Nitrogen and Potassium Fertilisation Influences Growth, Rhizosphere Carboxylate Exudation and Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Experiment 1 (Growth and Rhizosphere Carboxylates at Different K Rates)
2.1.2. Experiment 2 (Growth and Rhizosphere Carboxylates under N and K Fertilisation)
2.2. Carboxylate Extraction
2.3. Plant Nutrient Measurements
2.4. Arbuscular Mycorrhizal Colonisation
2.5. Carboxylate Analysis
2.6. Statistical Analyses
3. Results
3.1. Plant Growth
3.2. Nutrient Accumulation
3.3. Rhizosphere Carboxylates
3.4. Arbuscular Mycorrhizal Colonisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Römheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Brennan, R.; Bolland, M. Comparing the potassium requirements of five pasture species. Aust. J. Exp. Agric. 2006, 46, 659–667. [Google Scholar] [CrossRef]
- Brennan, R.; Bolland, M.; Bowden, J. Potassium deficiency, and molybdenum deficiency and aluminium toxicity due to soil acidification, have become problems for cropping sandy soils in south-western Australia. Aust. J. Exp. Agric. 2004, 44, 1031–1039. [Google Scholar] [CrossRef]
- Brennan, R.; Jayasena, K. Increasing applications of potassium fertiliser to barley crops grown on deficient sandy soils increased grain yields while decreasing some foliar diseases. Aust. J. Agric. Res. 2007, 58, 680–689. [Google Scholar] [CrossRef]
- Bolland, M.; Guthridge, I.; Blincow, G. Response of intensively grazed ryegrass dairy pastures to fertiliser phosphorus and potassium. Nutr. Cycl. Agroecosyst. 2011, 90, 281–298. [Google Scholar] [CrossRef]
- Bolland, M.; Cox, W.; Codling, B. Soil and tissue tests to predict pasture yield responses to applications of potassium fertiliser in high-rainfall areas of south-western Australia. Aust. J. Exp. Agric. 2002, 42, 149–164. [Google Scholar] [CrossRef]
- Scanlan, C.A.; Huth, N.I.; Bell, R.W. Simulating wheat growth response to potassium availability under field conditions with sandy soils. I. Model development. Field Crops Res. 2015, 178, 109–124. [Google Scholar] [CrossRef]
- Pinkerton, A.; Randall, P.J. A comparison of the potassium requirements during early growth of Lotus pedunculatus, Medicago murex, M. polymorpha, M. truncatula, Ornithopus compressus, Trifolium balansae, T. resupinatum, Pennisetum clandestinum, and Phalaris aquatic. Aust. J. Exp. Agric. 1993, 33, 31–39. [Google Scholar] [CrossRef]
- Bolland, M.; Guthridge, I. Quantifying pasture dry matter responses to applications of potassium fertiliser for an intensively grazed, rain-fed dairy pasture in south-western Australia with or without adequate nitrogen fertiliser. Anim. Prod. Sci. 2009, 49, 121–130. [Google Scholar] [CrossRef]
- Wong, M.; Edwards, N.; Barrow, N. Accessibility of subsoil potassium to wheat grown on duplex soils in the south-west of Western Australia. Soil Res. 2000, 38, 745–751. [Google Scholar] [CrossRef]
- Brennan, R.; Bolland, M. Soil and tissue tests to predict the potassium requirements of canola in south-western Australia. Aust. J. Exp. Agric. 2006, 46, 675–679. [Google Scholar] [CrossRef]
