Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Treatment Details
2.2. Treatments and Experiment Design
2.3. Extraction and Inoculation of Pathogenic Fungi
2.4. Leaf Gas-Exchange Parameters
2.5. Crop Growth Parameters and Material Accumulation
2.6. Statistical Analyses
3. Results
3.1. Leaf Gas-Exchange Parameters
3.2. Cucumber Plants Growth Parameters
3.3. Parameters of Root Systems
3.4. Cucumber Plant Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, G.X.; Mao, H.P.; Bu, Q.; Han, L.H.; Shabbir, A.; Gao, F. Effect of Compound Biochar Substrate on the Root Growth of Cucumber Plug Seedlings. Agronomy 2020, 10, 1080. [Google Scholar] [CrossRef]
- Acquah, S.J.; Yan, H.F.; Zhang, C.; Wang, G.Q.; Zhao, B.S.; Wu, H.M.; Zhang, H.N. Application and evaluation of Stanghellini model in the determination of crop evapotranspiration in a naturally ventilated greenhouse. Int. J. Agric. Biol. Eng. 2018, 11, 95–103. [Google Scholar]
- Gong, X.W.; Liu, H.; Sun, J.S.; Gao, Y.; Zhang, H. Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse. Agric. Water Manag. 2019, 217, 141–153. [Google Scholar] [CrossRef]
- Shabbir, A.; Mao, H.P.; Ullah, I.; Noman, A.B.; Muhammad, A.; Imran, A.L. Effects of Drip Irrigation Emitter Density with Various Irrigation Levels on Physiological Parameters, Root, Yield, and Quality of Cherry Tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Gong, X.W.; Liu, H.; Sun, J.S.; Gao, Y.; Zhang, X.X.; Jha, S.K.; Zhang, H.; Ma, X.J.; Wang, W.N. A proposed surface resistance model for the Penman-Monteith formula to estimate evapotranspiration in a solar greenhouse. J. Arid Land 2017, 9, 530–546. [Google Scholar] [CrossRef]
- Ullah, I.; Mao, H.P.; Zhang, C.; Javed, Q.; Azeem, A. Optimization of irrigation and nutrient concentration based on economic returns, substrate salt accumulation and water use efficiency for tomato in greenhouse. Arch. Agron. Soil Sci. 2017, 63, 1748–1762. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.Y.; Yan, H.F.; Ulah, I.; Zuo, Z.Y.; Li, L.L.; Yu, J.J. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 2020, 241, 106263. [Google Scholar] [CrossRef]
- Bandamaravuri, K.B.; Nayak, A.K.; Bandamaravuri, A.S.; Samad, A. Simultaneous detection of downy mildew and powdery mildew pathogens on Cucumis sativus and other cucurbits using duplex-qPCR and HRM analysis. AMB Express 2020, 10, 135. [Google Scholar] [CrossRef]
- Chen, T.; Katz, D.; Ben Naim, Y.; Hammer, R.; Ben Daniel, B.H.; Rubin, A.E.; Cohen, Y. Isolate-Dependent Inheritance of Resistance Against Pseudoperonospora cubensis in Cucumber. Agronomy 2020, 10, 1086. [Google Scholar] [CrossRef]
- Ji, F.; Wei, S.Q.; Liu, N.; Xu, L.J.; Yang, P. Growth of cucumber seedlings in different varieties as affected by light environment. Int. J. Agric. Biol. Eng. 2020, 13, 73–78. [Google Scholar]
- Wang, T.Y.; Wu, G.X.; Chen, J.W.; Cui, P.; Chen, Z.X.; Yan, Y.Y.; Zhang, Y.; Li, M.C.; Niu, D.X.; Li, B.G. Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renew. Sustain. Energy Rev. 2017, 70, 1178–1188. [Google Scholar] [CrossRef]
