of Compost on Soil Physical Properties
3.4.1. Soil Aggregate and Stability
3.4.2. Bulk Density
3.4.3. Infiltration Rate and Water-Holding Capacity
3.5. Effect of Compost on Chemical Properties of Soil
3.5.1. Enhancement of Nutrient Level
3.5.2. Cation Exchange Capacity (CEC) and pH Value
3.6. Effects of Compost on Crop Productivity and Yield
3.7. Effects of Compost on Plant Pathogens and Diseases
4. Application of Compost as Growing Media
5. Compost Application as Bioremediation Agent for Contaminated Soil
6. Potential Risks of Compost Application in Agriculture
- -
- -
- The possibility of heavy metal accumulation in soils and plants [15,207] could occur when heavy metal concentrations exceed the allowed limits and compost is applied at high rates [208,209]. However, it is important to point that the type of soil, compost type and the irrigation system are important factors affecting this type of pollution.
- -
- Leaching of nutrients: When large amounts of compost are applied in a relatively small area, this would increase the possibility of nutrient leaching, especially during autumn and winter. High concentrations of nitrate can be leached from soils and contaminate the surface and underground water [79,206]. Additionally, nitrate leaching in the presence of other nutrients like phosphorus could contribute to water eutrophication [210,211].
- -
- Composts derived from sewage sludge could promote ammonia emissions, mainly when they have high concentrations of ammonium. Furthermore, these types of compost are characterized by their high potential contamination with pathogenic microorganisms.
- -
- The breakdown of soil aggregates as a result of soil colloid breakdown in the case of high concentrations of cations like Na+ and K+ [212]. Additionally, other contaminants like persistent organic pollutants (POPs) and potentially toxic elements, among others, could be released from some types of composts [207,213].
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Xie, Q.; Addy, M.; Zhou, W.; Liu, Y.; Wang, Y.; Cheng, Y.; Yanling, C.; Ruan, R. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresour. Technol. 2016, 215, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Soobhany, N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. J. Clean. Prod. 2019, 241, 118413. [Google Scholar] [CrossRef]
- The World Bank. Solid Waste Management. 2019. Available online: https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management (accessed on 1 March 2020).
- Oliveira, L.S.; Oliveira, D.S.; Bezerra, B.S.; Pereira, B.S.; Battistelle, R.A.G. Environmental analysis of organic waste treatment focusing on composting scenarios. J. Clean. Prod. 2017, 155, 229–237. [Google Scholar] [CrossRef] [Green Version]
- EC. Circular Economy—Implementation of the Circular Economy Action Plan. European Commission. 2018. Available online: http://ec.europa.eu/environment/circular-economy/index (accessed on 1 March 2020).
- EC. Proposal for a Regulation on the Making Available on the Market of CE Marked Products Fertilising and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009. COM (2016) 157 Final 2016/00084 (COD). European Commission. 2016. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-157-EN-F1-1.PDF (accessed on 1 March 2020).
- Ţurcanu, M. Review of the Fertilizing Products Regulation. European Parliament. 2018. Available online: http://www.europarl.europa.eu/legislative-train/theme-new-boost-for-jobs-growthand-investment/file-review-of-the-fertilising-products-regulation (accessed on 1 March 2020).
- Ghosh, P.K.; Ramesh, P.; Bandyopadhyay, K.K.; Tripathi, A.K.; Hati, K.M.; Mishra, A.K.; Acharya, C.L. Comparative effectiveness of cattle manure, poultry manure, phospho-compost and fertilizer-NPK on the cropping systems in vertisols of semi-arid tropics; crop yield and system performance. Bioresour. Technol. 2004, 95, 77–83. [Google Scholar]
- Meng, L.; Li, W.; Zhang, S.; Wu, C.; Lv, L. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw. Bioresour. Technol. 2017, 226, 39–45. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresour. Technol. 2016, 218, 335–343. [Google Scholar] [CrossRef]
- Malińska, K.; Golańska, M.; Caceres, R.; Rorat, A.; Weisser, P.; Ślęzak, E. Biochar amendment for integrated composting and vermicomposting of sewage sludge—The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour. Technol. 2017, 225, 206–214. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Awasthi, M.K.; Jiang, Y.; Li, R.; Ren, X.; Zhao, J.; Shen, F.; Wang, M.; Zhang, Z. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresour. Technol. 2016, 220, 297–304. [Google Scholar] [CrossRef]
- Garg, V.; Kaushik, P.; Dilbaghi, N. Vermiconversion of wastewater sludge from textile mill mixed with anaerobically digested biogas plant slurry employing Eisenia foetida. Ecotoxicol. Environ. Saf. 2006, 65, 412–419. [Google Scholar] [CrossRef]
- Papafilippaki, A.; Paranychianakis, N.V.; Nikolaidis, N.P. Effects of soil type and municipal solid waste compost as soil amendment on Cichorium spinosum (spiny chicory) growth. Sci. Hortic. 2015, 195, 195–205. [Google Scholar] [CrossRef]
- Sanasam, S.D.; Talukdar, N.C. Quality Compost Production from Municipality Biowaste in Mix with Rice Straw, Cow Dung, and Earthworm Eisenia fetida. Compos. Sci. Util. 2017, 25, 141–151. [Google Scholar] [CrossRef]
- Edgerton, M.D. Increasing Crop Productivity to Meet Global Needs for Feed, Food, and Fuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.; Alessi, D.S.; Shen, Z.; Bolan, N.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Aye, L.; Widjaya, E. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag. 2006, 26, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Elagroudy, S.; Elkady, T.; Ghobrial, F. Comparative Cost Benefit Analysis of Different Solid Waste Management Scenarios in Basrah, Iraq. J. Environ. Prot. 2011, 2, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Song, Y.-E.; Song, H.-B.; Kim, J.-W.; Hwang, S.-J. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea. Waste Manag. 2011, 31, 2112–2120. [Google Scholar] [CrossRef]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Gai, X.; Liu, H.; Liu, J.; Zhai, L.; Wang, H.; Yang, B.; Ren, T.; Wu, S.; Lei, Q. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain. Sci. Total Environ. 2019, 650, 2251–2259. [Google Scholar] [CrossRef]
- Choudhary, M.; Panday, S.C.; Meena, V.S.; Singh, S.; Yadav, R.P.; Mahanta, D.; Mondal, T.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-imalayas. Agric. Ecosyst. Environ. 2018, 257, 38–46. [Google Scholar]
- Kulikowska, D.; Gusiatin, Z.M.; Bułkowska, K.; Klik, B. Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time. J. Hazard. Mater. 2015, 300, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Shang, X.; Duo, L.A. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Environ. Sci. Pollut. Res. 2012, 20, 967–975. [Google Scholar] [CrossRef]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa–Hersztek, M.; Tabor, S. Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 2018, 315, 27–35. [Google Scholar] [CrossRef]
- Weber, J.; Kocowicz, A.; Bekier, J.; Jamroz, E.; Tyszka, R.; Debicka, M.; Parylak, D.; Kordas, L. The effect of a sandy soil amendment with municipal solid waste (MSW) compost on nitrogen uptake efficiency by plants. Eur. J. Agron. 2014, 54, 54–60. [Google Scholar] [CrossRef]
