Preliminary Study on the Control of Cucumber Green Mottle Mosaic Virus in Commercial Greenhouses Using Agricultural Disinfectants and Resistant Cucumber Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of the Effectiveness of Different Sanitization Steps
Sample Processing, ELISA and in Planta Virus Bioassay
2.2. Evaluation of Commercial Cucumber Varieties for Their Resistance to CGMMV and Yield Potential
2.2.1. Inoculum Collection and Maintenance
2.2.2. Monitoring the Presence and Spreading Pattern of CGMMV in a Greenhouse
2.2.3. Data Collection and Statistical Analyses
2.3. Evaluation of Grafted Cucumber Plants for Resistance to CGMMV and Yield Potential
3. Results
3.1. Evaluation of the Effectiveness of Different Sanitization Steps Performed in a Commercial Greenhouse
3.2. Spread Pattern of CGMMV Infection in a Greenhouse
3.3. Levels of Resistance to CGMMV in Greenhouse Cucumber Varieties and Effects of Infection on Their Productivity
3.4. Evaluation of Grafted Cucumber Plants for Resistance to CGMMV and Yield Potential
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dombrovsky, A.; Tran-Nguyen, L.T.T.; Jones, R.A.C. Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annu. Rev. Phytopathol. 2017, 55, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Mandal, B.; Mohd, Q.; Haq, R.; Varma, A. Properties, diagnosis and management of cucumber green mottle mosaic virus. Plant Virus 2008, 2, 25–34. [Google Scholar]
- Fletcher, J.T.; George, A.J.; Green, D.E. Cucumber green mottle mosaic virus, its effect on yield and its control in the lea valley, England. Plant Pathol. 1969, 18, 16–22. [Google Scholar] [CrossRef]
- Li, J.-X.; Liu, S.-S.; Gu, Q.-S. Transmission efficiency of cucumber green mottle mosaic virus via seeds, soil, pruning and irrigation water. J. Phytopathol. 2016, 164, 300–309. [Google Scholar] [CrossRef]
- Liu, H.W.; Luo, L.X.; Li, J.Q.; Liu, P.F.; Chen, X.Y.; Hao, J.J. Pollen and seed transmission of cucumber green mottle mosaic virus in cucumber. Plant Pathol. 2014, 63, 72–77. [Google Scholar] [CrossRef]
- Sui, X.; Li, R.; Shamimuzzaman, M.; Wu, Z.; Ling, K.-S. Understanding the transmissibility of cucumber green mottle mosaic virus in watermelon seeds and seed health assays. Plant Dis. 2019, 103, 1126–1131. [Google Scholar] [CrossRef]
- Ainsworth, G.C. Mosaic diseases of the cucumber. Ann. Appl. Biol. 1935, 22, 55–67. [Google Scholar] [CrossRef]
- Ling, K.-S.; Li, R.; Zhang, W. First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in canada. Plant Dis. 2014, 98, 701. [Google Scholar] [CrossRef]
- Tian, T.; Posis, K.; Maroon-Lango, C.J.; Mavrodieva, V.; Haymes, S.; Pitman, T.L.; Falk, B.W. First report of cucumber green mottle mosaic virus on melon in the United States. Plant Dis. 2014, 98, 1163. [Google Scholar] [CrossRef]
- Al-Shahwan, I.M.; Abdalla, O.A. A strain of cucumber green mottle mosaic virus (CGMMV) from bottlegourd in Saudi Arabia. J. Phytopathol. 1992, 134, 152–156. [Google Scholar] [CrossRef]
- Varveri, C.; Vassilakos, N.; Bem, F. Characterization and detection of cucumber green mottle mosaic virus in Greece. Phytoparasitica 2002, 5, 493–501. [Google Scholar] [CrossRef]
- Kim, O.-K.; Mizutani, T.; Natsuaki, K.T.; Lee, K.-W.; Soe, K. First report and the genetic variability of cucumber green mottle mosaic virus occurring on bottle gourd in Myanmar. J. Phytopathol. 2010, 158, 572–575. [Google Scholar] [CrossRef]