- Jin, C.; Mao, H.P.; Chen, Y.; Shi, Q.; Wang, Q.R.; Ma, G.X.; Liu, Y. Engineering-oriented dynamic optimal control of a greenhouse environment using an improved genetic algorithm with engineering constraint rules. Comput. Electron. Agric. 2020, 177, 105698. [Google Scholar] [CrossRef]
- Zhao, H.L.; Zhao, Y.; Hu, J.Y. Dissipation, residues and risk assessment of pyraclostrobin and picoxystrobin in cucumber under field conditions. J. Sci. Food Agric. 2020, 100, 5145–5151. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.X.; Luo, X.Y.; Gao, X.X.; Wang, W.J.; Li, B.; Hou, L.P. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. Sci. Hortic. 2020, 272, 109577. [Google Scholar] [CrossRef]
- Hafez, Y.M.; Attia, K.A.; Kamel, S.; Alamery, S.F.; El-Gendy, S.; Al-Doss, A.A.; Mehiar, F.; Ghazy, A.I.; Ibrahim, E.I.; Abdelaal, K.A.A. Bacillus subtilis as a bio-agent combined with nano molecules can control powdery mildew disease through histochemical and physiobiochemical changes in cucumber plants. Physiol. Mol. Plant Pathol. 2020, 111, 101489. [Google Scholar] [CrossRef]
- Tanaka, K.; Fukuda, M.; Amaki, Y.; Sakaguchi, T.; Inai, K.; Ishihara, A.; Nakajima, H. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease. Pest Manag. Sci. 2017, 73, 2419–2428. [Google Scholar] [CrossRef]
- Kim, T.Y.; Ku, H.; Lee, S.Y. Crop Enhancement of Cucumber Plants under Heat Stress by Shungite Carbon. Int. J. Mol. Sci. 2020, 21, 4858. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Abd El-Wahed, M.H. Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agric. Water Manag. 2016, 173, 1–12. [Google Scholar] [CrossRef]
- Du, C.X.; Chai, L.A.; Wang, Z.; Fan, H.F. Response of proteome and morphological structure to short-term drought and subsequent recovery in Cucumis sativus leaves. Physiol. Plant. 2019, 167, 676–689. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.M.; Zhang, W.D.; Li, S.H.; Gao, Y.; Ai, X.Z.; Zhang, D.L.; Liu, B.B.; Li, Q.M. Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. Anal. Biochem. 2018, 559, 71–85. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Taha, R.S.; Rady, M.M. Effect of summer-fall deficit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efficiency of cucumber under salt affected soil. Sci. Hortic. 2018, 237, 148–155. [Google Scholar] [CrossRef]
- Dhillon, N.P.S.; Masud, M.A.; Pruangwitayakun, S.; Natheung, M.; Lertlam, S.; Jarret, R.L. Evaluation of Loofah Lines for Resistance to Tomato Leaf Curl New Delhi Virus and Downy Mildew, as well as Key Horticultural Traits. Agriculture 2020, 10, 298. [Google Scholar] [CrossRef]
- Nostar, O.; Ozdemir, F.; Bor, M.; Turkan, I.; Tosun, N. Combined effects of salt stress and cucurbit downy mildew (Pseudoperospora cubensis Berk. and Curt. Rostov.) infection on growth, physiological traits and antioxidant activity in cucumber (Cucumis sativus L.) seedlings. Physiol. Mol. Plant Pathol. 2013, 83, 84–92. [Google Scholar] [CrossRef]
