Effect of Nitrogen Fertilization on Production, Chemical Composition and Morphogenesis of Guinea Grass in the Humid Tropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Climatological Data
2.2. Treatments and Experimental Design
2.3. Plot Management
2.4. Analyses of Forage Morphogenic Characteristics
2.5. Analyses of Forage Production and Botanical Characteristics
2.6. Analyses of Forage Chemical Characteristics
2.7. Statistical Analyses
3. Results
3.1. Morphogenic Characteristics
3.2. Productive, Strucutural and Botanical Characteristics
3.3. Chemical Characteristics
4. Discussion
4.1. Morphogenic Characteristics
4.2. Productive, Structural, and Botanical Characteristics
4.3. Chemical Characteristics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dixon, A.P.; Faber-Langendoen, D.; Josse, C.; Morrison, J.; Loucks, C.J. Distribution mapping of world grassland types. J. Biogeogr. 2014, 41, 2003–2019. [Google Scholar] [CrossRef]
- Garrett, R.D.; Koh, I.; Lambin, E.F.; De Waroux, Y.L.P.; Kastens, J.H.; Brown, J.C. Intensification in agriculture-forest frontiers: Land use responses to development and conservation policies in Brazil. Glob. Environ. Chang. 2018, 53, 233–243. [Google Scholar] [CrossRef]
- Oenema, O.; de Klein, C.; Alfaro, M. Intensification of grassland and forage use: Driving forces and constraints. Crop. Pasture Sci. 2014, 65, 524–537. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. T. R. Soc. B 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [Green Version]
- Pandey, C.B.; Verma, S.K.; Dagar, J.C.; Srivastava, R.C. Forage production and nitrogen nutrition in three grasses under coconut tree shades in the humid-tropics. Agrofor. Syst. 2011, 83, 1–12. [Google Scholar] [CrossRef]
- Lemaire, G. Intensification of animal production from grassland and ecosystem services: A trade-off. CAB Rev. Persp. Agric. Vet. Sci. Nat. Resour. 2012, 7, 1–7. [Google Scholar] [CrossRef]
- Vasques, I.C.; Souza, A.A.; Morais, E.G.; Benevenute, P.A.; da Silva, L.D.C.; Homem, B.G.; Silva, B.M. Improved management increases carrying capacity of Brazilian pastures. Agric. Ecosyst. Environ. 2019, 282, 30–39. [Google Scholar] [CrossRef]
- Hofer, D.; Suter, M.; Buchmann, N.; Lüscher, A. Nitrogen status of functionally different forage species explains resistance to severe drought and post-drought overcompensation. Agric. Ecosyst. Environ. 2017, 236, 312–322. [Google Scholar] [CrossRef]
- Burke, I.C.; Lauenroth, W.K.; Parton, W.J. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology 1997, 78, 1330–1340. [Google Scholar] [CrossRef]
- Varsha, K.M.; Raj, A.K.; Kurien, E.K.; Bastin, B.; Kunhamu, T.K.; Pradeep, K.P. High density silvopasture systems for quality forage production and sequestration in humid tropics of Southern India. Agrofor. Syst. 2019, 93, 185–198. [Google Scholar] [CrossRef]
- Poppi, D.P.; Quigley, S.P.; Silva, T.A.C.C.D.; McLennan, S.R. Challenges of beef cattle production from tropical pastures. Rev. Bras. Zootec. 2018, 47, e20160419. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Euclides, V.P.B.; Lopes, F.C.; do Nascimento, D., Jr.; da Silva, S.C.; Difante, G.S.; Barbosa, R.A. Steer performance on Panicum maximum (cv. Mombaça) pastures under two grazing intensities. Anim. Prod. Sci. 2016, 56, 1849–1856. [Google Scholar] [CrossRef]