- Haug, R.T. The Practical Handbook of Compost Engineering; Lewis Publisher: Boca Raton, FL, USA, 1993. [Google Scholar]
- Roman, P.; Martinez, M.M.; Pantoja, A. Farmer’s Compost Handbook: Experiences in Latin America. Composting parameters and compost quality: A literature review. Org. Agric. 2015, 8, 141–158. [Google Scholar]
- Awasthi, M.K.; Selvam, A.; Lai, K.M.; Wong, J.W. Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium. Bioresour. Technol. 2017, 245, 665–672. [Google Scholar] [CrossRef]
- Bertoldi, M.; de Vallini, G.; Pera, A. The Biology of Composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar]
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Alami, I.T. Composting parameters and compost quality: A literature review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhang, Z.; Shen, F.; Zhang, G.; Qin, R.; Li, X.; Xiao, R. Nutrient transformations during composting of pig manure with bentonite. Bioresour. Technol. 2012, 121, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, N. A systematic review of biochar use in animal waste composting. Waste Manag. 2019, 88, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Xu, J.; Jiang, Z.; Li, M.; Li, Q. The transformation of different dissolved organic matter sub fractions and distribution of heavy metals during food waste and sugarcane leaves co-composting. Waste Manag. 2019, 87, 636–644. [Google Scholar] [PubMed]
- Zhang, L.; Sun, X. Evaluation of maifanite and silage as amendments for green waste composting. Waste Manag. 2018, 77, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Soobhany, N.; Mohee, R.; Garg, V.K. Recovery of nutrient from Municipal Solid Waste by composting and vermicomposting using earthworm Eudrilus eugeniae. J. Environ. Chem. Eng. 2015, 3, 2931–2942. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Richard, T.L.; Honeyman, M.S. Carbon, nutrient, and mass loss during composting. Nutr. Cycl. Agroecosyst. 2002, 62, 15–24. [Google Scholar] [CrossRef]
- Sánchez, A. A kinetic analysis of solid waste composting at optimal conditions. Waste Manag. 2006, 27, 854–855. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, L.; Gea, T.; Artola, A.; Sánchez, A. Air filled porosity measurements by air pycnometry in the composting process: A review and a correlation analysis. Bioresour. Technol. 2009, 100, 2655–2666. [Google Scholar] [CrossRef]
- Niwagaba, C.; Nalubega, M.; Vinnerås, B.; Sundberg, C.; Jonsson, H. Bench-scale composting of source-separated human faeces for sanitation. Waste Manag. 2009, 29, 585–589. [Google Scholar] [CrossRef]
- Hsu, J.-H.; Lo, S.-L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environ. Pollut. 1999, 104, 189–196. [Google Scholar] [CrossRef]
- Liu, X.; Rashti, M.R.; Dougall, A.; Esfandbod, M.; Van Zwieten, L.; Chen, C. Subsoil application of compost improved sugarcane yield through enhanced supply and cycling of soil labile organic carbon and nitrogen in an acidic soil at tropical Australia. Soil Tillage Res. 2018, 180, 73–81. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Guo, X.; Wang, H. Comparison of the effects of different maturity composts on soil nutrient, plant growth and heavy metal mobility in the contaminated soil. J. Environ. Manag. 2019, 250, 109525. [Google Scholar] [CrossRef]
- Huang, G.; Wu, Q.; Wong, J.W.C.; Nagar, B. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresour. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Daniel, F.; Bruno, G. Synergisms between Compost and Biochar for Sustainable Soil Amelioration, Management of Organic Waste; Sunil, K., Ed.; InTech Europe: Rijeka, Croatia, 2012; Available online: http://www.intechopen.com (accessed on 15 March 2020).
- Bouajila, K.; Sanaa, M. Effects of organic amendments on soil physico-chemical and biological properties. J. Mater. Environ. Sci. 2011, 2, 485–490. [Google Scholar]
- Flavel, T.; Murphy, D.V.; Lalor, B.; Fillery, I. Gross N mineralization rates after application of composted grape marc to soil. Soil Biol. Biochem. 2005, 37, 1397–1400. [Google Scholar] [CrossRef]
- Komilis, D.; Kontou, I.; Ntougias, S. A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Bioresour. Technol. 2011, 102, 5863–5872. [Google Scholar] [CrossRef]
- Sarsaiya, S.; Jain, A.; Awasthi, S.K.; Duan, Y.; Awasthi, M.K.; Shi, J. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresour. Technol. 2019, 291, 121905. [Google Scholar] [CrossRef]
- Sarsaiya, S.; Jia, Q.; Fan, X.; Jain, A.; Shu, F.; Lu, Y.; Shi, J.; Chen, J. First report of leaf black circular spots on Dendrobiumnobile caused by Trichoderma longibrachiatum in Guizhou Province, China. Plant Dis. 2019, 103, 3275. [Google Scholar]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of food wastes: Status and challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Bernal, M.; Alburquerque, J.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Komilis, D.; Tziouvaras, I.S. A statistical analysis to assess the maturity and stability of six composts. Waste Manag. 2009, 29, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.; Antil, R. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 2011, 102, 2868–2873. [Google Scholar] [CrossRef] [PubMed]
- Adani, F.; Confalonieri, R.; Tambone, F. Dynamic Respiration Index as a Descriptor of the Biological Stability of Organic Wastes. J. Environ. Qual. 2004, 33, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012, 112, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Adani, F.; Gigliotti, G.; Valentini, F.; Laraia, R. Respiration Index Determination: A Comparative Study of Different Methods. Compos. Sci. Util. 2003, 11, 144–151. [Google Scholar] [CrossRef]
- Barrena, R.; D’Imporzano, G.; Ponsá, S.; Gea, T.; Artola, A.; Vázquez, F.; Sánchez, A.; Adani, F. In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical–biological treated waste. J. Hazard. Mater. 2009, 162, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Ye, G.; Lin, Y.; Liu, D.; Chen, Z.; Luo, J.; Bolan, N.; Fa, J.; Ding, W. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Appl. Soil Ecol. 2019, 133, 24–33. [Google Scholar] [CrossRef]
- Duong, T.T.T.; Penfold, C.; Marschner, P. Differential effects of composts on properties of soils with different textures. Biol. Fertil. Soils 2012, 48, 699–707. [Google Scholar] [CrossRef]
- Huang, P.M.; Li, Y.; Sumner, M.E. Land Application of Wastes. In Handbook of Soil Sciences; CRC Press: Boca Raton, FL, USA, 2011; pp. 620–645. [Google Scholar]
- Tittarelli, F.; Petruzzelli, G.; Pezzarossa, B.; Civilini, M.; Benedetti, A.; Sequi, P. Chapter 7 Quality and agronomic use of compost. In Solid Waste: Assessment, Monitoring and Remediation; Elsevier: Amsterdam, The Netherlands, 2007; pp. 119–157. [Google Scholar]
- Rady, M.M.; Semida, W.M.; Hemida, K.A.; Abdelhamid, M.T. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int. J. Recycl. Org. Waste Agric. 2016, 5, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar]
- Amlinger, F.; Peyr, S.; Geszit, J.; Dreher, P.; Weinfurtner, K.; Nortcliff, S. Beneficial effects of compost application on fertility and productivity of soils: Literature study. Report produced for the Federal Ministry of Agriculture and Forestry. Environ. Water Manag. 2007. Available online: http://www.umweltnet.at/article/articlereview/51825/1/6954/ (accessed on 22 November 2020).
