The Effect of Meat and Bone Meal (MBM) on the Seed Yield and Quality of Winter Oilseed Rape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Experimental Design and Crop Management
2.3. Chemical Composition of Plants
2.4. Statistical Analysis
2.5. Weather Conditions
3. Results and Discussion
3.1. Seed Yield
3.2. Total Protein Content and Yield
3.3. Crude Fat Content and Yield
3.4. Fiber Fractions
3.5. Fatty Acid Profile
3.6. Glucosinolate Content
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jankowski, K.J.; Budzyński, W.S.; Załuski, D.; Hulanicki, P.S.; Dubis, B. Using a fractional factorial desing to evaluate the effect of the intensity of agronomic practices on the yield of different winter oilseed rape morphotypes. Field Crops Res. 2016, 188, 50–61. [Google Scholar] [CrossRef]
- Zand, E.; Beckie, H.J. Competitive ability of hybrid and open-pollinated canola (Brassica napus) with wild oat (Avena fatua). Can. J. Plant Sci. 2002, 82, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Rathke, G.W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Malhi, S.S.; Gan, Y.; Raney, J.P. Yield, seed quality, and sulfur uptake of Brassica oilseed crop in reponse to sulfur fertilization. Agron. J. 2007, 99, 570–577. [Google Scholar] [CrossRef]
- Groth, D.A.; Sokólski, M.; Jankowski, K.J. A multi-criteria evaluation of the effectiveness of nitrogen and sulfur fertilization in different cultivars of winter rapeseed—Productivity, economic and energy balance. Energies 2020, 13, 4654. [Google Scholar] [CrossRef]
- Sokólski, M.; Jankowski, K.J.; Załuski, D.; Szatkowski, A. Productivity, energy and economic balance in the production of different cultivars of winter oilseed rape. A case study in north-eastern Poland. Agronomy 2020, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Sokólski, M.M.; Kordan, B. Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland. Ind. Crop. Prod. 2019, 141, 111776. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Szatkowski, A. The effect of autumn foliar fertilization on the yield and quality of winter oilseed rape seeds. Agronomy 2019, 9, 849. [Google Scholar] [CrossRef] [Green Version]
- Nogala-Kałucka, M.; Gogolewski, M.; Jaworek, M.; Siger, A.; Szulczewska, A. Determination of some components as indicators of the quality of rapeseed produced in different regions in Poland. Oilseed Crops 2002, 23, 447–459. (In Polish) [Google Scholar]
- Stępień, A.; Wojtkowiak, K. Variability of mineral nitrogen contents in soil as affected by meat and bone meal used as fertilizer. Chil. J. Agric. Res. 2015, 60, 291–296. [Google Scholar] [CrossRef]
- Nogalska, A.; Skwierawska, M.; Załuszniewska, A. The effect of meat and one meal (MBM) and Bacillus subtilis on the content of nitrogen and phosphorus in soil and white mustard biomass. Agric. Food. Sci. 2018, 27, 275–282. [Google Scholar] [CrossRef]
- Nogalska, A.; Załuszniewska, A. The effect of meat and bone meal applied without or with mineral nitrogen on macronutrient content and uptake by winter oilseed rape. J. Elem. 2020, 25, 905–915. [Google Scholar] [CrossRef]
- Jeng, A.S.; Haraldsen, T.K.; Vagstad, N.; Grønlund, N. Meat and bone meal as nitrogen fertilizer to cereals in Norway. Agric. Food Sci. 2004, 13, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Jeng, A.S.; Haraldsen, T.K.; Grønlund, A.; Pedersen, P.A. Meat and bone meal as nitrogen and phosphorus fertilizer to cereals and ryegrass. Nutr. Cycl. Agroecosys. 2006, 76, 183–191. [Google Scholar] [CrossRef]
- Brod, E.; Øgaard, A.F.; Krogstad, T.; Haraldsen, T.K.; Frossard, E.; Oberson, A. Drivers of phosphorus uptake by barley following secondary resource application. Front. Nutr. 2016, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jastrzębska, M.; Saeid, A.; Kostrzewska, M.K.; Baśladyńska, S. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants. Open Chem. 2018, 16, 35–49. [Google Scholar] [CrossRef]