- Lemaire, G.; Chapman, D. Tissue flows in grazed plant communities. In The Ecology and Management of Grazing Systems; Hodgson, J., Illius, A.W., Eds.; CAB International: Wallingford, UK, 1996; pp. 3–36. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 1995. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 123–158. [Google Scholar]
- SAS Base. SAS® 9.4 Procedures Guide: Statistical Procedures, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Sacramento, A.M.H.; de Menezes, O.C.; Barros, T.M.; Pinheiro, D.N.; Jaeger, S.M.P.L.; Ribeiro, O.L.; de Oliveira, G.A. Morphogenic and structural characteristics and chemical composition of grass aruana, submitted to nitrogen fertilization. Semin. Ciênc. Agrár. 2019, 40, 3167–3180. [Google Scholar] [CrossRef]
- Schnyder, H.; Schäufele, R.; Visser, R.D.; Nelson, C.J. An integrated view of C and N uses in leaf growth zones of defoliated grassesp. In Grassland Ecophysiology and Grazing Ecology; Lemaire, G., Hodgson, J., Moraes, A., Nagiber, C., Carvalho, P.C.F., Eds.; CAB International: Wallingford, UK, 2000; pp. 41–60. [Google Scholar]
- Duarte, C.F.D.; Cecato, U.; Hungria, M.; Fernandes, H.J.; Biserra, T.T.; Galbeiro, S.; da Silva, D.R. Morphogenetic and structural characteristics of Urochloa species under inoculation with plant-growth-promoting bacteria and nitrogen fertilization. Crop. Pasture Sci. 2020, 71, 82–89. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology = Fisiologia Vegetal; Editora Artemed: Porto Alegre, Brazil, 2013. [Google Scholar]
- Zanine, A.M.; Nascimento, D., Jr.; da Silva, W.L.; Sousa, B.M.L.; Ferreira, D.J.; Silveira, M.C.T.; Parente, H.N.; Santos, M.E.R. Morphogenetic and structural characteristics of guinea grass pastures under rotational stocking strategies. Expl. Agric. 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, R.A.; Nascimento, D., Jr.; Vilela, H.H.; da Silva, S.C.; Euclides, V.P.B.; Sbrissia, A.F.; Sousa, B.M.L. Morphogenic and structural characteristics of guinea grass pastures submitted to three frequencies and two defoliation severities. Rev. Bras. Zootec. 2011, 40, 947–954. [Google Scholar] [CrossRef] [Green Version]
- Martuscello, J.A.; Silva, L.P.D.; Cunha, D.D.N.F.V.; Batista, A.C.D.S.; Braz, T.G.D.S.; Ferreira, P.S. Nitrogen fertilization in massaigrass: Production and morphogenesis. Ciênc. Anim. Bras. 2015, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.C.; Bottini, R.; Pontin, M. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol. Plant. 2015, 153, 79–90. [Google Scholar] [CrossRef]
- Prado, D.A.; Zanine, A.M.; Ferreira, D.J.; Rodrigues, R.C.; Santos, E.M.; Pinho, R.M.A.; Portela, Y.P.N. Morphogenetic and strucutural characteristics, yield and chemical composition of signal grass under deferred grazing. Biol. Rhythm Res. 2019. [Google Scholar] [CrossRef]
- Moir, J.L.; Edwards, G.R.; Berry, L.N. Nitrogen uptake and leaching loss of thirteen temperate grass species under high N loading. Grass Forage Sci. 2013, 68, 313–325. [Google Scholar] [CrossRef]
- Harrison, R.; Webb, J. A review of the effect of N fertilizer type on gaseous emissions. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 73, pp. 65–108. [Google Scholar] [CrossRef]
- Jones, S.K.; Rees, R.M.; Skiba, U.M.; Ball, B.C. Greenhouse gas emissions from a managed grassland. Glob. Planet. Chang. 2005, 47, 201–211. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Brito, L.F.; Janusckiewicz, E.R.; Morgado, E.S.; Barbero, R.P.; Koscheck, J.F.W.; Reis, R.A.; Ruggieri, A.C. Impact of grazing intensity and seasons on greenhouse gas emissions in tropical grassland. Ecosystems 2017, 20, 845–859. [Google Scholar] [CrossRef]