- Moradi, Z.; Jafarpour, B. First report of coat protein sequence of cucumber green mottle mosaic virus in cucumber isolated from Khorasan in Iran. Int. J. Virol. 2011, 7, 1–12. [Google Scholar] [CrossRef]
- Celix, A.; Luis-Arteaga, M.; Rodriguez-Cerezo, E. First report of cucumber green mottle mosaic tobamovirus infecting greenhouse-grown cucumber in Spain. Plant Dis. 1996, 80, 1303. [Google Scholar] [CrossRef]
- Reingold, V.; Lachman, O.; Koren, A.; Dombrovsky, A. First report of cucumber green mottle mosaic virus (CGMMV) symptoms in watermelon used for the discrimination of non-marketable fruits in Israeli commercial fields. New Dis. Rep. 2013, 28, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Li, G.F.; Li, M.F. Occurrence of cucumber green mottle mosaic virus on cucurbitaceous plants in china. Plant Dis. 2009, 93, 200. [Google Scholar] [CrossRef]
- Budzanivska, I.G.; Rudneva, T.O.; Shevchenko, T.P.; Boubriak, I.; Polischuk, V.P. Investigation of Ukrainian isolates of cucumber green mottle mosaic virus. Arch. Phytopathol. Plant Prot. 2007, 40, 376–380. [Google Scholar] [CrossRef]
- Borodynko-Filas, N.; Minicka, J.; Hasiów-Jaroszewska, B. The occurrence of cucumber green mottle mosaic virus infecting greenhouse cucumber in Poland. Plant Dis. 2017, 101, 1336. [Google Scholar] [CrossRef]
- Tesoriero, L.A.; Chambers, G.; Srivastava, M.; Smith, S.; Conde, B.; Tran-Nguyen, L.T.T. First report of cucumber green mottle mosaic virus in Australia. Australas. Plant Dis. Notes 2016, 11, 1. [Google Scholar] [CrossRef]
- Boubourakas, I.N.; Hatziloukas, E.; Antignus, Y.; Katis, N.I. Etiology of leaf Chlorosis and deterioration of the fruit interior of watermelon plants. J. Phytopathol. 2004, 152, 580–588. [Google Scholar] [CrossRef]
- Shargil, D.; Smith, E.; Lachman, O.; Reingold, V.; Darzi, E.; Tam, Y.; Dombrovsky, A. New weed hosts for cucumber green mottle mosaic virus in wild Mediterranean vegetation. Eur. J. Plant Pathol. 2017, 148, 473–480. [Google Scholar] [CrossRef]
- Lecoq, H.; Desbiez, C. Viruses of cucurbit crops in the Mediterranean region: An ever-changing picture. In Advances in Virus Research; Loebenstein, G., Lecoq, H., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 84, pp. 67–126. [Google Scholar]
- Rao, A.L.N.; Varma, A. Transmission studies with cucumber green mottle mosaic virus. J. Phytopathol. 1984, 109, 325–331. [Google Scholar] [CrossRef]
- Darzi, E.; Smith, E.; Shargil, D.; Lachman, O.; Ganot, L.; Dombrovsky, A. The honeybee Apis mellifera contributes to cucumber green mottle mosaic virus spread via pollination. Plant Pathol. 2018, 59, 244–251. [Google Scholar] [CrossRef]
- Reingold, V.; Lachman, O.; Belausov, E.; Koren, A.; Mor, N.; Dombrovsky, A. Epidemiological study of cucumber green mottle mosaic virus in greenhouses enables reduction of disease damage in cucurbit production. Ann. Appl. Biol. 2016, 168, 29–40. [Google Scholar] [CrossRef]
- Ellouze, W.; Dalpé, S.; Howard, R.J.; Ling, K.-S.; Zhang, W. Managing Cucumber Green Mottle Mosaic Virus in Alberta Greenhouses. Available online: https://open.alberta.ca/dataset/ba4a1311-a775-4f3c-9e88-2e6d8d2f27c2/resource/803e64a0-b495-435a-9c3f-0fa70b156aa3/download/256-635-1.pdf (accessed on 15 October 2020).