- Richard, T.L. Compost. In Encyclopedia of Soils in the Environment; Elsevier: Oxford, UK, 2005; pp. 294–301. [Google Scholar]
- De Bertoldi, M. The Science of Composting; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chandna, P.; Nain, L.; Singh, S.; Kuhad, R.C. Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiol. 2013, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Confesor, R.; Hamlett, J.; Shannon, R.; Graves, R. Potential Pollutants from Farm, Food and Yard Waste Composts at Differing Ages: Leaching Potential of Nutrients under Column Experiments. Part II. Compos. Sci. Util. 2009, 17, 6–17. [Google Scholar] [CrossRef]
- Neher, D.A.; Weicht, T.R.; Bates, S.T.; Leff, J.W.; Fierer, N. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times. PLoS ONE 2013, 8, e79512. [Google Scholar] [CrossRef] [Green Version]
- Cesaro, A.; Belgiorno, V.; Guida, M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Muscolo, A.; Papalia, T.; Settineri, G.; Mallamaci, C.; Jeske-Kaczanowska, A. Are raw materials or composting conditions and time that most influence the maturity and/or quality of composts? Comparison of obtained composts on soil properties. J. Clean. Prod. 2018, 195, 93–101. [Google Scholar] [CrossRef]
- Bertoncini, E.; D’Orazio, V.; Senesi, N.; Mattiazzo, M. Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids. Bioresour. Technol. 2008, 99, 4972–4979. [Google Scholar] [CrossRef]
- Jorge-Mardomingo, I.; Jiménez-Hernández, M.E.; Moreno, L.; De La Losa, A.; De La Cruz, M.T.; Casermeiro, M. Ángel Application of high doses of organic amendments in a Mediterranean agricultural soil: An approach for assessing the risk of groundwater contamination. Catena 2015, 131, 74–83. [Google Scholar] [CrossRef]
- Perego, A.; Basile, A.; Bonfante, A.; De Mascellis, R.; Terribile, F.; Brenna, S.; Acutis, M. Nitrate leaching under maize cropping systems in Po Valley (Italy). Agric. Ecosyst. Environ. 2012, 147, 57–65. [Google Scholar] [CrossRef]
- Ko, H.J.; Kim, K.Y.; Kim, H.T.; Kim, C.N.; Umeda, M. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manag. 2008, 28, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.-C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Ling, N.; Xue, C.; Huang, Q.; Yang, X.; Xu, Y.; Shen, Q. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl 2010, 55, 673–683. [Google Scholar] [CrossRef]
- Said-Pullicino, D.; Kaiser, K.; Guggenberger, G.; Gigliotti, G. Changes in the chemical composition of water-extractable organic matter during composting: Distribution between stable and labile organic matter pools. Chemosphere 2007, 66, 2166–2176. [Google Scholar] [CrossRef]
- Giorgi, G. Managing soil nutrients with compost in organic farms of East Georgia. EGU Gen. Assem. 2013, 15, 11640. [Google Scholar]
- Garcia, C.; Hernandez, T.; Coll, M.D.; Ondoño, S. Organic amendments for soil restoration in arid and semiarid areas: A review. ATM Environ. Sci. 2017, 4, 640–676. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Li, J.; Cooper, J.M.; Lin, Z.; Li, Y.; Yang, X.; Zhao, B. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Appl. Soil Ecol. 2015, 96, 75–87. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Medina, A.; Vassilev, N.; Alguacil, M.; Roldán, A.; Azcón, R. Increased plant growth, nutrient uptake, and soil enzymatic activities in a desertified Mediterranean soil amended with treated residues and inoculated with native mycorrhizal fungi and a plant growth-promoting yeast. Soil Sci. 2004, 169, 260–270. [Google Scholar]
- Lupwayi, N.Z.; Zhang, Y.; Hao, X.; Thomas, B.W.; Eastman, A.H.; Schwinghamer, T.D. Linking soil microbial biomass and enzyme activities to long-term manure applications and their nonlinear legacy. Pedobiology 2019, 74, 34–42. [Google Scholar] [CrossRef]
- Bastida, F.; Kandeler, E.; Hernandez, T.; Garcia, C. Long-term Effect of Municipal Solid Waste Amendment on Microbial Abundance and Humus-associated Enzyme Activities under Semiarid Conditions. Microb. Ecol. 2007, 55, 651–661. [Google Scholar] [CrossRef]
- Leon, M.C.C.; Stone, A.; Dick, R.P. Organic soil amendments: Impacts on snap bean common root rot (Aphanomyes euteiches) and soil quality. Appl. Soil Ecol. 2006, 31, 199–210. [Google Scholar] [CrossRef]
- Dukare, A.S.; Prasanna, R.; Dubey, S.C.; Nain, L.; Chaudhary, V.; Singh, R.; Saxena, A.K. Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop. Prot. 2011, 30, 436–442. [Google Scholar] [CrossRef]
- Zhen, Z.; Liu, H.; Wang, N.; Guo, L.; Meng, J.; Ding, N.; Wu, G.; Jiang, G.M. Effects of Manure Compost Application on Soil Microbial Community Diversity and Soil Microenvironments in a Temperate Cropland in China. PLoS ONE 2014, 9, e108555. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Dubois, D.; Ineichen, K.; Boller, T.; Wiemken, A. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 2004, 138, 574–583. [Google Scholar] [CrossRef]
- Gosling, P.; Hodge, A.; Goodlass, G.; Bending, G. Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosyst. Environ. 2006, 113, 17–35. [Google Scholar] [CrossRef]
- Clark, R.B.; Zeto, S.K. Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 2000, 23, 867–902. [Google Scholar] [CrossRef]
- Cornejo, P.; Meier, S.; Borie, G.; Rillig, M.C.; Borie, F. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci. Total Environ. 2008, 406, 154–160. [Google Scholar] [CrossRef]
- Ginting, D.; Kessavalou, A.; Eghball, B.; Doran, J.W. Greenhouse gas emissions and soil indicators four years after manure and compost applications. J. Environ. Qual. 2003, 32, 23–32. [Google Scholar]
- Paulin, B.; Peter, O.M. Compost Production and Use in Horticulture. West. Aust. Agric. Auth. 2008. Available online: www.agric.wa.gov.au (accessed on 10 March 2020).
