Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology Framework
2.3. Identification of Criteria and Subcriteria
2.4. Datasets Sources and Processing
2.5. Standardization of Subcriteria Layers through Suitability Thresholds
2.6. Analytical Hierarchy Process (AHP)
2.7. Weighted Overlay of Thematic Maps
3. Results
3.1. Descriptive Statistics for Soil Properties
3.2. Subcriteria Importance Weights
3.3. Suitability Submodels for Potato Cultivation
3.4. Land Suitability Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mussardo, G. Ampliando la frontera agrícola de la papa (Solanum tuberosum L.) para disminuir los efectos del cambio climático. Stat. Field 2019, 53, 1689–1699. [Google Scholar]
- Zhao, J.; Zhan, X.; Jiang, Y.; Xu, J. Variations in climatic suitability and planting regionalization for potato in northern China under climate change. PLoS ONE 2018, 13, e0203538. [Google Scholar] [CrossRef] [PubMed]
- Reay, D. Climate-Smart Food; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-18205-2. [Google Scholar]
- Nathan, A.J.; Scobell, A. How China sees America. Foreign Aff. 2012, 91, 1–13. [Google Scholar]
- Laurente Blanco, L.F.; Laurente Quiñonez, F. Application of the ARIMA model for the production of potatoes in Puno-Perú region. Rev. De Investig. E Innovación Agropecu. Y De Recur. Nat. 2019, 6, 30–40. [Google Scholar]
- Torres García, M. Aplicaciones Geomáticas en Agricultura; Universitat Politècnica de València: Valencia, Spain, 2017. [Google Scholar]
- Zolekar, R.B.; Bhagat, V.S. Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Comput. Electron. Agric. 2015, 118, 300–321. [Google Scholar] [CrossRef]
- Salas López, R.; Gómez Fernández, D.; Silva López, J.O.; Rojas Briceño, N.B.; Oliva, M.; Terrones Murga, R.E.; Iliquín Trigoso, D.; Barboza Castillo, E.; Barrena Gurbillón, M.Á. Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS Int. J. Geo Inf. 2020, 9, 673. [Google Scholar] [CrossRef]
- Briceño, N.B.; Castillo, E.B.; Quintana, J.L.; Cruz, S.M.; López, R.S. Deforestación en la Amazonía peruana: Índices de cambios de cobertura y uso del suelo basado en SIG. Boletín Asoc. Geógrafos Españoles 2019, 81, 1–34. [Google Scholar]
- Mishra, A.K.; Deep, S.; Choudhary, A. Identification of suitable sites for organic farming using AHP & GIS. Egypt. J. Remote Sens. Space Sci. 2015, 18, 181–193. [Google Scholar]
- Kamkar, B.; Dorri, M.A.; Da Silva, J.A.T. Assessment of land suitability and the possibility and performance of a canola (Brassica napus L.)—Soybean (Glycine max L.) rotation in four basins of Golestan province, Iran. Egypt. J. Remote Sens. Space Sci. 2014, 17, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Aldababseh, A.; Temimi, M.; Maghelal, P.; Branch, O.; Wulfmeyer, V. Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability 2018, 10, 803. [Google Scholar] [CrossRef] [Green Version]
- MINAGRI. Decreto Supremo N° 017-2009-AG. Aprueban Reglamento de Clasificación de Tierras por su Capacidad de Uso Mayor; MINAGRI: Lima, Peru, 2009.
- INRENA. Mapa Ecológico del Perú. Guía Explicativa; MINAGRI: Lima, Peru, 1995.
- MINAGRI. Decreto Supremo N° 013-2010-AG. Aprueban el Reglamento para la Ejecución de Levantamiento de Suelos; MINAGRI: Lima, Peru, 2010.
- MINAM. Zonificación Ecológica y Económica (ZEE). Available online: https://www.minam.gob.pe/ordenamientoterritorial/zonificacion-ecologica-y-economica-zee/ (accessed on 20 November 2020).
