Investigating Sentinel 2 Multispectral Imagery Efficiency in Describing Spectral Response of Vineyards Covered with Plastic Sheets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Test Vineyards
2.2. Available Satellite Data
2.3. Available Ground Data
2.4. Testing Spectral Differences: Bands and Indices
2.5. Biophysical Effects of Differences: NDVI Versus GDD
3. Results and Discussion
3.1. Temporal Trends of Vegetation Reflectances/Indices (Mean Values)
3.2. Temporal Trends of Spatial Variability of Reflectances/Indices within Vineyards
3.3. GDD vs. NDVI Viticultural Meaning
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roca, P. State of the Vitiviniculture World Market. 42nd Word Congress of Vine & Wine. Geneva. Available online: http://www.oiv.int/ (accessed on 15 July 2019).
- Novello, V.; de Palma, L. Growing Grapes Under Cover. Acta Hortic. 2008, 353–362. [Google Scholar] [CrossRef]
- Ilić, Z.; Milenković, L.; Đurovka, M.; Kapoulas, N. The effect of color shade nets on the greenhouse climate and pepper yield. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, 14–18 February 2011; pp. 529–532. [Google Scholar]
- Kittas, C.; Rigakis, N.; Katsoulas, N.; Bartzanas, T. Influence of shading screens on microclimate, growth and productivity of tomato. Acta Hortic. 2009, 97–102. [Google Scholar] [CrossRef]
- Pedro Júnior, M.J.; Hernandes, J.L.; de Rolim, G.S. Sistema de condução em Y com e sem cobertura plástica: Microclima, produção, qualidade do cacho e ocorrência de doenças fúngicas na videira “Niagara Rosada”. Bragantia 2011, 70, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Novello, V.; de Palma, L.; Tarricone, L. Influence of cane girdling and plastic covering on leaf gas exchange, water potential and viticultural performance of table grape cv. Matilde. Vitis 1999, 38, 51–54. [Google Scholar]
- Heuvel, J.E.V.; Proctor, J.T.A.; Fisher, K.H.; Sullivan, J.A. Shading Affects Morphology, Dry-matter Partitioning, and Photosynthetic Response of Greenhouse-grown ‘Chardonnay’ Grapevines. HortScience 2004, 39, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Novello, V.; de Palma, L.; Tarricone, L.; Vox, G. Effects of different plastic sheet coverings on microclimate and berry ripening of table grape cv Matilde. Int. Sci. Vigne Vin 2000, 34, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Vox, G.; Schettini, E.; Scarascia Mugnozza, G.; Tarricone, L.; de Palma, L. Covering Plastic Films for Vineyard Protected Cultivation. Acta Hort. 2014, 1037, 897–904. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Sica, C.; Russo, G. Plastic Materials in European Agriculture: Actual Use and Perspectives. J. Agric. Eng. 2011, 42, 15–28. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Novello, V.; Lessio, A.; de Palma, L. Describing the spatio-temporal variability of vines and soil by satellite-based spectral indices: A case study in Apulia (South Italy). Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 42–50. [Google Scholar] [CrossRef]