- Euclides, V.P.B.; Costa, F.P.; Macedo, M.C.M.; Flores, R.; de Oliveira, M.P. Biological and economic efficiency of Panicum maximum fertilized with nitrogen in the end of summer. Pesqui. Agropecu. Bras. 2007, 42, 1345–1355. [Google Scholar] [CrossRef] [Green Version]
- Paciullo, D.S.C.; Gomide, C.D.M.; Castro, C.R.T.; Maurício, R.M.; Fernandes, P.B.; Morenz, M.J.F. Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates. Grass Forage Sci. 2017, 72, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Pariz, C.M.; Andreotti, M.; Bergamaschine, A.F.; Buzetti, S.; Costa, N.R.; Cavallini, M.C.; Ulian, N.A.; Luiggi, F.G. Yield, chemical composition and chlorophyll relative content of Tanzania and Mombaça grasses irrigated and fertilized with nitrogen after corn intercropping. Rev. Bras. Zootec. 2011, 40, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Delevatti, L.M.; Cardoso, A.S.; Barbero, R.P.; Leite, R.G.; Romanzini, E.P.; Ruggieri, A.C.; Reis, R.A. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Insua, J.R.; Agnusdei, M.G.; Di Marco, O.N. Leaf morphogenesis influences nutritive-value dynamics of tall fescue (Lolium arundinaceum) cultivars of different leaf softness. Crop. Pasture Sci. 2017, 68, 51–61. [Google Scholar] [CrossRef]
- Galindo, F.S.; Buzetti, S.; Teixeira Filho, M.C.M.; Dupas, E. Rates and sources of nitrogen fertilizer application on yield and quality of Panicum maximum cv. Mombasa. Idesia 2019, 37, 67–73. [Google Scholar] [CrossRef]
pH | Ca | Mg | Al | H + Al | CEC | K | P | OM | BS% | Clay | Silt | Sand |
---|---|---|---|---|---|---|---|---|---|---|---|---|
cmolc dm−3 | mg dm−3 | g dm−3 | g kg−1 | |||||||||
2013 | ||||||||||||
4.7 | 1.2 | 0.3 | 0.2 | 3.0 | 4.59 | 80 | 0.6 | 16 | 35 | 168 | 56 | 776 |
2014 | ||||||||||||
4.9 | 1.8 | 0.6 | 0 | 2.4 | 4.87 | 50 | 1.8 | 19 | 51 | 145 | 127 | 728 |
2015 | ||||||||||||
5.1 | 2.1 | 0.9 | 0 | 2.7 | 5.85 | 110 | 4 | 28 | 54 | 94 | 119 | 787 |
Variable | kg N ha−1 Application−1 | Season | p-Value (1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | SEM | Rainy | Dry | SEM | L | Q | Season | |
LElR (cm tiller−1 day−1) | 3.98 | 4.49 | 5.37 | 5.77 | 5.78 | 6.13 | 0.30 | 6.20 | 2.91 | 0.26 | <0.01 | 0.15 | <0.01 |
LApR (leaves tiller−1 day−1) | 0.06 | 0.07 | 0.08 | 0.09 | 0.09 | 0.10 | 0.00 | 0.10 | 0.05 | 0.00 | <0.01 | 0.14 | <0.01 |
PHYLLO (days leaf−1 tiller−1) | 15.6 | 15.8 | 13.7 | 12.7 | 12.6 | 11.8 | 0.62 | 11.2 | 20.2 | 0.56 | <0.01 | 0.80 | <0.01 |
NEL (number) | 0.92 | 0.99 | 1.01 | 0.99 | 0.96 | 0.97 | 0.05 | 1.01 | 0.91 | 0.05 | 0.03 | <0.01 | 0.73 |
NML (number) | 3.05 | 3.32 | 3.55 | 3.52 | 3.51 | 3.56 | 0.10 | 3.59 | 3.02 | 0.09 | <0.01 | 0.02 | 0.12 |
NLL (number) | 4.35 | 4.42 | 4.64 | 4.55 | 4.62 | 4.69 | 0.09 | 4.70 | 4.18 | 0.09 | <0.01 | 0.25 | 0.03 |
LLD (days) | 70 | 67 | 60 | 56 | 56 | 53 | 2.60 | 52 | 82 | 2.40 | <0.01 | 0.32 | <0.01 |
LSR (cm tiller−1 day−1) | 0.36 | 0.26 | 0.20 | 0.25 | 0.09 | 0.27 | 0.08 | 0.25 | 0.22 | 0.08 | <0.01 | 0.96 | 0.21 |
NSL (number) | 0.38 | 0.23 | 0.24 | 0.25 | 0.18 | 0.30 | 0.13 | 0.27 | 0.27 | 0.13 | <0.01 | 0.20 | 0.23 |
ISL (cm) | 28.2 | 29.4 | 30.6 | 30.2 | 29.9 | 30.1 | 0.84 | 29.4 | 30.8 | 0.80 | 0.02 | 0.04 | 0.50 |
FSL (cm) | 34.3 | 35.8 | 37.1 | 37.4 | 37.7 | 39.2 | 2.18 | 37.5 | 35.5 | 2.21 | <0.01 | 0.20 | <0.01 |
SElR (cm tiller−1 day−1) | 0.21 | 0.26 | 0.27 | 0.30 | 0.30 | 0.39 | 0.07 | 0.34 | 0.16 | 0.07 | 0.01 | 0.45 | <0.01 |