- FAO. Agro-Ecological Zoning: Guidelines; Soil Resources, Management and Conservation Service: Roma, Italy, 1996. [Google Scholar]
- Srdjevic, B. Combining different prioritization methods in the analytic hierarchy process synthesis. Comput. Oper. Res. 2005, 32, 1897–1919. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the Analytic Hierarchy Process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Kamau, S.W.; Kuria, D.; Gachari, M.K. Crop-land Suitability Analysis Using GIS and Remote Sensing in Nyandarua County, Kenya. J. Environ. Earth Sci. 2015, 5, 121–132. [Google Scholar]
- Singha, C.; Swain, K.C.; Swain, S.K. Best crop rotation selection with GIS-AHP technique using soil nutrient variability. Agriculture 2020, 10, 213. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Tuffour, H.O.; Bagherzadeh, A.; Tattrah, L.P.; Kumar, V.; Gholizadeh, A.; Rodrigo-Comino, J. Using fuzzy-AHP and parametric technique to assess soil fertility status in Northeast of Iran. J. Mt. Sci. 2020, 17, 931–948. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Gholizadeh, A.; Keshavarzi, A. Assessment of soil fertility index for potato production using integrated fuzzy and AHP approaches, northeast of Iran. Eurasian J. Soil Sci. 2018, 7, 203–212. [Google Scholar] [CrossRef]
- Herzberg, R.; Pham, T.G.; Kappas, M.; Wyss, D.; Tran, C.T.M. Multi-criteria decision analysis for the land evaluation of potential agricultural land use types in a hilly area of Central Vietnam. Land 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Ostovari, Y.; Honarbakhsh, A.; Sangoony, H.; Zolfaghari, F.; Maleki, K.; Ingram, B. GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions. Ecol. Indic. 2019, 103, 479–487. [Google Scholar] [CrossRef]
- Zhang, J.; Su, Y.; Wu, J.; Liang, H. GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Comput. Electron. Agric. 2015, 114, 202–211. [Google Scholar] [CrossRef]
- Pilevar, A.R.; Matinfar, H.R.; Sohrabi, A.; Sarmadian, F. Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecol. Indic. 2020, 110, 105887. [Google Scholar] [CrossRef]
- Amini, S.; Rohani, A.; Aghkhani, M.H.; Abbaspour-Fard, M.H.; Asgharipour, M.R. Assessment of land suitability and agricultural production sustainability using a combined approach (Fuzzy-AHP-GIS): A case study of Mazandaran province, Iran. Inf. Process. Agric. 2020, 7, 384–402. [Google Scholar] [CrossRef]
- Tashayo, B.; Honarbakhsh, A.; Akbari, M.; Eftekhari, M. Land suitability assessment for maize farming using a GIS-AHP method for a semi- arid region, Iran. J. Saudi Soc. Agric. Sci. 2020, 19, 332–338. [Google Scholar] [CrossRef]
- Tashayo, B.; Honarbakhsh, A.; Azma, A.; Akbari, M. Combined Fuzzy AHP–GIS for Agricultural Land Suitability Modeling for a Watershed in Southern Iran. Environ. Manag. 2020, 66, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Mighty, M.A. Site suitability and the analytic hierarchy process: How GIS analysis can improve the competitive advantage of the Jamaican coffee industry. Appl. Geogr. 2015, 58, 84–93. [Google Scholar] [CrossRef]
- Kazemi, H.; Sadeghi, S.; Akinci, H. Developing a land evaluation model for faba bean cultivation using geographic information system and multi-criteria analysis (A case study: Gonbad-Kavous region, Iran). Ecol. Indic. 2016, 63, 37–47. [Google Scholar] [CrossRef]
- Pramanik, M.K. Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Syst. Environ. 2016, 2, 56. [Google Scholar] [CrossRef] [Green Version]
- Yalew, S.G.; van Griensven, A.; Mul, M.L.; van der Zaag, P. Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Model. Earth Syst. Environ. 2016, 2, 101. [Google Scholar] [CrossRef] [Green Version]
- Bozdağ, A.; Yavuz, F.; Günay, A.S. AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environ. Earth Sci. 2016, 75, 813. [Google Scholar] [CrossRef]
- Madrigal-Martínez, S.; Puga-Calderón, R.J. Aptitud de la tierra y analisis de sensitividad en la planificacion del cultivo del manzano en el valle Mala, Peru. BIOAGRO 2018, 30, 95–107. [Google Scholar]
- INEI. Resultados definitivos de los Censos Nacionales 2017: Amazonas. In Censos Nacionales 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas; INEI: Lima, Peru, 2017; pp. 1–11347. [Google Scholar]
- INEI. Resultados Definitivos. IV Censo Nacional Agropecuario; INEI: Lima, Peru, 2012.