- Crespo, O.; Janssen, D.; Robles, C.; Ruiz, L. Resistance to cucumber green mottle mosaic virus in Cucumis sativus. Euphytica 2018, 214, 201. [Google Scholar] [CrossRef]
- Pérez-Alfocea, F. Why Should We Investigate Vegetable Grafting? International Society for Horticultural Science (ISHS): Leuven, Belgium, 2015; pp. 21–29. [Google Scholar]
- Rouphael, Y.; Kyriacou, M.C.; Colla, G. Vegetable grafting: A toolbox for securing yield stability under multiple stress conditions. Front. Plant Sci. 2018, 8, 2255. [Google Scholar] [CrossRef] [Green Version]
- Louws, F.J.; Rivard, C.L.; Kubota, C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic. 2010, 127, 127–146. [Google Scholar] [CrossRef]
- Melnyk, C.W. Plant grafting: Insights into tissue regeneration. Regeneration 2016, 4, 3–14. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; López-Galarza, S.; Maroto, J.V.; Lee, S.-G.; Huh, Y.-C.; Sun, Z.; Miguel, A.; King, S.R.; et al. Cucurbit grafting. Crit. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- Hasama, W.; Morita, S.; Kato, T. Reduction of resistance to corynespora target leaf spot in cucumber grafted on a bloomless rootstock. JPN. J. Phytopathol. 1993, 59, 243–248. [Google Scholar] [CrossRef]
- Shibuya, T.; Itagaki, K.; Wang, Y.; Endo, R. Grafting transiently suppresses development of powdery mildew colonies, probably through a quantitative change in water relations of the host cucumber scions during graft healing. Sci. Hortic. 2015, 192, 197–199. [Google Scholar] [CrossRef]
- Sakata, Y.; Sugiyama, M.; Ohara, T.; Morishita, M. Influence of rootstocks on the resistance of grafted cucumber (Cucumis sativus L.) scions to powdery mildew (Podosphaera xanthii U. Braun & N. Shishkoff). J. Jpn. Soc. Hortic. Sci. 2006, 75, 135–140. [Google Scholar]
- Guan, W.; Zhao, X.; Hassell, R.; Thies, J. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience 2012, 47, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.T.; Fan, S.X.; Zhang, X.C. Effects of rootstocks on the development, disease resistance and quality of Cucumis sativus L. Acta Hortic. 2008, 771, 161–166. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Fang, Q. Studies on antivirus disease mechanism of grafted seedless watermelon. Anhui Nongxueyuan Xuebao 2002, 29, 336–339. [Google Scholar]
- Li, R.; Zheng, Y.; Fei, Z.; Ling, K.-S. First complete genome sequence of an emerging cucumber green mottle mosaic virus isolate in North America. Genome Announc. 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Simko, I.; Piepho, H.-P. The area under the disease progress stairs: Calculation, advantage, and application. Anal. Theor. Plant Pathol. 2012, 102, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Jeger, M.J.; Viljanen-Rollinson, S.L.H. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor. Appl. Genet. 2001, 102, 32–40. [Google Scholar] [CrossRef]
- Hassell, R.L.; Memmott, F.; Liere, D.G. Grafting methods for watermelon production. HortScience 2008, 43, 1677–1679. [Google Scholar] [CrossRef] [Green Version]
- Stedman, R.L.; Kravitz, E.; Bell, H. Studies on the efficiencies of disinfectants for use on inanimate objects: III. Physicochemical factors affecting Surface disinfection. Appl. Microbiol. 1955, 3, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Stedman, R.L.; Kravitz, E.; Bell, H. Studies on the efficiencies of disinfectants for use on inanimate objects: IV. Factors of importance in practical disinfecting procedures. Appl. Microbiol. 1955, 3, 273–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čech, M.; Branišová, H. Nonrelatedness between symptoms and cucumber virus 4 content in different cucumber cultivars. Biol. Plant. 1976, 18, 58–62. [Google Scholar] [CrossRef]
- Usanmaz, S.; Abak, K. Plant growth and yield of cucumber plants grafted on different commercial and local rootstocks grown under salinity stress. Saudi J. Biol. Sci. 2019, 26, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Seong, K.C.; Moon, J.H.; Lee, S.G.; Kang, Y.G.; Kim, K.Y.; Seo, H.D. Growth, lateral shoot development, and fruit yield of white-spined cucumber (Cucumis sativus cv. Baekseong-3) as affected by grafting methods. J. Korean Soc. Hortic. Sci. 2003, 44, 478–482. [Google Scholar]