- Tarantino, E.; Figorito, B. Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data. Remote Sens. 2012, 4, 1913–1928. [Google Scholar] [CrossRef] [Green Version]
- Novelli, A.; Tarantino, E. The contribution of Landsat 8 TIRS sensor data to the identification of plastic covered vineyards. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 16–19 March 2015; International Society for Optics and Photonics; Volume 9535, p. 95351E. [Google Scholar]
- Lessio, A.; Fissore, V.; Borgogno-Mondino, E. Preliminary Tests and Results Concerning Integration of Sentinel-2 and Landsat-8 OLI for Crop Monitoring. J. Imaging 2017, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A comparison between multispectral aerial and satellite imagery in precision viticulture. Precision Agric. 2017. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Lessio, A. A FFT-Based Approach to Explore Periodicity of Vines/Soil Properties in Vineyard from Time Series of Satellite-Derived Spectral Indices. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 9078–9081. [Google Scholar]
- De Palma, L.; Limosani, P.; Vox, G.; Schettini, E.; Antoniciello, D.; Laporta, F.; Brossé, V.; Novello, V. Technical properties of new agrotextile fabrics improving vineyard microclimate, table grape yield and quality. Acta Hortic. 2020, 1276. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, D.; Eichorn, D.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifer L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Enol. Vitic. Sci. 1994, 49, 66–70. [Google Scholar]
- Vanino, S.; Nino, P.; De Michele, C.; Falanga Bolognesi, S.; D’Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G.; et al. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 2015, 452–470. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Walker, J.J.; de Beurs, K.M.; Henebry, G.M. Land surface phenology along urban to rural gradients in the U.S. Great Plains. Remote Sens. Environ. 2015, 165, 42–52. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Costanza, P.; Tisseyre, B.; Hunter, J.J.; Deloire, A. Shoot Development and Non-Destructive Determination of Grapevine (Vitis vinifera L.) Leaf Area. S. Afr. J. Enol. Vitic. 2004, 25, 43–47. [Google Scholar] [CrossRef]
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Williams, L.E. Interaction of applied water amounts and leaf removal in the fruiting zone on grapevine water relations and productivity of Merlot. Irrig. Sci. 2012, 30, 363–375. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Effects of precipitation patterns and temperature trends on soil water available for vineyards in a Mediterranean climate area. Agric. Water Manag. 2010, 97, 1495–1505. [Google Scholar] [CrossRef]
Spectral Band | Center WL (nm) | Band Width (nm) | GSD (m) |