- Obando, N.V.; Oliva, M. Nematodos fitoparásitos asociados al cultivo de papa (Solanum tuberosum L.) en la provincia de Luya, Amazonas. Rev. Indes 2015, 1, 94–101. [Google Scholar]
- UNTRM. Estudio Semidetallado De Suelos Y Clasificación De Tierras Por Su Capacidad De Uso Mayor De La Microcuenca Tincas Y Jucusbamba; INDES-CES: Chachapoyas, Peru, 2016. [Google Scholar]
- Vargas, J. Clima, informe temático. In Proyecto Zonificación Ecológica y Económica del departamento de Amazonas; Convenio entre el IIAP y el Gobierno Regional de Amazonas: Iquitos, Peru, 2010. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Avilés, J.; Piedra, R. Manual del Cultivo de Papa en Costa Rica (Solanum tuberosum L.); Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria (INTA): San José, Costa Rica, 2017; ISBN 9789968586115. [Google Scholar]
- Inostroza, J.; Méndez, P.; Espinoza, N.; Kramm, V. Manual del Cultivo de la Papa en Chile; Instituto de Investigaciones Agropecuarias (INIA): Santiago, Chile, 2007. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Olivares, B.O.; Hernández, R.A. Sectorización ecoterritorial para la producción agrícola sostenible del cultivo de papa (Solanum tuberosum L.) en Carabobo, Venezuela. Cienc. Y Tecnol. Agropecu. 2019, 20, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Grisales, O. Suitable Land for Potato Cultivation in the Västra Nyland Region: A GIS Method Template for Field Selection. Bachelor’s Thesis, Sustainable Coastal Management, Novia University of Applied Sciences, Ekenäs, Finland, 2020. [Google Scholar]
- NASA. NASA’s Earth Observing System Data and Information System (EOSDIS). Available online: https://search.asf.alaska.edu/#/?flightDirs= (accessed on 15 June 2020).
- Castañeda, R.A.M.; Davila, Á.E.O. Máquinas de soporte vectorial para clasificación supervisada de imágenes en bases de datos espaciales. Rev. Ibérica De Sist. E Tecnol. De Inf. 2018, 17, 538–552. [Google Scholar]
- MINAM. Mapa Nacional de Cobertura Vegetal. Memoria Descriptiva; Dirección General de Evaluación, Valoración y Financiamiento del Patrimonio Natural: Lima, Perú, 2015. [Google Scholar]
- MTC. Descarga de Datos Espaciales. Available online: https://portal.mtc.gob.pe/estadisticas/descarga.html (accessed on 20 June 2020).
- MINEDU. Descarga de Información Espacial del MED. Available online: http://sigmed.minedu.gob.pe/descargas/ (accessed on 20 June 2020).
- GRA; IIAP. Zonificación Ecológica y Económica (ZEE) del Departamento de Amazonas; Gobierno Regional de Amazonas (GRA) and Instituto de Investigaciones de la Amazonía Peruana (IIAP): Iquitos, Peru, 2010. [Google Scholar]
- Quiñones, L.; Barrena, M.; Gosgot, W.; Salas, R.; Milla, M. Estimación de la radiación solar diaria para la ciudad de Bagua, región Amazonas, Perú. Sel. Mat. 2019, 6, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J. Clases Texturales de Suelo Utilizando el Raster Calculator de QGIS. Available online: https://joseguerreroa.wordpress.com/2015/04/06/clases-texturales-de-suelo-utilizando-el-raster-calculator-de-qgis/ (accessed on 30 June 2020).