- Wallace, E.C.; D’Arcangelo, K.N.; Quesada-Ocampo, L.M. Population Analyses Reveal Two Host-Adapted Clades of Pseudoperonospora cubensis, the Causal Agent of Cucurbit Downy Mildew, on Commercial and Wild Cucurbits. Phytopathology 2020, 110, 1578–1587. [Google Scholar] [CrossRef] [PubMed]
- Holmes, G.; Ojiambo, P.; Hausbeck, M.; Quesada-Ocampo, L.; Keinath, A. Resurgence of cucurbit downy mildew in the United States: A watershed event for research and extension. Plant Dis. 2015, 99, 428–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, D.M.; Chen, M.X.; Zhao, L.; Ji, T.; Li, M.; Yang, X.T. Use of thermal imaging and Fourier transform infrared spectroscopy for the pre-symptomatic detection of cucumber downy mildew. Eur. J. Plant Pathol. 2019, 155, 405–416. [Google Scholar] [CrossRef]
- Wang, Y.F.; Du, X.X.; Ma, G.X.; Liu, Y.; Wang, B.; Mao, H.P. Classification Methods for Airborne Disease Spores from Greenhouse Crops Based on Multifeature Fusion. Appl. Sci. 2020, 10, 7850. [Google Scholar] [CrossRef]
- Wen, D.M.; Ji, T.; Chen, M.X.; Zhao, L.; Yang, X.T.; Li, M. Effects of the duration of leaf wetness and leaf temperature on downy mildew in cucumber. J. Plant Prot. 2019, 46, 663–669. [Google Scholar]
- Lindenthal, M.; Steiner, U.; Dehne, H.W.; Oerke, E.C. Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 2005, 95, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.M.; Li, S.H.; He, X.R.; Jiang, W.L.; Zhang, D.L.; Liu, B.B.; Li, Q.M. CO2 enrichment enhanced drought resistance by regulating growth, hydraulic conductivity and phytohormone contents in the root of cucumber seedlings. Plant Physiol. Biochem. 2020, 152, 62–71. [Google Scholar] [CrossRef]
- Li, C.J.; Xiong, Y.W.; Qu, Z.Y.; Xu, X.; Huang, Q.Z.; Huang, G.H. Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma 2018, 331, 100–108. [Google Scholar] [CrossRef]
- Sun, J.L.; Ye, M.; Peng, S.B.; Li, Y. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants. Sci. Rep. 2016, 6, 31305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, I.; Mao, H.P.; Shabbir, A.; Ullah, M.S.; Jabran, K.; Javed, Q.; Buttar, N.A.; Azeem, A. Physiological response of tomato plants under different irrigation levels and nutrient concentrations in greenhouse. Pak. J. Agric. Sci. 2020, 57, 99–608. [Google Scholar]
- Cui, G.C.; Zhang, Y.; Zhang, W.J.; Lang, D.Y.; Zhang, X.J.; Li, Z.X.; Zhang, X.H. Response of Carbon and Nitrogen Metabolism and Secondary Metabolites to Drought Stress and Salt Stress in Plants. J. Plant Biol. 2019, 62, 387–399. [Google Scholar] [CrossRef]
- Jang, D.C.; Kweon, Y.W.; Kim, S.H.; Kim, D.H.; Kim, J.K.; Heo, J.Y.; Kim, I.S. Responses of Vegetable Seedlings Grown on Cylindrical Paper Pots or Plug Trays to Water Stress. Hortic. Sci. Technol. 2020, 38, 158–168. [Google Scholar]
- Dai, Y.J.; Luo, X.F.; Zhou, W.G.; Chen, F.; Shuai, H.W.; Yang, W.Y.; Shu, K. Plant systemic signaling under biotic and abiotic stresses conditions. Chin. Bull. Bot. 2019, 54, 255–264. [Google Scholar]