- Osman, K.T. Physical Properties of Soil. In Soils; Springer: Berlin/Heidelberg, Germany, 2012; pp. 49–65. [Google Scholar]
- Novotná, J.; Badalíková, B. The Soil Structure Changes under Varying Compost Dosage. Agriculture 2018, 64, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant Nutr. 2015, 15, 333–352. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.T. Compost effects on soil properties and plant growth. EGU Gen. Assem. 2014, 2013–2797. [Google Scholar]
- Annabi, M.; Houot, S.; Francou, C.; Poitrenaud, M.; Le Bissonnais, Y. Soil Aggregate Stability Improvement with Urban Composts of Different Maturities. Soil Sci. Soc. Am. J. 2007, 71, 413–423. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S. Response of Soil Organic Carbon, pH, Electrical Conductivity, and Water Stable Aggregates to Long-Term Annual Manure and Inorganic Fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Kroulík, M.; Brant, V.; Masek, J.; Kovaříček, P. Influence of soil tillage treatment and compost application on soil properties and water infiltration. In Trends in Agricultural Engineering, Proceedings of the 4th International Conference; Czech University of Life Sciences: Prague, Czech, 2010; pp. 343–349. ISBN 978-80-213-2088-8. [Google Scholar]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Li, Y.; Huang, W.; Zhao, G.K.; Pu, G.; Su, J.; Coyne, M.S.; Chen, Y.; Wang, L.; Hu, X.; et al. Rotation and manure amendment increase soil macro-aggregates and associated carbon and nitrogen stocks in flue-cured tobacco production. Geoderma 2018, 325, 49–58. [Google Scholar] [CrossRef]
- Babalola, O.; Adesodun, J.; Olasantan, F.; Adekunle, A. Responses of Some Soil Biological, Chemical and Physical Properties to Short-term Compost Amendment. Int. J. Soil Sci. 2011, 7, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Annabi, M.; Le Bissonnais, Y.; Le Villio-Poitrenaud, M.; Houot, S. Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric. Ecosyst. Environ. 2011, 144, 382–389. [Google Scholar] [CrossRef]
- Martens, D.A.; Frankenberger, W.T. Modification of Infiltration Rates in an Organic-Amended Irrigated. Agron. J. 1907, 84, 707–717. [Google Scholar] [CrossRef]
- Crogger, C.G. Potential compost benefits for restoration of soils disturbed by urban development. Compost. Sci. Util. 2005, 13, 243–251. [Google Scholar]
- Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef]
- Carrizo, M.E.; Alesso, C.A.; Cosentino, D.; Imhoff, S. Aggregation agents and structural stability in soils with different texture and organic carbon contents. Sci. Agric. 2015, 72, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Cotton, M. Changes in Soil Properties and Carbon Content Following Compost Application: Results of On-farm Sampling. Compos. Sci. Util. 2011, 19, 87–96. [Google Scholar] [CrossRef]
- Curtis, M.J.; Claassen, V.P. Regenerating Topsoil Functionality in Four Drastically Disturbed Soil Types by Compost Incorporation. Restor. Ecol. 2009, 17, 24–32. [Google Scholar] [CrossRef]
- Somerville, P.D.; May, P.B.; Livesley, S.J. Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils. J. Environ. Manag. 2018, 227, 365–374. [Google Scholar] [CrossRef]
- Cogger, C.; Hummel, R.; Hart, J.; Bary, A. Soil and Redosier Dogwood Response to Incorporated and Surface-applied Compost. HortScience 2008, 43, 2143–2150. [Google Scholar] [CrossRef] [Green Version]
- Leroy, B.L.M.; Herath, H.M.S.K.; Sleutel, S.; De Neve, S.; Gabriëls, D.; Reheul, D.; Moens, M. The quality of exogenous organic matter: Short-term effects on soil physical properties and soil organic matter fractions. Soil Use Manag. 2008, 24, 139–147. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Neilsen, G.H.; Hogue, E.; Neilsen, D. Influence of organic waste amendments on selected soil physical and chemical properties. Can. J. Soil Sci. 1999, 79, 501–504. [Google Scholar] [CrossRef]
- Badalíková, B.; Bartlová, J. Influence of compost incorporated on the soil compaction. Sci. Suppl. 2011, 12, 311–314, (In Úroda). [Google Scholar]
- Skuras, D.; Psaltopoulos, D. A broad overview of the main problems derived from climate change that will affect agricultural production in the Mediterranean area. In Building Resilience for Adaptation to Climate Change in the Agriculture Sector: Proceedings of a Joint FAO/OECD Workshop; 2012; pp. 217–260. Available online: http://www.fao.org/3/i3084e/i3084e.pdf (accessed on 22 November 2020).