- Effat, H.A.; Hassan, O.A. Designing and evaluation of three alternatives highway routes using the Analytical Hierarchy Process and the least-cost path analysis, application in Sinai Peninsula, Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Fadlalla, R.; Elsheikh, A. Physical Land Suitability Assessment Based On FAO Framework. IOSR J. Eng. 2016, 6, 1–36. [Google Scholar]
- FAO. Land suitability classifications. In A Framework for Land Evaluation; FAO: Roma, Italy, 1976; ISBN 9251001111. [Google Scholar]
- Higgins, G.M.; Kassam, A.H. The FAO Agro-ecological zone approach to determination of land potential. Pedologie 1981, 2, 147–168. [Google Scholar]
- He, Y.; Zhou, Y.; Cai, W.; Wang, Z.; Duan, D.; Luo, S.; Chen, J. Using a process-oriented methodology to precisely evaluate temperature suitability for potato growth in China using GIS. J. Integr. Agric. 2017, 16, 1520–1529. [Google Scholar] [CrossRef] [Green Version]
- Djaenudin, D.; Hidayat, A.; Suhardjo, H. Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian; Edisi Kedua Tahun: Bogor, Indonesia, 2011; ISBN 9786028977319. [Google Scholar]
- Ospina Sangama, P.G. Determinar la Zona Agroecológica Apta para el cultivo de papa en Funza-Cundinamarca Usando un Sistema de Información Geográfica (SIG). Bachelor’s Thesis, Universidad Militar Granada, Bogotá, Colombia, 2017. [Google Scholar]
- Roger, K.E.; Bernard, P.K.Y.; Georges, K.K. Soil physico-chemical properties and land suitability evaluation for maize (Zea mays), beans (Phaseolus vulgaris) and Irish potatoes (Solanum tuberosum) in tephra soils of the western slopes of mount Kupe (Cameroon). Afr. J. Agric. Res. 2016, 11, 4571–4583. [Google Scholar] [CrossRef] [Green Version]
- Arias, K.; Arnaude de Chacón, O. Effect of the fertilization chemical, organic and combined on the yield of variety Granola. Agron. Trop. 2010, 60, 75–84. [Google Scholar]
- Achu, A.L.; Thomas, J.; Reghunath, R. Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundw. Sustain. Dev. 2020, 10, 100365. [Google Scholar] [CrossRef]
- Francisco, H.R.; Fabrício Corrêia, A.; Feiden, A. Classification of Areas Suitable for Fish Farming Using Geotechnology and Multi-Criteria Analysis. Int. J. Geo Inf. 2019, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Calle Yunis, C.R.; Salas López, R.; Cruz, S.M.; Barboza Castillo, E.; Silva López, J.O.; Iliquín Trigoso, D.; Rojas, B.N. Land suitability for sustainable aquaculture of rainbow trout (Oncorhynchus mykiss) in molinopampa (Peru) based on RS, GIS, and AHP. Isprs Int. J. Geo Inf. 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Aguarón, J.; Moreno-Jiménez, J.M. The geometric consistency index: Approximated thresholds. Eur. J. Oper. Res. 2003, 147, 137–145. [Google Scholar] [CrossRef]
- Bozóki, S.; Rapcsák, T. On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. J. Glob. Optim. 2008, 42, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Duc, T.T. Using GIS and AHP technique for land-use suitability analysis. In International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences; Japan-Vietnam Geoinformatics Consortium Institute for Environment and Resources: Ho Chi Minh, Vietnam, 2006; pp. 1–6. [Google Scholar]
- Garbanzo-León, G.; Alemán-Montes, B.; Alvarado-Hernández, A.; Henríquez-Henríquez, C. Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investig. Geogr. 2017, 2017, 20–41. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Dai, T.; Shi, W.; Zhang, X.; Xiao, Y.; Song, W.; Li, B.; Wang, Y. Prediction of soil cadmium distribution across a typical area of Chengdu Plain, China. Sci. Rep. 2017, 7, 7115. [Google Scholar] [CrossRef]
- Gallardo, A. Geostadística. Rev. Ecosistemas 2006, 15, 5. [Google Scholar]
- FAO. Factores que condicionan la producción. In El Cultivo Protegido en Clima Mediterráneo; FAO: Roma, Italy, 2002; ISBN 9253027193. [Google Scholar]
- Rodriguez, J.Q.; Quezada, U.R.; Benavides, R.A.; Medrano, J.A. Determinación de coeficientes de uso consuntivo (Kc) en cultivo de papa (Solanum tuberosum) por el método lisimétrico en el valle del Mantaro. PURIQ 2020, 2, 290–306. [Google Scholar]
- Barboza Castillo, E.; Turpo Cayo, E.Y.; de Almeida, C.M.; Salas López, R.; Rojas Briceño, N.B.; Silva López, J.O.; Barrena Gurbillón, M.Á.; Oliva, M.; Espinoza-Villar, R. Monitoring Wildfires in the Northeastern Peruvian Amazon Using Landsat-8 and Sentinel-2 Imagery in the GEE Platform. ISPRS Int. J. Geo Inf. 2020, 9, 564. [Google Scholar] [CrossRef]
- Lara, E.L.; Rasche, L.; Schneider, U.A. Modeling land suitability for Coffea arabica L. in Central America. Environ. Model. Softw. 2017, 95, 196–209. [Google Scholar] [CrossRef]
- Akinci, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- MINAM. GEOBOSQUES: Bosque y Pérdida de Bosque. Available online: http://geobosques.minam.gob.pe/geobosque/view/perdida.php (accessed on 6 October 2020).