---|---|---|---|
b1 (aerosol) | 443 | 20 | 60 |
b2 (blue) | 490 | 65 | 10 |
b3 (green) | 560 | 35 | 10 |
b4 (red) | 665 | 30 | 10 |
b5 (RE) | 705 | 15 | 20 |
b6 (RE) | 740 | 15 | 20 |
b7 (RE) | 783 | 20 | 20 |
b8 (NIR) | 842 | 115 | 10 |
b8a (NIR plateau) | 885 | 20 | 20 |
b9 (water vapor) | 945 | 20 | 60 |
b10 (cirrus cloud) | 1380 | 30 | 60 |
b11 (SWIR) | 1610 | 90 | 20 |
b12 (SWIR) | 2190 | 180 | 20 |
Band | Vineyard Pair | Z | p (Z) | R | p (R) | Band | Vineyard Pair | Z | p (Z) | R | p (R) |
---|---|---|---|---|---|---|---|---|---|---|---|
b2 | S-C | −1.35 | 0.088 | 0.45 | 0.026 | b2 | C-V1 | −1.20 | 0.116 | 0.04 | 0.846 |
b3 | S-C | −1.18 | 0.120 | 0.58 | 0.003 | b3 | C-V1 | −1.97 | 0.024 | 0.36 | 0.084 |
b4 | S-C | −1.07 | 0.142 | 0.59 | 0.002 | b4 | C-V1 | −1.75 | 0.040 | 0.41 | 0.044 |
b5 | S-C | −0.36 | 0.359 | 0.66 | 0.000 | b5 | C-V1 | −1.77 | 0.038 | 0.45 | 0.028 |
b6 | S-C | −0.90 | 0.185 | 0.91 | 0.000 | b6 | C-V1 | −1.97 | 0.024 | 0.62 | 0.001 |
b7 | S-C | −0.97 | 0.166 | 0.94 | 0.000 | b7 | C-V1 | −1.46 | 0.072 | 0.68 | 0.000 |
b8 | S-C | −0.72 | 0.235 | 0.93 | 0.000 | b8 | C-V1 | −1.28 | 0.101 | 0.65 | 0.001 |
b8a | S-C | −0.72 | 0.235 | 0.95 | 0.000 | b8a | C-V1 | −1.24 | 0.108 | 0.69 | 0.000 |
b11 | S-C | −0.90 | 0.185 | 0.92 | 0.000 | b11 | C-V1 | −2.43 | 0.007 | 0.41 | 0.046 |
b12 | S-C | −0.87 | 0.193 | 0.85 | 0.000 | b12 | C-V1 | −2.38 | 0.009 | 0.33 | 0.114 |
NDVI | S-C | 0.04 | 0.484 | 0.74 | 0.000 | NDVI | C-V1 | −0.37 | 0.355 | 0.83 | 0.000 |
NDWI | S-C | −0.60 | 0.275 | 0.69 | 0.000 | NDWI | C-V1 | 0.51 | 0.307 | 0.57 | 0.004 |
b2 | S-V1 | −2.98 | 0.001 | 0.52 | 0.010 | b2 | C-V2 | −0.86 | 0.196 | −0.19 | 0.372 |
b3 | S-V1 | −3.80 | 0.000 | 0.62 | 0.001 | b3 | C-V2 | −1.71 | 0.044 | 0.17 | 0.428 |
b4 | S-V1 | −3.01 | 0.001 | 0.66 | 0.000 | b4 | C-V2 | −1.26 | 0.104 | −0.11 | 0.613 |
b5 | S-V1 | −2.75 | 0.003 | 0.60 | 0.002 | b5 | C-V2 | −0.79 | 0.214 | 0.33 | 0.114 |
b6 | S-V1 | −2.54 | 0.006 | 0.68 | 0.000 | b6 | C-V2 | −1.21 | 0.114 | 0.79 | 0.000 |
b7 | S-V1 | −2.25 | 0.012 | 0.75 | 0.000 | b7 | C-V2 | −0.87 | 0.193 | 0.88 | 0.000 |
b8 | S-V1 | −2.21 | 0.014 | 0.74 | 0.000 | b8 | C-V2 | −0.66 | 0.255 | 0.88 | 0.000 |
b8a | S-V1 | −2.00 | 0.023 | 0.76 | 0.000 | b8a | C-V2 | −0.64 | 0.261 | 0.88 | 0.000 |
b11 | S-V1 | −2.28 | 0.011 | 0.57 | 0.003 | b11 | C-V2 | −1.60 | 0.055 | 0.48 | 0.017 |
b12 | S-V1 | −2.14 | 0.016 | 0.44 | 0.033 | b12 | C-V2 | −2.08 | 0.019 | 0.26 | 0.212 |
NDVI | S-V1 | −0.12 | 0.451 | 0.92 | 0.000 | NDVI | C-V2 | 0.70 | 0.242 | 0.57 | 0.004 |
NDWI | S-V1 | −0.40 | 0.344 | 0.88 | 0.000 | NDWI | C-V2 | 0.87 | 0.193 | 0.37 | 0.077 |
b2 | S-V2 | −2.21 | 0.014 | 0.40 | 0.055 | b2 | V1-V2 | −2.44 | 0.007 | 0.90 | 0.000 |
b3 | S-V2 | −3.03 | 0.001 | 0.62 | 0.001 | b3 | V1-V2 | −3.73 | 0.000 | 0.91 | 0.000 |
b4 | S-V2 | −2.47 | 0.007 | 0.42 | 0.039 | b4 | V1-V2 | −2.90 | 0.002 | 0.57 | 0.004 |