- Jones, D.L. Organic acids in the rhizosphere—A critical review. Plant Soil 1998, 205, 25–44. [Google Scholar] [CrossRef]
- Jones, D.L.; Darrah, P.R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 1994, 166, 247–257. [Google Scholar] [CrossRef]
- Lambers, H.; Clements, J.C.; Nelson, M.N. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am. J. Bot. 2013, 100, 263–288. [Google Scholar] [CrossRef]
- Veneklaas, E.J.; Stevens, J.; Cawthray, G.R.; Turner, S.; Grigg, A.M.; Lambers, H. Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 2003, 248, 187–197. [Google Scholar] [CrossRef]
- Li, H.; Shen, J.; Zhang, F.; Marschner, P.; Cawthray, G.; Rengel, Z. Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biol. Fertil. Soils 2010, 46, 79–91. [Google Scholar] [CrossRef]
- Pearse, S.J.; Veneklaas, E.J.; Cawthray, G.R.; Bolland, M.D.; Lambers, H. Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 2006, 288, 127–139. [Google Scholar] [CrossRef]
- Roelofs, R.; Rengel, Z.; Cawthray, G.; Dixon, K.; Lambers, H. Exudation of carboxylates in Australian Proteaceae: Chemical composition. Plant Cell Environ. 2001, 24, 891–904. [Google Scholar] [CrossRef]
- Pal, Y.; Gilkes, R.; Wong, M. The forms of potassium and potassium adsorption in some virgin soils from south-western Australia. Soil Res. 1999, 37, 695–710. [Google Scholar] [CrossRef]
- Rengel, Z.; Damon, P.M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008, 133, 624–636. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture–status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Najafi-Ghiri, M.; Niazi, M.; Khodabakhshi, M.; Boostani, H.R.; Owliaie, H.R. Mechanisms of potassium release from calcareous soils to different salt, organic acid and inorganic acid solutions. Soil Res. 2019, 57, 301–309. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Zhang, X.; Cao, Y. Release of potassium from K-bearing minerals: Effect of plant roots under P deficiency. Nutr. Cycl. Agroecosyst. 2000, 56, 45–52. [Google Scholar] [CrossRef]
- White, P.J. Improving potassium acquisition and utilisation by crop plants. J. Plant Nutr. Soil Sci. 2013, 176, 305–316. [Google Scholar] [CrossRef]
- Kraffczyk, I.; Trolldenier, G.; Beringer, H. Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem. 1984, 16, 315–322. [Google Scholar] [CrossRef]
- Trehan, S.; El Dessougi, H.; Claassen, N. Potassium efficiency of 10 potato cultivars as related to their capability to use nonexchangeable soil potassium by chemical mobilization. Commun. Soil Sci. Plant Anal. 2005, 36, 1809–1822. [Google Scholar] [CrossRef]
- Khademi, Z.; Jones, D.; Malakouti, M.; Asadi, F.; Ardebili, M. Organic acid mediated nutrient extraction efficiency in three calcareous soils. Soil Res. 2009, 47, 213–220. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Shen, Q.-H.; Zhou, J.-M.; Wang, J.; Du, C.-W.; Chen, X.-Q. Plants use alternative strategies to utilize nonexchangeable potassium in minerals. Plant Soil 2011, 343, 209–220. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, J.; Zhang, W.; Chen, X.; Li, C.; Yuan, L.; Xie, J. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil 2010, 335, 21–34. [Google Scholar] [CrossRef]