- Figueroa, J.; Stucchi, M.; Rojas-VeraPinto, R. Modelación de la distribución del oso andino Tremarctos ornatus en el bosque seco del Marañón (Perú). Rev. Mex. Biodivers. 2016, 87, 230–238. [Google Scholar] [CrossRef] [Green Version]
Criteria/Subcriteria | Highly Suitable (4) 2 | Moderately Suitable (3) 2 | Marginally Suitable (2) 2 | Not Suitable (1) 2 | Adapted from |
---|---|---|---|---|---|
Climatological | |||||
Mean annual temperature (°C) | 9–11 | 11–15 | 15–18 | <9/>18 | [29,30,46,61,62] |
Mean annual precipitation (mm) | 1000–1200 | 1000–800 1200–1300 | 800–500 1300–1400 | <500 >1400 | [20,43,46] |
Topographical | |||||
Elevation (m a.s.l.) | 2600–2300 | 2300–2000 2600–3500 | 2000–1500 3500–4500 | <1500 >4500 | [29,43,46] |
Slope (°) | 0–12 | 13–18 | 18–25 | >25 | [24,30,43,46] |
Aspect | SW, plana | S, SE | E, W | NW, NE, N | [33,35] |
Socioeconomical | |||||
LULC | Forest | Pastures and crop | Grasslands | Urban areas and bodies of water | [63] |
Distance to rivers (km) | <0.5 | 0.5–1.5 | 1.5–2 | >2 | [33] |
Distance to roads (km) | <0.5 | 0.5–1.5 | 1.5–3.0 | >3.0 | [33] |
Edaphological | |||||
Texture 1 | L, SL, SiL | CL, SiCL, SC | Si, LS, SiC | S, C | [43] |
pH | 5.5–7 | 5–5.5/7–7.5 | 4–5/7.5–8 | <4 / >8 | [46,64] |
SOM (%) | 5–10 | 5–2.5 | 2.5–1 | <1 | [46,64] |
N (%) | >0.30 | 0.225–0.30 | 0.125–0.225 | <0.125 | [46,64,65] |
P (ppm) | 20–40 | 15–20/>40 | 15–10 | <10 | [43,64] |
K (ppm) | >350 | 200–350 | 100–200 | <100 | [21,46,64] |
CEC (cmol(+)/kg) | 30–50 | 50–60/30–20 | 60–70/20–10 | >70/<10 | [64] |
EC (dS/m) | <4 | 4–6 | 6–8 | >8 | [21,64] |
1/9 | 1/7 | 1/5 | 1/3 | 1 | 3 | 5 | 7 | 9 |
---|---|---|---|---|---|---|---|---|
Extremely | Far | Slightly | Equally important | Slightly | Far | Extremely | ||
Less important | More important |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IA | 0 | 0 | 0.525 | 0.882 | 1.115 | 1.252 | 1.341 | 1.404 | 1.452 | 1.484 | 1.513 | 1.535 | 1.555 | 1.570 | 1.583 | 1.595 |
pH | EC (dS/m) | SOM (%) | Log SOM | N (%) | P (ppm) | K (ppm) | Log P | CEC (cmol(+)/kg) | Sand (%) | Silt (%) | Clay (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 6.86 | 0.23 | 5.82 | 0.71 | 0.26 | 9.26 | 207.29 | 0.74 | 24.86 | 48.52 | 17.73 | 33.75 |
Median | 7.63 | 0.14 | 5.48 | 0.74 | 0.25 | 5.20 | 194.00 | 0.72 | 30.50 | 50.00 | 16.00 | 30.60 |
Minimum | 2.84 | 0.01 | 1.41 | 0.15 | 0.04 | 0.28 | 26.40 | −0.55 | 4.00 | 10.00 | 5.30 | 7.30 |
Maximum | 8.79 | 0.66 | 35.30 | 1.55 | 0.54 | 66.30 | 476.19 | 1.82 | 39.05 | 82.00 | 56.00 | 78.70 |
Std. dev | 1.54 | 0.18 | 4.05 | 0.22 | 0.11 | 10.89 | 114.05 | 0.47 | 11.77 | 18.58 | 7.27 | 18.05 |