- Mozamil, M.; Khan, M.A.; Ashfaq, M.; Shahs, M.A. Role of Morphological Traits and Biochemical Contents in Imparting Resistance against Cucumber Mosaic Virus and Zucchini Yellow Mosaic Virus in Cucumber Genotypes. Philipp. Agric. Sci. 2019, 102, 75–81. [Google Scholar]
- Wen, W.; Guo, X.; Zhao, C.; Wang, C.; Xiao, B. Crop roots configuration and visualization: A review. Sci. Agric. Sin. 2015, 48, 436–448. [Google Scholar]
- Anderson, N.O.; Annis, J.; Buchholz, M.; Cutting, J.; Heuring, E.; Jankila, E.; McCrumb, M.; Nelson, N.; Pehoski, M.; Piepho, K. Undergraduate Sustainable Learning: Effects of Sustainable Soilless Media on Production and Sensory Evaluation of Cucumbers, Basil, Parsley, and Lettuce. Sustainability 2011, 3, 1381–1398. [Google Scholar] [CrossRef] [Green Version]
- Anders, A.; Choszcz, D.; Markowski, P.; Lipinski, A.J.; Kaliniewicz, Z.; Slesicka, E. Numerical Modeling of the Shape of Agricultural Products on the Example of Cucumber Fruits. Sustainability 2019, 11, 2798. [Google Scholar] [CrossRef] [Green Version]
Sample | Plant Height (cm) | Stem Diameter (mm) | Leaf Area (cm2) |
---|---|---|---|
B1T1 | 100.9 ± 1.35 c | 8.27 ± 0.36 b | 3036.99 ± 172.06 bc |
B1T2 | 92.2 ± 4.95 d | 7.59 ± 0.38 c | 2412.13 ± 183.69 c |
B1T3 | 82.6 ± 1.75 e | 6.75 ± 0.12 d | 1641.23 ± 233.46 d |
B2T1 | 113.9 ± 6.55 a | 8.77 ± 0.39 a | 3933.67 ± 198.06 a |
B2T2 | 105.3 ± 1.93 b | 7.94 ± 0.10 bc | 3392.46 ± 253.85 b |
B2T3 | 101.8 ± 1.43 bc | 7.39 ± 0.52 c | 2755.29 ± 272.14 c |
Samples | Total Length (cm) | Surface Area (cm2) | Average Diameter (mm) | Total Volume (cm3) | Total Tips |
---|---|---|---|---|---|
B1T1 | 1567.826 ± 51.426 d | 314.157 ± 23.175 d | 1.672 ± 0.095 c | 6.148 ± 0.864 c | 5147 ± 194 d |
B1T2 | 1334.482 ± 34.571 e | 300.972 ± 30.509 d | 1.370 ± 0.072 c | 5.688 ± 1.424 c | 4626 ± 53 de |
B1T3 | 1202.089 ± 4.481 f | 296.701 ± 12.071 d | 1.176 ± 0.012 c | 5.067 ± 0.708 c | 4208 ± 318 e |
B2T1 | 2339.397 ± 41.638 a | 627.987 ± 24.295 a | 3.126 ± 0.521 a | 14.088 ± 1.721 a | 10,038 ± 931 a |
B2T2 | 2114.360 ± 78.358 b | 571.236 ± 16.316 b | 2.530 ± 0.035 b | 12.441 ± 0.631 a | 8377 ± 328 b |
B2T3 | 1835.504 ± 53.806 c | 462.242 ± 7.401 c | 2.242 ± 0.190 b | 9.691 ± 0.598 b | 7217 ± 490 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, G.; Du, X.; Liu, Y.; Wang, B.; Xu, G.; Mao, H. Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber. Agronomy 2020, 10, 1921. https://doi.org/10.3390/agronomy10121921
Wang Y, Ma G, Du X, Liu Y, Wang B, Xu G, Mao H. Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber. Agronomy. 2020; 10(12):1921. https://doi.org/10.3390/agronomy10121921
Chicago/Turabian StyleWang, Yafei, Guoxin Ma, Xiaoxue Du, Yong Liu, Bin Wang, Guilin Xu, and Hanping Mao. 2020. "Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber" Agronomy 10, no. 12: 1921. https://doi.org/10.3390/agronomy10121921
APA StyleWang, Y., Ma, G., Du, X., Liu, Y., Wang, B., Xu, G., & Mao, H. (2020). Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber. Agronomy, 10(12), 1921. https://doi.org/10.3390/agronomy10121921