Cucumber Type | Seed Company | Variety Name and (#) | High Resistance | Intermediate Resistance |
---|---|---|---|---|
Mini | Rijk Zwaan | Sunniwell (1) | Ccu | CGMMV/CMV/CVYV/Px |
Deltastar (2) | Cca/Ccu/Px | CMV/CVYV | ||
RZ 22-551 (3) | CGMMV | - | ||
Khassib (4) | Ccu/Px | CMV/CVYV/PRSV/WMV/ZYMV | ||
Monsanto/De Ruiter | Jawell (5) | - | CMV/CVYV/Px | |
Enza Zaden | Katrina (6) | Ccu | Px/CMV/CVYV | |
Long English | Monsanto/De Ruiter | DR4879CE (7) | Px | CGMMV |
Syngenta | Bomber (8) | Px | CGMMV/CMV | |
LC13900 (9) | CGMMV | - | ||
Enza Zaden | Dee Lite (10) | Ccu | CGMMV/CMV/CVYV/Px | |
Komet (11) | Cca/Ccu | CGMMV/CMV/CVYV/Px | ||
Rijk Zwaan | Bonbon (12) | CGMMV/Ccu | CVYV/Px | |
Verdon (13) | CGMMV/Cca/Ccu/Px | CMV/CVYV | ||
Addison (14) | Ccu/Px | CGMMV/CMV/CVYV | ||
Nunhems | Sepire (15) | CGMMV | - |
Post-Crop Removal | Post-MS Topfoam Cleansing | Post-C-Clean Disinfection | Post-Virkon and Heat Disinfection | |
---|---|---|---|---|
Tray top | 0.303 ± 0.019 * a | 0.078 ± 0.005 b | 0.078 ± 0.004 b | 0.073 ± 0.001 b |
Tray gutter | 0.308 ± 0.035 a | 0.127 ± 0.026 b | 0.120 ± 0.024 b | 0.094 ± 0.015 b |
Cement alleyway | 0.292 ± 0.039 a | 0.149 ± 0.029 b | 0.131 ± 0.030 b | 0.078 ± 0.005 b |
Floor mats | 0.210 ± 0.027 a | 0.152 ± 0.044 a,b | 0.095 ± 0.010 b | 0.074 ± 0.001 b |
Rails | 0.259 ± 0.033 a | 0.095 ± 0.010 b | 0.095 ± 0.019 b | 0.097 ± 0.023 b |
Rail brackets | 0.296 ± 0.045 a | 0.119 ± 0.020 b | 0.101 ± 0.012 b | 0.117 ± 0.028 b |
Support posts | 0.186 ± 0.020 a | 0.087 ± 0.005 b | 0.085 ± 0.011 b | 0.081 ± 0.009 b |
Water hoses below trays | 0.231 ± 0.020 a | 0.101 ± 0.022 b | 0.094 ± 0.012 b | 0.079 ± 0.007 b |
Rear tray support | 0.189 ± 0.070 a | 0.088 ± 0.011 a | 0.082 ± 0.006 a | 0.089 ± 0.008 a |
Canopy heating pipes | 0.139 ± 0.018 a | 0.093 ± 0.009 b | 0.114 ± 0.009 a,b | 0.078 ± 0.005 b |
Rear end irrigation hoses | 0.137 ± 0.034 a | 0.101 ± 0.022 a | 0.096 ± 0.012 a | 0.093 ± 0.004 a |
Interior walls | 0.086 ± 0.005 a | 0.087 ± 0.008 a | 0.079 ± 0.005 a | 0.080 ± 0.006 a |
Perimeter heating pipes | 0.107 ± 0.003 a | 0.083 ± 0.003 b | 0.087 ± 0.009 b | 0.077 ± 0.003 b |
Walls-shade curtain | 0.074 ± 0.001 a | 0.081 ± 0.006 a | 0.080 ± 0.007 a | 0.072 ± 0.000 a |
Cropping wires | 0.109 ± 0.015 a | 0.080 ± 0.004 a | 0.092 ± 0.017 a | 0.095 ± 0.011 a |
Negative control | 0.075 ± 0.001 a | 0.071 ± 0.001 a,b | 0.069 ± 0.001 b | 0.073 ± 0.001 a |
Positive control | 0.346 ± 0.002 a | 0.341 ± 0.001 b | 0.346 ± 0.001 a | 0.348 ± 0.001 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellouze, W.; Mishra, V.; Howard, R.J.; Ling, K.-S.; Zhang, W. Preliminary Study on the Control of Cucumber Green Mottle Mosaic Virus in Commercial Greenhouses Using Agricultural Disinfectants and Resistant Cucumber Varieties. Agronomy 2020, 10, 1879. https://doi.org/10.3390/agronomy10121879
Ellouze W, Mishra V, Howard RJ, Ling K-S, Zhang W. Preliminary Study on the Control of Cucumber Green Mottle Mosaic Virus in Commercial Greenhouses Using Agricultural Disinfectants and Resistant Cucumber Varieties. Agronomy. 2020; 10(12):1879. https://doi.org/10.3390/agronomy10121879
Chicago/Turabian StyleEllouze, Walid, Vachaspati Mishra, Ronald J. Howard, Kai-Shu Ling, and Weizheng Zhang. 2020. "Preliminary Study on the Control of Cucumber Green Mottle Mosaic Virus in Commercial Greenhouses Using Agricultural Disinfectants and Resistant Cucumber Varieties" Agronomy 10, no. 12: 1879. https://doi.org/10.3390/agronomy10121879
APA StyleEllouze, W., Mishra, V., Howard, R. J., Ling, K. -S., & Zhang, W. (2020). Preliminary Study on the Control of Cucumber Green Mottle Mosaic Virus in Commercial Greenhouses Using Agricultural Disinfectants and Resistant Cucumber Varieties. Agronomy, 10(12), 1879. https://doi.org/10.3390/agronomy10121879