b5 | S-V2 | −2.12 | 0.017 | 0.68 | 0.000 | b5 | V1-V2 | −2.84 | 0.002 | 0.79 | 0.000 |
b6 | S-V2 | −1.92 | 0.028 | 0.87 | 0.000 | b6 | V1-V2 | −3.20 | 0.001 | 0.92 | 0.000 |
b7 | S-V2 | −1.61 | 0.054 | 0.92 | 0.000 | b7 | V1-V2 | −2.78 | 0.003 | 0.91 | 0.000 |
b8 | S-V2 | −1.48 | 0.069 | 0.93 | 0.000 | b8 | V1-V2 | −2.70 | 0.003 | 0.89 | 0.000 |
b8a | S-V2 | −1.34 | 0.090 | 0.90 | 0.000 | b8a | V1-V2 | −2.56 | 0.005 | 0.92 | 0.000 |
b11 | S-V2 | −2.40 | 0.008 | 0.69 | 0.000 | b11 | V1-V2 | −2.99 | 0.001 | 0.83 | 0.000 |
b12 | S-V2 | −2.02 | 0.022 | 0.46 | 0.025 | b12 | V1-V2 | −3.30 | 0.000 | 0.69 | 0.000 |
NDVI | S-V2 | 0.74 | 0.229 | 0.89 | 0.000 | NDVI | V1-V2 | 0.66 | 0.255 | 0.83 | 0.000 |
NDWI | S-V2 | 0.14 | 0.443 | 0.69 | 0.000 | NDWI | V1-V2 | 0.88 | 0.190 | 0.73 | 0.000 |
Band | Vineyard Pair | Z | p (Z) | R | p (R) | Band | Vineyard Pair | Z | p (Z) | R | p (R) |
---|---|---|---|---|---|---|---|---|---|---|---|
b2 | S-C | 0.43 | 0.333 | 0.81 | 0.000 | b2 | C-V1 | 0.08 | 0.467 | 0.54 | 0.007 |
b3 | S-C | 0.00 | 0.500 | 0.71 | 0.000 | b3 | C-V1 | −0.49 | 0.310 | 0.34 | 0.103 |
b4 | S-C | −0.45 | 0.325 | 0.60 | 0.002 | b4 | C-V1 | −1.57 | 0.059 | 0.48 | 0.017 |
b5 | S-C | −0.29 | 0.386 | 0.60 | 0.002 | b5 | C-V1 | −2.25 | 0.012 | 0.43 | 0.038 |
b6 | S-C | 0.10 | 0.459 | 0.63 | 0.001 | b6 | C-V1 | −0.95 | 0.171 | 0.06 | 0.774 |
b7 | S-C | −0.76 | 0.223 | 0.76 | 0.000 | b7 | C-V1 | −1.11 | 0.133 | 0.07 | 0.728 |
b8 | S-C | −1.03 | 0.151 | 0.77 | 0.000 | b8 | C-V1 | −1.42 | 0.077 | 0.23 | 0.288 |
b8a | S-C | −0.47 | 0.318 | 0.71 | 0.000 | b8a | C-V1 | −1.81 | 0.035 | 0.37 | 0.071 |
b11 | S-C | −2.89 | 0.002 | 0.64 | 0.001 | b11 | C-V1 | −2.23 | 0.013 | 0.46 | 0.023 |
b12 | S-C | −2.54 | 0.006 | 0.65 | 0.001 | b12 | C-V1 | −1.94 | 0.026 | 0.67 | 0.000 |
NDVI | S-C | 0.54 | 0.296 | 0.56 | 0.004 | NDVI | C-V1 | −0.74 | 0.229 | 0.66 | 0.000 |
NDWI | S-C | −0.78 | 0.217 | 0.89 | 0.000 | NDWI | C-V1 | 0.68 | 0.248 | −0.02 | 0.920 |
b2 | S-V1 | 0.80 | 0.211 | 0.44 | 0.033 | b2 | C-V2 | −0.99 | 0.161 | 0.48 | 0.017 |
b3 | S-V1 | 0.64 | 0.261 | 0.31 | 0.141 | b3 | C-V2 | −1.28 | 0.101 | 0.55 | 0.006 |
b4 | S-V1 | 0.10 | 0.459 | 0.35 | 0.097 | b4 | C-V2 | −1.92 | 0.028 | 0.51 | 0.011 |
b5 | S-V1 | −0.85 | 0.199 | 0.21 | 0.318 | b5 | C-V2 | −1.01 | 0.156 | 0.36 | 0.082 |
b6 | S-V1 | −0.16 | 0.434 | 0.09 | 0.674 | b6 | C-V2 | −2.02 | 0.022 | 0.28 | 0.187 |
b7 | S-V1 | −0.23 | 0.410 | 0.20 | 0.360 | b7 | C-V2 | −2.35 | 0.009 | 0.54 | 0.007 |
b8 | S-V1 | −0.39 | 0.348 | 0.10 | 0.636 | b8 | C-V2 | −2.39 | 0.008 | 0.64 | 0.001 |
b8a | S-V1 | −0.68 | 0.248 | 0.37 | 0.078 | b8a | C-V2 | −2.25 | 0.012 | 0.48 | 0.017 |
b11 | S-V1 | −1.57 | 0.059 | 0.03 | 0.894 | b11 | C-V2 | −1.81 | 0.035 | 0.32 | 0.130 |
b12 | S-V1 | −1.36 | 0.087 | 0.13 | 0.544 | b12 | C-V2 | −2.08 | 0.019 | 0.54 | 0.007 |
NDVI | S-V1 | 0.72 | 0.235 | 0.38 | 0.068 | NDVI | C-V2 | −0.35 | 0.363 | 0.52 | 0.009 |