- Weindorf, D.C.; Zartman, R.E.; Allen, B. Effect of Compost on Soil Properties in Dallas, Texas. Compos. Sci. Util. 2006, 14, 59–67. [Google Scholar] [CrossRef]
- Logsdon, S.D.; Sauer, P.A.; Shipitalo, M. Compost Improves Urban Soil and Water Quality. J. Water Resour. Prot. 2017, 9, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Vengadaramana, A.; Justin, P.T.J. Effect of organic fertilizers on the water holding capacity of soil in different terrains of Jaffna peninsula in Sri Lanka. J. Nat. Prod. Plant Resour. 2012, 2, 500–503. [Google Scholar]
- Schmid, C.; Murphy, J. Effect of tillage and compost amendment on turfgrass establishment on a compacted sandy loam. J. Soil Water Conserv. 2016, 72, 55–64. [Google Scholar] [CrossRef]
- Aggelides, S.; Londra, P. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour. Technol. 2000, 71, 253–259. [Google Scholar] [CrossRef]
- Edwards, S.; Hailu, A. How to make compost and use. In Climate Change and Food Systems Resilience in Sub-Sarahan Africa; Ching, L.L., Edwards, S., Nadia, H.S., Eds.; FAO: Rome, Italy, 2011; pp. 379–436. [Google Scholar]
- Johns, C. The Chemical Fertility of Soils: Soil Nutrients and Plant Nutrition; Future Direction International Pty Ltd.: Nedlands, Australia, 2015. [Google Scholar]
- Choi, K. Optimal operating parameters in the composting of swine manure with wastepaper. J. Environ. Sci. Heal. Part B 1999, 34, 975–987. [Google Scholar] [CrossRef]
- Masmoudi, S.; Magdich, S.; Rigane, H.; Medhioub, K.; Rebai, A.; Ammar, E. Effects of Compost and Manure Application Rate on the Soil Physico-Chemical Layers Properties and Plant Productivity. Waste Biomass Valoriz. 2018, 11, 1883–1894. [Google Scholar] [CrossRef]
- Schlegel, A.J. Effect of Composted Manure on Soil Chemical Properties and Nitrogen Use by Grain Sorghum. J. Prod. Agric. 1992, 5, 153–157. [Google Scholar] [CrossRef]
- Eghball, B. Nitrogen Mineralization from Field-Applied Beef Cattle Feedlot Manure or Compost. Soil Sci. Soc. Am. J. 2000, 64, 2024–2030. [Google Scholar] [CrossRef]
- Eghball, B.; Power, J.F. Phosphorus- and Nitrogen-Based Manure and Compost Applications Corn Production and Soil Phosphorus. Soil Sci. Soc. Am. J. 1999, 63, 895–901. [Google Scholar] [CrossRef] [Green Version]
- Amlinger, F.; Götz, B.; Dreher, P.; Geszti, J.; Weissteiner, C. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability—A review. Eur. J. Soil Biol. 2003, 39, 107–116. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Bhogal, A.; Chambers, B.J.; Whitmore, A.P.; Powlson, D.S. The Effect of Reduced Tillage Practices and Organic Matter Additions on the Carbon Content of Arable Soils; Scientific Report SP0561; Department of Environment, Food and Rural Affairs: London, UK, 2007; p. 47.
- Bendfeld, J.; Tigges, M.; Splett, M.; Voss, J. GHG Savings from Biological Treatment and Application of Compost ORBIT 2008. In Proceedings of the 6th International Conference: ORBIT 2008-Moving Organic Waste Recycling towards Resource Management and for Biobased Economy, Wageningen, The Netherlands, 13–15 October 2008; pp. 626–631. [Google Scholar]
- Smith, A.; Brown, K.; Ogilvie, S.; Rushton, K.; Bates, J. Waste Management Options and Climate Change; European Commission: Abingdon, UK, 2001; p. 224. [Google Scholar]
- Gallardo-Lara, F.; Nogals, R. Effect of the application of town refuse compost on the soil-plant system: A review. Biol. Wastes 1987, 19, 35–62. [Google Scholar] [CrossRef]
- Atiyeh, R.M.; Edwards, C.A.; Subler, S.; Metzgerc, J.D. Pig manurevermicompost as a component of a horticultural bedding plant medium: Effects on physicochemical properties and plant growth. Bioresour. Technol. 2001, 78, 11–20. [Google Scholar]
- Sarwar, G.; Hussain, N.; Mujeeb, F.; Schmeisky, H.; Hassan, G. Biocompost Application for the Improvement of Soil Characteristics and Dry Matter Yield of Lolium perenne (Grass). Asian J. Plant Sci. 2003, 2, 237–241. [Google Scholar] [CrossRef]
- Niklasch, H.; Joergensen, R.G. Decomposition of peat, biogenic municipal waste compost, and shrub/grass compost added in different rates to a silt loam. J. Plant Nutr. Soil Sci. 2001, 164, 365–369. [Google Scholar] [CrossRef]
- Gonzalez, M.; Gomez, E.; Comese, R.; Quesada, M.; Conti, M. Influence of Organic Amendments on Soil Quality Potential Indicators in an Urban Horticultural Sys-tem. Bioresour. Technol. 2010, 101, 8897–8901. [Google Scholar]
- Shiralipour, A.; McConnell, D.B.; Smith, W.H. Physical and chemical properties of soils as affected by municipal solid waste compost application. Biomass Bioenerg. 1992, 3, 261–266. [Google Scholar]
- Walker, D.J.; Clemente, R.; Roig, A.; Bernal, M. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ. Pollut. 2003, 122, 303–312. [Google Scholar] [CrossRef]
- Smiciklas, K.D.; Walker, P.M.; Kelley, P.M. Utilization of Compost (Food, Paper, Landscape and Manure) in Row Crop Production; Illinois State University: Normal, IL, USA, 2002. [Google Scholar]
- Yaduvanshi, N.P.S. Effect of five years of rice-wheat cropping and NPK fertilizer use with and without organic and green manures on soil properties and crop yields in a reclaimed sodic soil. J. Indian Soc. Soil Sci. 2001, 49, 714–719. [Google Scholar]
- Taylor, M.D.; Kreis, R.; Rejtö, L. Establishing Growing Substrate pH with Compost and Limestone and the Impact on pH Buffering Capacity. HortScience 2016, 51, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.; De Queiroz, J.; Freitas, H. Effect of selected and non-selected urban waste compost on the initial growth of corn. Resour. Conserv. Recycl. 2004, 42, 309–315. [Google Scholar] [CrossRef]
- Gharib, F.A.; Moussa, L.A.; Massoud, O.N. Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. Int. J. Agric. Biol. 2008, 10, 381–387. [Google Scholar]
- Asses, N.; Farhat, W.; Hamdi, M.; Bouallagui, H. Large scale composting of poultry slaughterhouse processing waste: Microbial removal and agricultural biofertilizer application. Process. Saf. Environ. Prot. 2019, 124, 128–136. [Google Scholar] [CrossRef]