- Smith, F. The effect of potassium and nitrogen on ionic relations and organic acid accumulation in Panicum maximum var. trichoglume. Plant Soil 1978, 49, 367–379. [Google Scholar] [CrossRef]
- Barta, A. Effect of nitrogen and potassium fertilization on organic acids of Bromus inermis L. and Dactylis glomerata L. Crop Sci. 1973, 13, 113–114. [Google Scholar] [CrossRef]
- Tshewang, S.; Rengel, Z.; Siddique, K.H.; Solaiman, Z.M. Growth and nutrient uptake of temperate perennial pastures are influenced by grass species and fertilisation with a microbial consortium inoculant. J. Plant Nutr. Soil Sci. 2020, 183, 530–538. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press Pty Ltd.: Melbourne, Australia, 1992. [Google Scholar]
- Searle, P.L. The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 1984, 109, 549–568. [Google Scholar] [CrossRef]
- Colwell, J.D. The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust. J. Exp. Agric. 1963, 3, 190–197. [Google Scholar] [CrossRef]
- Damon, P.M.; Rengel, Z. Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust. J. Agric. Res. 2007, 58, 816–825. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Hill, J.O.; Simpson, R.; Wood, J.; Moore, A.D.; Chapman, D. The phosphorus and nitrogen requirements of temperate pasture species and their influence on grassland botanical composition. Aust. J. Agric. Res. 2005, 56, 1027–1039. [Google Scholar] [CrossRef]
- Kidd, D.R.; Ryan, M.H.; Haling, R.E.; Lambers, H.; Sandral, G.A.; Yang, Z.; Culvenor, R.A.; Cawthray, G.R.; Stefanski, A.; Simpson, R.J. Rhizosphere carboxylates and morphological root traits in pasture legumes and grasses. Plant Soil 2016, 402, 77–89. [Google Scholar] [CrossRef]
- Pearse, S.J.; Veneklaas, E.J.; Cawthray, G.; Bolland, M.D.; Lambers, H. Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol. 2007, 173, 181–190. [Google Scholar] [CrossRef]
- Nazeri, N.K.; Lambers, H.; Tibbett, M.; Ryan, M.H. Moderating mycorrhizas: Arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant Cell Environ. 2014, 37, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Solaiman, Z.M.; Senoo, K.; Kawaguchi, M.; Imaizumi-Anraku, H.; Akao, S.; Tanaka, A.; Obata, H. Characterization of mycorrhizas formed by Glomus sp. on roots of hypernodulating mutants of Lotus japonicus. J. Plant Res. 2000, 113, 443–448. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Cawthray, G.R. An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J. Chromatogr. A 2003, 1011, 233–240. [Google Scholar] [CrossRef]
- Uloth, M.; You, M.; Cawthray, G.; Barbetti, M. Temperature adaptation in isolates of Sclerotinia sclerotiorum affects their ability to infect Brassica carinata. Plant Pathol. 2015, 64, 1140–1148. [Google Scholar] [CrossRef]