NDWI | S-V1 | 0.82 | 0.205 | −0.24 | 0.257 | NDWI | C-V2 | 0.10 | 0.459 | 0.40 | 0.051 |
b2 | S-V2 | −0.27 | 0.394 | 0.32 | 0.131 | b2 | V1-V2 | −0.87 | 0.193 | 0.43 | 0.038 |
b3 | S-V2 | −0.10 | 0.459 | 0.42 | 0.039 | b3 | V1-V2 | −1.01 | 0.156 | 0.42 | 0.041 |
b4 | S-V2 | 0.10 | 0.459 | 0.30 | 0.154 | b4 | V1−V2 | −1.18 | 0.120 | 0.74 | 0.000 |
b5 | S-V2 | −0.06 | 0.475 | 0.51 | 0.011 | b5 | V1-V2 | −1.34 | 0.090 | 0.59 | 0.002 |
b6 | S-V2 | −1.79 | 0.036 | 0.47 | 0.020 | b6 | V1-V2 | −1.96 | 0.025 | 0.39 | 0.059 |
b7 | S-V2 | −1.75 | 0.040 | 0.71 | 0.000 | b7 | V1-V2 | −1.84 | 0.033 | 0.46 | 0.022 |
b8 | S-V2 | −1.75 | 0.040 | 0.75 | 0.000 | b8 | V1-V2 | −1.84 | 0.033 | 0.34 | 0.102 |
b8a | S-V2 | −1.59 | 0.056 | 0.66 | 0.000 | b8a | V1-V2 | −2.25 | 0.012 | 0.65 | 0.001 |
b11 | S-V2 | −1.63 | 0.052 | 0.15 | 0.496 | b11 | V1-V2 | −0.85 | 0.199 | 0.47 | 0.021 |
b12 | S-V2 | −1.88 | 0.030 | 0.49 | 0.014 | b12 | V1-V2 | −0.74 | 0.229 | 0.46 | 0.023 |
NDVI | S-V2 | 0.74 | 0.229 | 0.51 | 0.011 | NDVI | V1-V2 | −0.10 | 0.459 | 0.76 | 0.000 |
NDWI | S-V2 | −0.52 | 0.303 | 0.37 | 0.077 | NDWI | V1-V2 | 1.34 | 0.090 | 0.38 | 0.069 |
(1) y = Ax2 + Bx + C | (2) y = AxB | |||||||
---|---|---|---|---|---|---|---|---|
A | B | C | R2 (p = 0.001) | A | B | R2 (p = 0.001) | ||
S | −0.0042 | 10.4560 | −500.7400 | 0.9536 | S | 16.7240 | 0.3450 | 0.9988 |
C | −0.0046 | 10.7780 | −1116.5000 | 0.9780 | C | 15.2670 | 0.3595 | 0.9992 |
V1 | −0.0049 | 9.0253 | 1309.2000 | 0.9587 | V1 | 30.5070 | 0.2688 | 0.9972 |
V2 | −0.0048 | 9.5362 | 1707.5000 | 0.9238 | V2 | 30.5070 | 0.2688 | 0.9972 |
Vineyard | GDDmax | NDVImax | DOY |
---|---|---|---|
S | 1244 | 6006.87 | 196 |
C | 1172 | 5196.83 | 194 |
V1 | 921 | 5465.12 | 191 |
V2 | 993 | 6443.91 | 195 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgogno-Mondino, E.; de Palma, L.; Novello, V. Investigating Sentinel 2 Multispectral Imagery Efficiency in Describing Spectral Response of Vineyards Covered with Plastic Sheets. Agronomy 2020, 10, 1909. https://doi.org/10.3390/agronomy10121909
Borgogno-Mondino E, de Palma L, Novello V. Investigating Sentinel 2 Multispectral Imagery Efficiency in Describing Spectral Response of Vineyards Covered with Plastic Sheets. Agronomy. 2020; 10(12):1909. https://doi.org/10.3390/agronomy10121909
Chicago/Turabian StyleBorgogno-Mondino, Enrico, Laura de Palma, and Vittorino Novello. 2020. "Investigating Sentinel 2 Multispectral Imagery Efficiency in Describing Spectral Response of Vineyards Covered with Plastic Sheets" Agronomy 10, no. 12: 1909. https://doi.org/10.3390/agronomy10121909
APA StyleBorgogno-Mondino, E., de Palma, L., & Novello, V. (2020). Investigating Sentinel 2 Multispectral Imagery Efficiency in Describing Spectral Response of Vineyards Covered with Plastic Sheets. Agronomy, 10(12), 1909. https://doi.org/10.3390/agronomy10121909