- Chojnacka, K.; Gorazda, K.; Witek-Krowiak, A.; Moustakas, K. Recovery of fertilizer nutrient from materials–Contradictions, mistakes and future trends. Renew. Sustain. Energy Rev. 2019, 110, 485–498. [Google Scholar] [CrossRef]
- Mäkelä, P.S.A.; Wasonga, D.O.; Hernandez, A.S.; Santanen, A. Seedling growth and phosphorus uptake in response to different phosphorus sources. Agronomy 2020, 10, 1089. [Google Scholar] [CrossRef]
- Nogalska, A.; Zalewska, M. The effect of meat and bone meal (MBM) on phosphorus concentrations in soil and crop plants. Plant Soil Environ. 2013, 59, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Nogalska, A.; Skwierawska, M.; Nogalski, Z.; Kaszuba, M. The effect of increasing doses of meat and bone meal (MBM) applied every second year on maize grown for grain. Chil. J. Agric. Res. 2013, 73, 430–434. [Google Scholar] [CrossRef]
- Nogalska, A.; Chen, L.; Sienkiewicz, S.; Nogalski, Z. Meat and bone meal as nitrogen and phosphorus supplier to cereals and oilseed rape. Agric. Food Sci. 2014, 23, 19–27. [Google Scholar] [CrossRef]
- Nogalska, A. Meat and bone meal as fertilizer for spring barley. Plant Soil Environ. 2016, 62, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Nogalska, A.; Czapla, J.; Nogalski, Z.; Skwierawska, M.; Kaszuba, M. The effect of increasing doses of meat and bone meal (MBM) on maize (Zea mays L.) grown for grain. Agric. Food Sci. 2012, 21, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Nogalska, A.; Krzebietke, S.J.; Zalewska, M.; Nogalski, Z. The effect of meat and bone meal (MBM) on the nitrogen and phosphorus content and pH of soil. Agric. Food Sci. 2017, 26, 181–187. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Update 2015; World Soil Resources Report No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Jankowski, K.J.; Sokólski, M.; Dubis, B.; Krzebietke, S.; Żarczyński, P.; Hulanicki, P.; Hulanicki, P.S. Yield and quality of winter oilseed rape (Brassica napus L.) seeds in response to foliar application of boron. Agric. Food Sci. 2016, 25, 164–176. [Google Scholar] [CrossRef]
- STATSOFT INC. Statistica (Data Analysis Software System), Version 12. 2012. Available online: https://www.statsoft.pl/ (accessed on 12 September 2020).
- Schuster, C.; Rathke, G.W. Nitrogen fertilisation of transgenic winter oilseed rape. In Plant Nutrition; Spinger: Dordrecht, The Netherlands, 2001; Volume 92, pp. 336–337. [Google Scholar]
- Jankowski, K.; Hulanicki, P.S.; Krzebietke, S.; Żarczyński, P.; Hulanicki, P.; Sokólski, M. Yield and quality of winter oilseed rape in response to different systems of foliar fertilization. J. Elem. 2016, 21, 1017–1027. [Google Scholar] [CrossRef]
- Weymann, W.; Bottcher, U.; Sieling, K.; Kage, H. Effects of weather conditions during different growth phases on yield formation of winter oilseed rape. Field Crop. Res. 2015, 173, 41–48. [Google Scholar] [CrossRef]
- Stępień, A.; Wojtkowiak, K.; Pietrzak-Fiećko, R. Influence of a crop rotation system and agrotechnology level on the yielding and seed quality of winter rapeseed (Brassica napus L.) varieties Castille and Nelson. J. Elem. 2018, 23, 1281–1293. [Google Scholar] [CrossRef]
- Chmura, K.; Dzieżyc, H.; Piotrowski, M. Influence of meteorological conditions on the fat and protein content in seed of winter oilseed rape. Acta Agrophys. 2016, 23, 163–173. (In Polish) [Google Scholar]
- Szczepaniak, W.; Grzebisz, W.; Barłóg, P.; Przygocka-Cyna, K. Mineral composition of winter oilseed rape (Brassica napus L.) seeds as a tool for oil yield prognosis. J. Cent. Eur. Agric. 2017, 18, 196–2013. [Google Scholar] [CrossRef]
- Ratajczak, K.; Sulewska, H.; Szymańska, G. New winter oilseed rape varieties–seed quality and morphological traits depending on sowing date and rate. Plant Prod. Sci. 2017, 20, 262–272. [Google Scholar] [CrossRef]
- Binkowski, M.; Broniarz, J.; Janiak, W.; Lenartowicz, T.; Osiecka, A.; Paczocha, J.; Piecuch, K.; Stuczyńska, E. Descriptive List of Agricultural Cultivars–Beetroots, Potatoes, Oilseed Crops, Forage Crops; Research Center for Cultivar Testing: Słupia Wielka, Poland, 2019; pp. 1–172. (In Polish)