CV (%) 1 | 22.47 | 78.26 | 69.70 | 44.13 | 117.51 | 55.02 | 47.33 | 38.30 | 41.01 | 53.47 | ||
Skewness 2 | −0.67 | 0.53 | 5.50 | 0.08 | 0.24 | 3.11 | 0.34 | −0.44 | −0.57 | −0.27 | 2.06 | 0.48 |
Kurtosis | −0.95 | −0.99 | 37.11 | 2.55 | −0.53 | 11.54 | −0.72 | 0.55 | −1.31 | −0.77 | 9.00 | −0.65 |
Physical Chemical Property | Semivariogram Model | R2 | MBE | MABE | RMSE | t-Student |
---|---|---|---|---|---|---|
pH | Gaussian | 0.650 | 0.199 | 0.873 | 1.064 | 0.505 |
N | Gaussian | 0.078 | 0.073 | 0.105 | 0.121 | 0.018 |
P | Spherical | 0.299 | 2.157 | 7.742 | 9.165 | 0.398 |
K | Linear | 0.403 | 20.078 | 100.195 | 116.222 | 0.538 |
SOM | Gaussian | 0.081 | 1.444 | 2.102 | 2.408 | 0.018 |
EC | Gaussian | 0.393 | 0.098 | 0.154 | 0.178 | 0.035 |
CEC | Exponential | 0.796 | -0.769 | 5.643 | 6.841 | 0.690 |
Sand | Gaussian | 0.481 | -0.247 | 11.516 | 14.844 | 0.953 |
Clay | Exponential | 0.607 | 1.560 | 11.252 | 12.824 | 0.666 |
Silt | Linear | 0.021 | -1.666 | 4.951 | 6.053 | 0.321 |
Criteria | Weight | Ranking | Subcriteria | Weight | Ranking | Standardized Weight | Standardized Ranking |
---|---|---|---|---|---|---|---|
Climatological | 30.14 | 1 | Temperature | 42.08 | 3 | 12.68 | 2 |
Precipitation | 57.92 | 1 | 17.46 | 1 | |||
Topographical | 25.72 | 3 | Slope | 54.75 | 1 | 14.08 | 2 |
Elevation | 31.06 | 2 | 7.99 | 4 | |||
Aspect | 14.20 | 3 | 3.65 | 13 | |||
Socioeconomical | 14.98 | 4 | LULC | 47.64 | 1 | 7.14 | 5 |
Distance to roads | 26.56 | 3 | 3.98 | 9 | |||
Distance to rivers | 25.80 | 2 | 3.86 | 12 | |||
Edaphological | 29.16 | 2 | Texture | 9.24 | 8 | 2.69 | 16 |
pH | 14.49 | 2 | 4.23 | 7 | |||
SOM | 16.51 | 1 | 4.81 | 6 | |||
N | 13.98 | 3 | 4.08 | 8 | |||
P | 13.43 | 4 | 3.92 | 10 | |||
K | 13.42 | 5 | 3.91 | 11 | |||
EC | 9.42 | 7 | 2.75 | 15 | |||
CEC | 9.52 | 6 | 2.78 | 14 |
Ratio | Criteria | Climatological Subcriteria | Topographical Subcriteria | Socioeconomical Subcriteria | Edaphological Subcriteria |
---|---|---|---|---|---|
n | 4 | 2 | 3 | 4 | 8 |
RI | 0.882 | 0.00 | 0.525 | 0.882 | 1.404 |
3.992 | - | 3.042 | 4.263 | 8.403 | |
CI | 0.031 | - | 0.021 | 0.088 | 0.058 |
CR | 0.037 | Consistent and acceptable | 0.040 | 0.022 | 0.041 |
Criteria/Subcriteria | Highly Suitable (4) | Moderately Suitable (3) | Marginally Suitable (2) | Not Suitable (1) | ||||
---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | |
Climatological | 34.30 | 12.3 | 217.64 | 78.3 | 21.45 | 7.7 | 0.00 | 0.0 |
Temperature | 47.39 | 17.0 | 140.18 | 50.4 | 84.46 | 30.4 | 1.36 | 0.5 |
Precipitation | 105.98 | 38.1 | 104.65 | 37.6 | 47.83 | 17.2 | 14.92 | 5.4 |