SG (cm) | 5.61 | 6.34 | 6.58 | 6.88 | 7.49 | 9.06 | 1.75 | 7.82 | 4.95 | 1.76 | 0.01 | 0.93 | <0.01 |
Variable | kg N ha−1 Application−1 | Season | p-Value (1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | SEM | Rainy | Dry | SEM | L | Q | Season | |
DA (kg DM ha−1 day−1) | 52.4 | 73.7 | 83.4 | 84.2 | 87.3 | 98.3 | 5.99 | 91.1 | 52.1 | 5.75 | <0.01 | <0.01 | <0.01 |
LB (%) | 87.3 | 86.9 | 86.4 | 86.0 | 86.9 | 86.2 | 2.64 | 88.7 | 85.1 | 2.64 | 0.61 | 0.72 | 0.24 |
STEM (%) | 5.27 | 5.87 | 6.69 | 7.14 | 6.68 | 7.27 | 0.57 | 6.91 | 5.74 | 0.60 | <0.01 | 0.04 | 0.02 |
SEN (%) | 7.33 | 7.16 | 6.90 | 6.79 | 6.32 | 6.43 | 0.15 | 7.18 | 6.22 | 0.12 | <0.01 | 0.18 | <0.01 |
LB:STEM | 15.7 | 15.7 | 14.3 | 14.2 | 15.1 | 15.3 | 1.37 | 14.5 | 14.9 | 1.33 | 0.37 | 0.37 | 0,67 |
RP (days) | 40 | 34 | 33 | 33 | 33 | 32 | 1.75 | 28 | 51 | 1.70 | <0.01 | <0.01 | 0.04 |
NC (number) | 7 | 9 | 9 | 10 | 10 | 10 | 0.35 | 8 | 2 | 0.39 | <0.01 | <0.01 | 0.03 |
Variable | kg N ha−1 Application−1 | Season | p-Value (1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | SEM | Rainy | Dry | SEM | L | Q | Season | |
DM (g kg−1) | 264.2 | 251.8 | 248.5 | 242.3 | 245.1 | 239.1 | 11.20 | 233.3 | 287.6 | 11.13 | <0.01 | 0.06 | 0.01 |
OM (g kg−1 DM) | 925.4 | 927.9 | 929.5 | 930.8 | 935.2 | 935.6 | 1.63 | 928.4 | 937.6 | 1.28 | <0.01 | 0.27 | <0.01 |
MM (g kg−1 DM) | 72.3 | 72.5 | 73.7 | 69.1 | 64.5 | 64.4 | 2.08 | 73.0 | 60.1 | 1.72 | <0.01 | 0.03 | <0.01 |
EE (g kg−1 DM) | 19.6 | 19.9 | 20.6 | 20.3 | 21.7 | 20.7 | 0.97 | 20.4 | 22.8 | 1.11 | 0.10 | 0.59 | 0.68 |
CP (g kg−1 DM) | 87.7 | 101.9 | 107.3 | 117.6 | 121.2 | 136.6 | 5.31 | 121.5 | 89.6 | 4.54 | <0.01 | 0.34 | <0.01 |
NDF (g kg−1 DM) | 648.5 | 667.1 | 668.8 | 662.4 | 681.2 | 669.5 | 11.53 | 670.1 | 657.3 | 11.98 | <0.01 | 0.77 | 0.50 |
ADF (g kg−1 DM) | 350.6 | 360.3 | 355.5 | 351.7 | 358.4 | 357.2 | 3.34 | 356.0 | 353.5 | 4.10 | 0.57 | 0.73 | 0.56 |
HEM (g kg−1 DM) | 309.7 | 310.4 | 312.8 | 314.2 | 324.4 | 319.9 | 6.80 | 316.1 | 314.0 | 0.70 | <0.01 | 0.14 | 0.13 |
LIG (g kg−1 DM) | 24.3 | 27.1 | 27.1 | 25.6 | 28.0 | 27.5 | 0.91 | 27.0 | 2.17 | 1.01 | 0.04 | 0.51 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.K.S.d.; Corrêa, D.C.d.C.; Cunha, A.M.Q.; Rêgo, A.C.d.; Faturi, C.; Silva, W.L.d.; Domingues, F.N. Effect of Nitrogen Fertilization on Production, Chemical Composition and Morphogenesis of Guinea Grass in the Humid Tropics. Agronomy 2020, 10, 1840. https://doi.org/10.3390/agronomy10111840
Oliveira JKSd, Corrêa DCdC, Cunha AMQ, Rêgo ACd, Faturi C, Silva WLd, Domingues FN. Effect of Nitrogen Fertilization on Production, Chemical Composition and Morphogenesis of Guinea Grass in the Humid Tropics. Agronomy. 2020; 10(11):1840. https://doi.org/10.3390/agronomy10111840
Chicago/Turabian StyleOliveira, Joelma K. S. de, Darlena C. da C. Corrêa, Antônio M. Q. Cunha, Aníbal C. do Rêgo, Cristian Faturi, Wilton L. da Silva, and Felipe N. Domingues. 2020. "Effect of Nitrogen Fertilization on Production, Chemical Composition and Morphogenesis of Guinea Grass in the Humid Tropics" Agronomy 10, no. 11: 1840. https://doi.org/10.3390/agronomy10111840
APA StyleOliveira, J. K. S. d., Corrêa, D. C. d. C., Cunha, A. M. Q., Rêgo, A. C. d., Faturi, C., Silva, W. L. d., & Domingues, F. N. (2020). Effect of Nitrogen Fertilization on Production, Chemical Composition and Morphogenesis of Guinea Grass in the Humid Tropics. Agronomy, 10(11), 1840. https://doi.org/10.3390/agronomy10111840