- Kelling, K.A.; Matocha, J.E. Plant analysis as an aid in fertilizing forage crops. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 603–643. [Google Scholar]
- Dear, B.S.; Ewing, M.A. The search for new pasture plants to achieve more sustainable production systems in southern Australia. Aust. J. Exp. Agric. 2008, 48, 387–396. [Google Scholar] [CrossRef]
- Dear, B.S.; Reed, K.F.M.; Craig, A.D. Outcomes of the search for new perennial and salt tolerant pasture plants for southern Australia. Aust. J. Exp. Agric. 2008, 48, 578–588. [Google Scholar] [CrossRef]
- Reed, K.; Nie, Z.; Miller, S.; Hackney, B.; Boschma, S.; Mitchell, M.; Craig, A. Field evaluation of perennial grasses and herbs in southern Australia. 1. Establishment and herbage production. Aust. J. Exp. Agric. 2008, 48, 409–423. [Google Scholar] [CrossRef]
- Evans, P.S. Comparative root morphology of some pasture grasses and clovers. N. Z. J. Agric. Res. 1977, 20, 331–335. [Google Scholar] [CrossRef]
- Yang, Z.; Culvenor, R.A.; Haling, R.E.; Stefanski, A.; Ryan, M.H.; Sandral, G.A.; Kidd, D.R.; Lambers, H.; Simpson, R.J. Variation in root traits associated with nutrient foraging among temperate pasture legumes and grasses. Grass Forage Sci. 2017, 72, 93–103. [Google Scholar] [CrossRef]
- Hagin, J.; Olsen, S.; Shaviv, A. Review of interaction of ammonium-nitrate and potassium nutrition of crops. J. Plant Nutr. 1990, 13, 1211–1226. [Google Scholar] [CrossRef]
- Siebrecht, S.; Tischner, R. Changes in the xylem exudate composition of poplar (Populus tremula x P. alba)—Dependent on the nitrogen and potassium supply. J. Exp. Bot. 1999, 50, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- Dibb, D.; Welch, L. Corn growth as affected by ammonium vs. nitrate absorbed from soil. Agron. J. 1976, 68, 89–94. [Google Scholar] [CrossRef]
- Koch, K.; Mengel, K. Effect of K on N utilization by spring wheat during grain protein formation. Agron. J. 1977, 69, 477–480. [Google Scholar] [CrossRef]
- Ryan, P.; Delhaize, E.; Jones, D. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biol. 2001, 52, 527–560. [Google Scholar] [CrossRef]
- Ryan, M.H.; Tibbett, M.; Edmonds-Tibbett, T.; Suriyagoda, L.D.B.; Lambers, H.; Cawthray, G.R.; Pang, J. Carbon trading for phosphorus gain: The balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant Cell Environ. 2012, 35, 2170–2180. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.; Ash, J. Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic). Agric. Ecosyst. Environ. 1999, 73, 51–62. [Google Scholar] [CrossRef]
- Ryan, M.; Small, D.; Ash, J. Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Aust. J. Exp. Agric. 2000, 40, 663–670. [Google Scholar] [CrossRef]