- Majbar, Z.; Lahlou, K.; Ben Abbou, M.; Ammar, E.; Triki, A.; Abid, W.; Nawdali, M.; Bouka, H.; Taleb, M.; El Haji, M.; et al. Co-composting of Olive Mill Waste and Wine-Processing Waste: An Application of Compost as Soil Amendment. J. Chem. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Moral, R.; Paredes, C.; Bustamante, M.; Marhuenda-Egea, F.; Bernal, M. Utilisation of manure composts by high-value crops: Safety and environmental challenges. Bioresour. Technol. 2009, 100, 5454–5460. [Google Scholar] [CrossRef]
- Borrero, C.; Trillas, M.I.; Ordovás, J.; Tello, J.C.; Avilés, M. Predictive Factors for the Suppression of Fusarium Wilt of Tomato in Plant Growth Media. Phytopathology 2004, 94, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Aviles, M.; Borrero, C.; Trillas, M. Review on compost as an inducer of disease suppression in plants grown in soilless culture. Dyn. Soil Dyn. Plant 2011, 5, 1–11. [Google Scholar]
- Singh, R.; Singh, R.; Soni, S.K.; Singh, S.P.; Chauhan, U.; Kalra, A. Vermicompost from biodegraded distillation waste improves soil properties and essential oil yield of Pogostemon cablin (patchouli) Benth. Appl. Soil Ecol. 2013, 70, 48–56. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Ballardo, C.; Vargas-García, M.D.C.; Sánchez, A.; Barrena, R.; Artola, A. Adding value to home compost: Biopesticide properties through Bacillus thuringiensis inoculation. Waste Manag. 2020, 106, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, E.; Berloco, M.; Senesi, N. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicol. Environ. Saf. 2008, 69, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Dionne, A.; Tweddell, R.J.; Antoun, H.; Avis, T.J. Effect of non-aerated compost teas on damping-off pathogens of tomato. Can. J. Plant Pathol. 2012, 34, 51–57. [Google Scholar] [CrossRef]
- Pascual, J.A.; Garcia, C.; Hernandez, T.; Lerma, S.; Lynch, J.M. Effectiveness of municipal waste compost and its humic fraction in suppressing Pythium ultimum. Microb. Ecol. 2002, 44, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Alfano, G.; Lustrato, G.; Lima, G.; Vitullo, D.; Ranalli, G. Characterization of composted olive mill wastes to predict potential plant disease suppressiveness. Biol. Control 2011, 58, 199–207. [Google Scholar] [CrossRef]
- Litterick, A.M.; Harrier, L.; Wallace, P.; Watson, C.A.; Wood, M. The role of uncomposted materials, composts, manures and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production—A review. Crit. Rev. Plant Sci. 2004, 23, 453–479. [Google Scholar]
- Tong, J.; Sun, X.; Li, S.; Qu, B.; Wan, L. Reutilization of Green Waste as Compost for Soil Improvement in the Afforested Land of the Beijing Plain. Sustainability 2018, 10, 2376. [Google Scholar] [CrossRef] [Green Version]
- Sax, M.S.; Bassuk, N.; Van Es, H.; Rakow, D. Long-term remediation of compacted urban soils by physical fracturing and incorporation of compost. Urban For. Urban Green. 2017, 24, 149–156. [Google Scholar] [CrossRef]
- Jindo, K.; Chocano, C.; De Aguilar, J.M.; González, D.; Hernandez, T.; García, C. Impact of Compost Application during 5 Years on Crop Production, Soil Microbial Activity, Carbon Fraction, and Humification Process. Commun. Soil Sci. Plant Anal. 2016, 47, 1907–1919. [Google Scholar] [CrossRef]
- Cannavo, P.; Vidal-Beaudet, L.; Grosbellet, C. Prediction of long-term sustainability of constructed urban soil: Impact of high amounts of organic matter on soil physical properties and water transfer. Soil Use Manag. 2014, 30, 272–284. [Google Scholar] [CrossRef]
- Fuchs, J.; Fliessbach, A.; Mader, P.; Weibel, F.; Tamm, L.; Mayer, J.; Schleiss, K. Effects of Compost on Soil Fertility Parameters In Short-, Mid- And Long-Term Field Experiments. Acta Hortic. 2014, 39–46. [Google Scholar] [CrossRef]
- Habteselassie, M.Y.; Miller, B.E.; Thacker, S.G.; Stark, J.M.; Norton, J.M. Soil Nitrogen and Nutrient Dynamics after Repeated Application of Treated Dairy-Waste. Soil Sci. Soc. Am. J. 2006, 70, 1328–1337. [Google Scholar] [CrossRef]
- Whalen, J.K.; Benslim, H.; Jiao, Y.; Sey, B.K. Soil organic carbon and nitrogen pools as affected by compost applicationsto a sandy-loam soil in Québec. Can. J. Soil Sci. 2008, 88, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Curtis, M.J.; Claassen, V.P. Compost Incorporation Increases Plant Available Water in A Drastically Disturbed Serpentine Soil. Soil Sci. 2005, 170, 939–953. [Google Scholar] [CrossRef]
- Celik, I.; Ortas, I.; Kilic, S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a chromoxerert soil. Soil Till. Res. 2004, 78, 59–67. [Google Scholar]
- Cherif, H.; Ayari, F.; Ouzari, H.; Marzorati, M.; Brusetti, L.; Jedidi, N.; Hassen, A.; Daffonchio, D. Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. Eur. J. Soil Biol. 2009, 45, 138–145. [Google Scholar] [CrossRef]
- Strauss, P. Runoff, Soil erosion and related physical properties after 7 years of compost application. In Applying Compost-Benefits and Needs, Proceedings of the Seminar 22–23 November 2001, BMLFUW; Amlinger, F., Nortcliff, S., Weinfurtner, K., Dreher, P., Eds.; European Commission: Vienna, Austria; Brussels, Belgium, 2003; pp. 219–224. [Google Scholar]
- Abad, M.; Noguera, P.; Bures, S. National inventory of organic wastes for useas growing media for ornamental potted plant production: Case study Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar]
- Farrell, M.; Jones, D.L. Food waste composting: Its use as a peat replacement. Waste Manag. 2010, 30, 1495–1501. [Google Scholar] [CrossRef]
- Chong, C. Experiences with Wastes and Composts in Nursery Substrates. HortTechnology 2005, 15, 739–747. [Google Scholar] [CrossRef]
- Raviv, M. Composts in Growing Media: What’s New and What’s Next? Acta Hortic. 2013, 982, 39–52. [Google Scholar] [CrossRef]
- Fornes, F.; Carrión, C.; García-De-La-Fuente, R.; Puchades, R.; Abad, M. Leaching composted lignocellulosic wastes to prepare container media: Feasibility and environmental concerns. J. Environ. Manag. 2010, 91, 1747–1755. [Google Scholar] [CrossRef]