Topographical | 89.65 | 32.2 | 72.83 | 26.2 | 72.22 | 26.0 | 38.69 | 13.9 |
Slope | 102.76 | 37.0 | 58.79 | 21.1 | 45.61 | 16.4 | 66.23 | 23.8 |
Elevation | 92.17 | 33.2 | 107.53 | 38.7 | 68.73 | 24.7 | 4.96 | 1.8 |
Aspect | 27.86 | 10.0 | 82.27 | 29.6 | 77.32 | 27.8 | 85.95 | 30.9 |
Socioeconomical | 96.41 | 34.7 | 124.15 | 44.7 | 50.68 | 18.2 | 2.15 | 0.8 |
LULC | 129.61 | 46.6 | 55.75 | 20.1 | 51.17 | 18.4 | 36.86 | 13.3 |
Distance rivers | 157.05 | 56.5 | 71.70 | 25.8 | 34.42 | 12.4 | 10.22 | 3.7 |
Distance to roads | 117.61 | 42.3 | 75.42 | 27.1 | 58.83 | 21.2 | 21.53 | 7.7 |
Edaphological | 12.72 | 4.6 | 126.52 | 45.5 | 134.15 | 48.2 | 0.00 | 0.0 |
Texture | 92.14 | 33.1 | 18.17 | 6.5 | 105.61 | 38.0 | 57.47 | 20.7 |
pH | 104.39 | 37.5 | 112.77 | 40.6 | 56.23 | 20.2 | 0.00 | 0.0 |
SOM | 129.63 | 46.6 | 143.64 | 51.7 | 0.07 | 0.0 | 0.05 | 0.0 |
N | 261.94 | 94.2 | 11.38 | 4.1 | 0.06 | 0.0 | 0.01 | 0.0 |
P | 49.47 | 17.8 | 41.66 | 15.0 | 46.49 | 16.7 | 135.78 | 48.8 |
K | 0.83 | 0.3 | 173.51 | 62.4 | 99.06 | 35.6 | 0.00 | 0.0 |
CEC | 59.48 | 21.4 | 116.02 | 41.7 | 82.37 | 29.6 | 15.52 | 5.6 |
CE | 83.77 | 30.1 | 97.03 | 34.9 | 91.99 | 33.1 | 0.60 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliquín Trigoso, D.; Salas López, R.; Rojas Briceño, N.B.; Silva López, J.O.; Gómez Fernández, D.; Oliva, M.; Quiñones Huatangari, L.; Terrones Murga, R.E.; Barboza Castillo, E.; Barrena Gurbillón, M.Á. Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach. Agronomy 2020, 10, 1898. https://doi.org/10.3390/agronomy10121898
Iliquín Trigoso D, Salas López R, Rojas Briceño NB, Silva López JO, Gómez Fernández D, Oliva M, Quiñones Huatangari L, Terrones Murga RE, Barboza Castillo E, Barrena Gurbillón MÁ. Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach. Agronomy. 2020; 10(12):1898. https://doi.org/10.3390/agronomy10121898
Chicago/Turabian StyleIliquín Trigoso, Daniel, Rolando Salas López, Nilton B. Rojas Briceño, Jhonsy O. Silva López, Darwin Gómez Fernández, Manuel Oliva, Lenin Quiñones Huatangari, Renzo E. Terrones Murga, Elgar Barboza Castillo, and Miguel Ángel Barrena Gurbillón. 2020. "Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach" Agronomy 10, no. 12: 1898. https://doi.org/10.3390/agronomy10121898
APA StyleIliquín Trigoso, D., Salas López, R., Rojas Briceño, N. B., Silva López, J. O., Gómez Fernández, D., Oliva, M., Quiñones Huatangari, L., Terrones Murga, R. E., Barboza Castillo, E., & Barrena Gurbillón, M. Á. (2020). Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach. Agronomy, 10(12), 1898. https://doi.org/10.3390/agronomy10121898