- Schweiger, P.; Robson, A.; Barrow, N. Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol. 1995, 131, 247–254. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Shaw, L.J.; Sen, R. Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 2011, 340, 481–490. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, S.; Hu, W.; Xiao, L.; Tang, M. Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum. Front. Plant Sci. 2017, 8, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mesbahi, M.N.; Azcón, R.; Ruiz-Lozano, J.M.; Aroca, R. Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza 2012, 22, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Zimmermann, S.D. The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci. 2014, 5, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.; Chilvers, G.; Dumaresq, D. Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil 1994, 160, 33–40. [Google Scholar] [CrossRef]
Shoot Concentration (g kg‒1 dw) | Shoot Content (mg plant‒1) | ||||||
---|---|---|---|---|---|---|---|
Species | Shoot dw (g plant‒1) | Root dw (g plant‒1) | P | K | P | K | AM Colonisation (%) |
Tall fescue | 0.71 ± 0.01 b | 0.28 ± 0.01 b | 4.30 ± 0.09 a | 38.50 ± 0.7 a | 3.06 ± 0.1 b | 28.22 ± 0.9 a | 12.27 ± 0.8 b |
Veldt grass | 0.78 ± 0.02 a | 0.30 ± 0.01 b | 4.53 ± 0.09 a | 31.17 ± 0.7 b | 3.47 ± 0.1 a | 24.18 ± 0.9 b | 8.85 ± 0.8 c |
Tall wheatgrass | 0.70 ± 0.02 b | 0.35 ± 0.01 a | 3.92 ± 0.09 b | 37.23 ± 0.7 a | 2.74 ± 0.1 b | 25.90 ± 0.9 ab | 16.70 ± 0.8 a |
p value | 0.001 *** | 0.03 * | 0.001 *** | 0.001 *** | 0.001 *** | 0.02 * | 0.001 *** |
K rates | |||||||
K0 | 0.69 ± 0.02 b | 0.28 ± 0.01 b | 4.31 ± 0.1 ab | 12.15 ± 0.8 d | 2.96 | 8.10 ± 1.0 c | 18.72 ± 0.9 a |
K40 | 0.73 ± 0.01 b | 0.33 ± 0.01 a | 4.13 ± 0.1 ab | 32.04 ± 0.8 c | 2.99 | 23.10 ± 1.0 b | 11.15 ± 0.9 b |
K80 | 0.80 ± 0.02 a | 0.33 ± 0.01 a | 4.03 ± 0.1 b | 45.16 ± 0.8 b | 3.30 | 36.56 ± 1.1 a | 10.81 ± 1.0 b |
K120 | 0.71 ± 0.02 b | 0.28 ± 0.01 b | 4.53 ± 0.1 a | 53.19 ± 0.8 a | 3.11 | 36.61 ± 1.0 a | 9.75 ± 1.0 b |
p value | 0.001 *** | 0.04 * | 0.01 ** | 0.001 *** | 0.22ns | 0.001 *** | 0.001 *** |
30 DAS | 60 DAS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shoot Concentration (g kg‒1 dw) | Shoot Content (mg plant‒1) | Shoot Concentration (g kg‒1 dw) | Shoot Content (mg plant‒1) | |||||||||
Species | N | P | K | N | P | K | N | P | K | N | P | K |
Tall fescue | 54.3 | 5.4 | 39.8 | 8.5 ± 0.3 a | 0.8 ± 0.04 a | 5.9 ± 0.3 a | 36.9 ± 0.6 a | 3.6 ± 0.4 b | 23.3 ± 0.4 b | 24.0 ± 0.5 a | 2.2 ± 0.1 a | 15.9 ± 0.2 a |
Tall wheatgrass | 57.2 | 5.3 | 39.1 | 6.6 ± 0.4 b | 0.6 ± 0.04 b | 4.6 ± 0.2 b | 28.8 ± 0.5 b | 5.0 ± 0.4 a | 29.4 ± 0.5 a | 19.0 ± 0.5 b | 1.8 ± 0.1 b | 13.3 ± 0.2 b |
p value | 0.5 ns | 0.9 ns | 0.4 ns | 0.01 ** | 0.001 *** | 0.003 ** | 0.01 ** | 0.01 ** | 0..001 *** | 0.001 *** | 0.002 ** | 0.001 *** |
Treatment | ||||||||||||
–N–K | 42.2 ± 1.5 b | 5.2 | 25.5 ± 1.0 b | 4.1 ± 0.5 b | 0.5 ± 0.05 c | 2.5 ± 0.3 c | 17.4 ± 0.7c | 5.6 ± 0.6 a | 16.2 ± 0.6c | 3.9 ± 0.7 c | 1.2 ± 0.1 b | 3.7 ± 0.3 c |
+N–K | 69.9 ± 1.5 a | 5.5 | 23.5 ± 1.0b | 9.7 ± 0.5 a | 0.8 ± 0.05 ab | 3.1 ± 0.3 c | 51.8 ± 0.8a | 3.7 ± 0.5 ab | 6.7 ± 0.7 d | 36.5 ± 0.8 b | 2.7 ± 0.16 a | 4.6 ± 0.3 c |
–N+K | 44.5 ± 1.7 b | 5.2 | 53.7 ± 1.0 a | 4.8 ± 0.6 b | 0.5 ± 0.05 bc | 5.7 ± 0.3 b | 18.3 ± 0.7c | 4.6 ± 0.5 ab | 38.3 ± 0.6 b | 4.3 ± 0.7 c | 1.1 ± 0.1 b | 9.4 ± 0.3 b |