- Santos, A.; Bustamante, M.; Tortosa, G.; Del Moral, R.; Bernal, M. Gaseous emissions and process development during composting of pig slurry: The influence of the proportion of cotton gin waste. J. Clean. Prod. 2016, 112, 81–90. [Google Scholar] [CrossRef]
- Verhagen, J. Stability of growing media from a physical, chemical and biological perspective. Acta Hortic. 2009, 819, 135–142. [Google Scholar] [CrossRef]
- Reinikainen, O.; Herranen, M. Different methods for measuring compoststability and maturity. Acta Hortic. 2001, 549, 99–104. [Google Scholar]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar]
- Bolechowski, A.; Moral, R.; Bustamante, M.; Bartual, J.; Paredes, C.; Pérez-Murcia, M.; Carbonell-Barrachina, A. Winery–distillery composts as partial substitutes of traditional growing media: Effect on the volatile composition of thyme essential oils. Sci. Hortic. 2015, 193, 69–76. [Google Scholar] [CrossRef]
- Pérez-Murcia, M.D.; Moral, R.; Morenocaselles, J.; Pérez-Espinosa, A.; Paredes, C. Use of composted sewage sludge in growth media for broccoli. Bioresour. Technol. 2006, 97, 123–130. [Google Scholar] [CrossRef]
- Chen, M.; Xu, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 2015, 33, 745–755. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; Wadsworth, L.C.; Anunciado, M.B.; English, M.E.; Bandopadhyay, S.; Schaeffer, S.M.; Debruyn, J.M.; Miles, C.A.; et al. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci. Total Environ. 2020, 727, 138668. [Google Scholar] [CrossRef]
- Visconti, D.; Caporale, A.G.; Pontoni, L.; Ventorino, V.; Fagnano, M.; Adamo, P.; Pepe, O.; Woo, S.L.; Fiorentino, N. Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment. Agronomy 2020, 10, 1310. [Google Scholar] [CrossRef]
- Sayara, T.; Sánchez, A. Bioremediation of PAH-Contaminated Soils: Process Enhancement through Composting/Compost. Appl. Sci. 2020, 10, 3684. [Google Scholar] [CrossRef]
- Khan, A.; Kuek, C.; Chaudhry, T.; Khoo, C.; Hayes, W. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 2000, 41, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Christensen, B.; Lombi, E.; McLaughlin, M.; McGrath, S.P.; Colpaert, J.; Vangronsveld, J. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environ. Pollut. 2005, 138, 34–45. [Google Scholar] [CrossRef]
- Chiu, K.K.; Ye, Z.H.; Wong, M.H. Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresour. Technol. 2006, 97, 158–170. [Google Scholar]
- de Varennes, A.; Goss, M.J.; Mourato, M. Remediation of a sandy soil contaminated with cadmium, nickel and zinc using an insoluble poiyacrylate polymer. Commun. Soil Sci. Plant Anal. 2006, 37, 1639–1649. [Google Scholar]
- Angelova, V.R.; Akova, V.I.; Artinova, N.S.; Ivanov, K.I. The effect of organic amendments on soil chemical characteristics. Bulg. J. Agric. Sci. 2013, 19, 958–971. [Google Scholar]
- Arnesen, A.K.M.; Singh, B.R. Plant uptake and DTPA-extractability of Cd, Cu, Ni and Zn in a Norwegian alum shale soil as affected by previous addition of dairy and pig manures and peat. Can. J. Soil Sci. 1998, 78, 531–539. [Google Scholar] [CrossRef]
- Wong, M.; Lau, W. The effects of applications of phosphate, lime, EDTA, refuse compost and pig manure on the Pb contents of crops. Agric. Wastes 1985, 12, 61–75. [Google Scholar] [CrossRef]
- Ye, Z.; Wong, J.; Wong, M.; Lan, C.; Baker, A. Lime and pig manure as ameliorants for revegetating lead/zinc mine tailings: A greenhouse study. Bioresour. Technol. 1999, 69, 35–43. [Google Scholar] [CrossRef]
- Silva, M.T.B.; Moldes, A.B.; Seijo, Y.C.; Viqueira, F.D.-F. Assessment of municipal solid waste compost quality using standardized methods before preparation of plant growth media. Waste Manag. Res. 2007, 25, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Parchomenko, A.; Borsky, S. Identifying phosphorus hot spots: A spatial analysis of the phosphorus balance as a result of manure application. J. Environ. Manag. 2018, 214, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Tognetti, C.; Mazzarino, M.; Laos, F. Improving the quality of municipal organic waste compost. Bioresour. Technol. 2007, 98, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Adamcová, D.; Radziemska, M.; Ridošková, A.; Bartoň, S.; Pelcová, P.; Elbl, J.; Kynický, J.; Brtnický, M.; Vaverková, M.D. Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere 2017, 185, 1011–1018. [Google Scholar] [CrossRef]
- Carballo, T.; Gil, M.; Calvo, L.F.; Morán, A. The Influence of Aeration System, Temperature and Compost Origin on the Phytotoxicity of Compost Tea. Compos. Sci. Util. 2009, 17, 127–139. [Google Scholar] [CrossRef]
- Pérez-Gimeno, A.; Navarro-Pedreño, J.; Almendro-Candel, M.B.; Gómez, I.; Jordan, M. Environmental consequences of the use of sewage sludge compost and limestone outcrop residue for soil restoration: Salinity and trace elements pollution. J. Soils Sedim. 2015, 16, 1012–1021. [Google Scholar] [CrossRef]
- Fagnano, M.; Adamo, P.; Zampella, M.; Fiorentino, N. Environmental and agronomic impact of fertilization with composted organic fraction from municipal solid waste: A case study in the region of Naples, Italy. Agric. Ecosyst. Environ. 2011, 141, 100–107. [Google Scholar] [CrossRef]
- Smith, S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 2009, 35, 142–156. [Google Scholar] [CrossRef]
- Page, K.; Harbottle, M.; Cleall, P.; Hutchings, T. Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate. Sci. Total Environ. 2014, 487, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Sileshi, G.W.; Jama, B.; Vanlauwe, B.; Negassa, W.; Harawa, R.; Kiwia, A.; Kimani, D. Nutrient use efficiency and crop yield response to the combined application of cattle manure and inorganic fertilizer in sub-Saharan Africa. Nutr. Cycl. Agroecosyst. 2019, 113, 181–199. [Google Scholar] [CrossRef]