+N+K | 66.4 ± 1.5 a | 5.6 | 54.9 ± 1.2 a | 11.6 ± 0.5 a | 1.0 ± 0.06 a | 9.8 ± 0.4 a | 43.9 ± 0.8b | 3.1 ± 0.6 b | 44.0 ± 0.7 a | 41.2 ± 0.8 a | 2.9 ± 0.1 a | 40.6 ± 0.3 a |
p value | 0.001 *** | 0.1 ns | 0.001 *** | 0.001 *** | 0.01 ** | 0.001 *** | 0.001 *** | 0.04 * | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
Carboxylate Concentration (µmol g‒1 dry root) | ||||||
---|---|---|---|---|---|---|
Species | Acetate | Citrate | Malate | Oxalate | Trans-Aconitate | Total |
Tall fescue | 3.41 ± 0.6 a | 0.64 ± 0.2 ab | 2.15 ± 0.8 b | 0.00 ± 0.3 b | 0.00 ± 0.1 b | 6.20 ± 0.9 b |
Veldt grass | 1.42 ± 0.6 ab | 0.46 ± 0.2 b | 4.64 ± 0.8 ab | 3.08 ± 0.3 a | 0.00 ± 0.1 b | 9.60 ± 0.9 a |
Tall wheatgrass | 0.00 ± 0.6 b | 1.10 ± 0.2 a | 5.34 ± 0.9 a | 0.00 ± 0.3 b | 1.74 ± 0.1 a | 8.18 ± 0.9 ab |
p value | 0.002 ** | 0.03 * | 0.03 * | 0.001 *** | 0.001 *** | 0.04 * |
K rates | ||||||
K0 | 0.13 ± 0.6 b | 0.48 | 4.09 ± 1.01 a | 1.04 | 0.50 | 6.24 ± 1.1 b |
K40 | 2.86 ± 0.6 a | 0.81 | 5.69 ± 1.01 a | 0.70 | 0.72 | 10.78 ± 1.1 a |
K80 | 0.96 ± 0.6 ab | 0.92 | 4.50 ± 1.01 a | 1.11 | 0.59 | 8.08 ± 1.1 ab |
K120 | 2.49 ± 0.7 ab | 0.69 | 1.88 ± 1.06 b | 1.26 | 0.50 | 6.82 ± 1.2 ab |
p value | 0.02 * | 0.39 ns | 0.05 * | 0.65 ns | 0.59 ns | 0.05 * |
Carboxylate Concentration (µmol g‒1 dry root) | ||||
---|---|---|---|---|
Species | Citrate | Malate | Trans-Aconitate | Total |
Tall fescue | 1.48 | 4.71 | 0.00 ± 0.4 b | 6.19 |
Tall wheatgrass | 1.14 | 3.67 | 3.50 ± 0.3 a | 8.31 |
p value | 0.15 ns | 0.19 ns | 0.001 *** | 0.09 ns |
Treatments | ||||
–N–K | 3.58 ± 0.2 a | 15.53 ± 0.6 a | 5.12 ± 0.5 a | 24.43 ± 1.3 a |
+N–K | 0.00 ± 0.2 c | 0.00 ± 0.6 b | 0.20 ± 0.5 b | 0.20 ± 1.3 c |
–N+K | 1.67 ± 0.3 b | 1.25 ± 0.7 b | 1.25 ± 0.5 b | 4.17 ± 1.4 b |
+N+K | 0.00 ± 0.2 c | 0.00 ± 0.6 b | 0.35 ± 0.5 b | 0.35 ± 1.3 c |
p value | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tshewang, S.; Rengel, Z.; Siddique, K.H.M.; Solaiman, Z.M. Nitrogen and Potassium Fertilisation Influences Growth, Rhizosphere Carboxylate Exudation and Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses. Agronomy 2020, 10, 1878. https://doi.org/10.3390/agronomy10121878
Tshewang S, Rengel Z, Siddique KHM, Solaiman ZM. Nitrogen and Potassium Fertilisation Influences Growth, Rhizosphere Carboxylate Exudation and Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses. Agronomy. 2020; 10(12):1878. https://doi.org/10.3390/agronomy10121878
Chicago/Turabian StyleTshewang, Sangay, Zed Rengel, Kadambot H. M. Siddique, and Zakaria M. Solaiman. 2020. "Nitrogen and Potassium Fertilisation Influences Growth, Rhizosphere Carboxylate Exudation and Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses" Agronomy 10, no. 12: 1878. https://doi.org/10.3390/agronomy10121878
APA StyleTshewang, S., Rengel, Z., Siddique, K. H. M., & Solaiman, Z. M. (2020). Nitrogen and Potassium Fertilisation Influences Growth, Rhizosphere Carboxylate Exudation and Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses. Agronomy, 10(12), 1878. https://doi.org/10.3390/agronomy10121878