- Sokka, L.; Antikainen, R.; Kauppi, P. Flows of nitrogen and phosphorus in municipal waste: A substance flow analysis in Finland. Prog. Ind. Ecol. Int. J. 2004, 1, 165. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zhang, J.; Fan, J.; Yang, X.; Yi, Y.; Han, X.; Wang, D.; Zhu, P.; Peng, X. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Sci. Total Environ. 2019, 660, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, J.; Shi, D.; Liu, G.; Zhao, Y.; Shimaoka, T. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resour. Conserv. Recycl. 2017, 122, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Blanco, J.; Colón, J.; Gabarrell, X.; Font, X.; Sánchez, A.; Artola, A.; Rieradevall, J. The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Manag. 2010, 30, 983–994. [Google Scholar] [CrossRef] [Green Version]
- Colón, J.; Cadena, E.; Pognani, M.; Barrena, R.; Sánchez, A.; Font, X.; Artola, A. Determination of the energy and environmental burdens associated with the biological treatment of source-separated Municipal Solid Wastes. Energy Environ. Sci. 2012, 5, 5731–5741. [Google Scholar] [CrossRef] [Green Version]
- Quirós, R.; Villalba, G.; Muñoz, P.; Colón, J.; Font, X.; Gabarrell, X. Environmental assessment of two home composts with high and low gaseous emissions of the composting process. Resour. Conserv. Recycl. 2014, 90, 9–20. [Google Scholar] [CrossRef]
Compost Feedstock | Experimental Conditions | Effect | Ref. |
---|---|---|---|
Green wastes | Compost was applied at three different rates: 5 kg/each tree, 10 kg/each tree and 15 kg/each tree | Compost improved soil organic matter, available phosphorus and available potassium content. The high-level application amount (15 kg/tree) had the greatest effect on soil improvement. Under this rate and compared with the control treatment, soil pH decreased to 7.28–7.45, soil organic matter content reached more than 35 g·kg−1. Soil total nitrogen, soil available phosphorus and soil available potassium increased by 25–28%, 200–400% and 80–177%, respectively. Additionally, the soil microbial structure was changed such that bacterial abundance increased by 12–13%. | [167] |
Mix of food wastes, animal bedding and manure | Compost was incorporated in soil for 12 years (33% by volume) with the use of a backhoe, and annual top dressing with mulch | Soils exhibit improved (reduced) bulk density, increased active carbon and increased potentially mineralizable nitrogen. Compared to unamended soils, improvements were found in aggregate stability (72.41%), available water-holding capacity (0.22%), total organic matter (8.43%), potentially mineralizable nitrogen (27.53 mg/kg), active carbon (1022.47 mg/kg) and reduction in bulk density (0.89 g/cm3). | [168] |
Sheep manure and wheat straw | Continuous application of compost for 5 years in the proportion of 60:40 (volume basis) | Higher productivity of Prunus salicina (21.4%), greater fruit diameter (7.8%) and heavier fruit weight (22.4%) compared to unamended soil. Additionally, the amended soil by compost increased the SOM and water-soluble C fraction in parallel with an increase in microbial parameters (microbial biomass C, adenosine triphosphate (ATP), basal respiration and dehydrogenase). | [169] |
Mixed source and yard waste | Five years’ incorporation of compost (40%, v/v) with soil | Compost incorporation increased hydraulic conductivity by a factor of 22, but the incorporated yard waste compost treatment tended to show a faster reduction in hydraulic conductivity over time (5 years) than the mixed compost. | [170] |
Digestates and compost | Digestate and compost were applied at a rate of 100 m3/ha for four years | Increased pH of the soil and improved the biological soil activity (e.g., enzymatic activities). | [171] |
Dairy waste | Dairy waste compost was applied at a rate of 100 T/ha for 5 years | The dairy waste compost increased organic carbon by 143 and 54% compared to ammonium sulfate and liquid dairy waste treatments, respectively, applied at the same available N level (200 kg N/ha), whereas the C pool was enhanced by 115%. | [172] |
Cattle manure | Compost was applied annually for 5 years | Organic C and total nitrogen concentrations were increased up to 2.02t C/ha. yr and 0.24t N/ha. yr. | [173] |
Yard waste | Compost was incorporated into soil (21%, v/v) | A two-fold increase in plant water availability and an increase in the ability of the plants to access water resources through root proliferation. | [174] |
Manure organic wastes | Compost and manure were used at 25 t/ha for a 5-year field experiment with a semi-arid Mediterranean soil | Compost and manure treatments increased available water content (AWC) of soils by 86 and 56%, respectively, as a result of the increase in micro- and macro-porosity. However, total porosity and saturated hydraulic conductivity were highest under the compost treatment. | [175] |
Municipal solid waste | Municipal solid waste compost applied annually over 5 years at a rate of 80 t/ha | Wheat grain yield was enhanced on average by 246% compared to the control. | [176] |
Different organic wastes | For five years, compost applied annually at an amount of between 30 and 50 m3 in plots of 25 × 12 m | Compost application resulted in 67% reduced soil erosion, 60% reduced run-off, 8% lower bulk density and 21% higher organic matter (OM) content compared to control plots. | [177] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy 2020, 10, 1838. https://doi.org/10.3390/agronomy10111838
Sayara T, Basheer-Salimia R, Hawamde F, Sánchez A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy. 2020; 10(11):1838. https://doi.org/10.3390/agronomy10111838
Chicago/Turabian StyleSayara, Tahseen, Rezq Basheer-Salimia, Fatina Hawamde, and Antoni Sánchez. 2020. "Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture" Agronomy 10, no. 11: 1838. https://doi.org/10.3390/agronomy10111838
APA StyleSayara, T., Basheer-Salimia, R., Hawamde, F., & Sánchez, A. (2020). Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy, 10(11), 1838. https://doi.org/10.3390/agronomy10111838