- Sokólski, M.; Załuski, D.; Jankowski, K.J. Crambe: Seed yield and quality in response to nitrogen and sulfur. A case study in north-eastern Poland. Agronomy 2020, 10, 1436. [Google Scholar] [CrossRef]
- Bell, J.M. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci. 1993, 73, 619–697. [Google Scholar] [CrossRef]
- Tańska, M.; Rotkiewicz, D.; Ambrosewicz, M. Technological value of selected Polish varieties of rapeseed. Pol. J. Natur. Sci. 2009, 24, 122–132. [Google Scholar] [CrossRef]
- Molazem, D.; Azimi, J.; Dideban, T. Measuring the yield and its components, in the canola in different planting date and plant density of the West Guilan. Int. J. Agric. Crop Sci. 2013, 6, 869–872. [Google Scholar]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł.; Zając, T. Biomass quality of Brassica oilseed crops in response to sulfur fertilization. Agron. J. 2015, 107, 1377–1391. [Google Scholar] [CrossRef]
- Verkerk, R.; Schreiner, M.; Krumbein, A.; Ciska, E.; Holst, B.; Rowland, I.; De Schrijver, R.; Hansen, M.; Gerhäuser, C.; Mithen, R.; et al. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 2009, 53, 2019–2265. [Google Scholar] [CrossRef]
- Yang, M.; Shi, L.; Xu, F.S.; Lu, J.W.; Wang, Y.H. Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L.). Pedosphere 2009, 19, 53–59. [Google Scholar] [CrossRef]
Treatment | 2015/16 | 2016/17 | ||||
---|---|---|---|---|---|---|
N | P | K | N | P | K | |
1. Zero-fert | 0 | 0 | 0 | 0 | 0 | 0 |
2. Inorganic NPK * | 158 | 45 | 145 | 158 | 45 | 145 |
3. 1.0 Mg MBM+K+N79 ** | 158 (79 + 79) | 45 | 145 | 158 (79 + 79) | 45 | 145 |
4. 1.5 Mg MBM+K+N40 *** | 158 (118 + 40) | 68 | 145 | 158 (118 + 40) | 68 | 145 |
5. 2.0 Mg MBM+K **** | 158 | 90 | 145 | 158 | 90 | 145 |
Treatments | Seed Yield (Mg ha−1, 91% DM) | TSW * (g, 91% DM) | Protein Content (g kg−1 DM) | Protein Yield (Mg ha−1) | Fat Content (g kg−1 DM) | Fat Yield (Mg ha−1) | ADF ** (%) | NDF *** (%) | |
---|---|---|---|---|---|---|---|---|---|
1. Zero-fert | 1.71 a | 4.96 a | 177 a | 0.27 a | 499 bc | 0.77 a | 23.3 | 29.5 ab | |
2. Inorganic NPK * | 3.14 c | 5.23 ab | 198 b | 0.56 c | 479 a | 1.35 c | 22.1 | 27.7 a | |
3. 1.0 Mg MBM+K+N79 | 2.65 b | 5.21 ab | 189 ab | 0.45 b | 486 ab | 1.16 b | 22.7 | 28.5 ab | |
4. 1.5 Mg MBM+K+N40 | 2.69 b | 5.32 b | 178 a | 0.43 b | 502 c | 1.22 bc | 23.5 | 29.7 b | |
5. 2.0 Mg MBM+K | 2.49 b | 5.11 ab | 186 ab | 0.41 b | 493 bc | 1.11 b | 23.1 | 28.8 ab | |
Annual mean | 2016 | 2.67 B | 5.24 B | 189 B | 0.46 B | 489 A | 1.17 B | 21.8 A | 27.8 A |
2017 | 2.41 A | 5.10 A | 182 A | 0.40 A | 495 B | 1.07 A | 24.1 B | 29.9 B | |
Interaction (t × y) | s | ns | ns | s | ns | s | ns | ns |
Treatments | C16:0 * | C18:0 * | C18:1 * | C18:2 * | C18:3 * | C20:0 * | C20:1 * | C22:1 * | Other ** | C18:2/ C18:3 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Zero-fert | 5.88 | 1.99 | 56.65 | 20.97 | 11.67 | 0.68 a | 1.18 a | 0.03 | 0.95 | 1.81 | |
2. Inorganic NPK * | 5.87 | 2.13 | 56.67 | 20.94 | 11.54 | 0.71 b | 1.26 c | 0.02 | 0.99 | 1.83 | |
3. 1.0 Mg MBM+K+N79 | 5.87 | 1.96 | 57.06 | 20.90 | 11.30 | 0.69 ab | 1.23 bc | 0.03 | 0.97 | 1.86 | |
4. 1.5 Mg MBM+K+N40 | 5.86 | 1.87 | 56.42 | 21.02 | 11.96 | 0.68 a | 1.20 ab | 0.03 | 0.96 | 1.76 | |
5. 2.0 Mg MBM+K | 5.85 | 2.11 | 56.65 | 21.05 | 11.68 | 0.69 ab | 1.22 b | 0.02 | 0.98 | 1.81 | |
Annual mean | 2016 | 5.90 B | 2.10 | 55.91 A | 22.09 B | 11.15 A | 0.71 B | 1.24 B | 0.02 | 0.98 | 1.98 B |
2017 | 5.83 A | 1.93 | 57.47 B | 19.86 A | 12.11 B | 0.67 A | 1.19 A | 0.03 | 0.96 | 1.64 A |
Treatments | Glucosinolates | ||||
---|---|---|---|---|---|
Total | Gluconapin | Progoitrin | 4-Hydroxyglucobrassicin | ||
1. Zero-fert | 10.33 a | 2.18 | 4.02 a | 3.23 | |
2. Inorganic NPK | 11.50 ab | 2.35 | 4.91 b | 3.40 | |
3. 1.0 Mg MBM+K+N79 | 11.79 b | 2.29 | 5.10 b | 3.50 | |
4. 1.5 Mg MBM+K+N40 | 11.21 ab | 2.25 | 4.65 ab | 3.43 | |
5. 2.0 Mg MBM+K | 11.61 ab | 2.26 | 5.01 b | 3.42 | |
Annual mean | 2016 | 10.82 A | 1.98 A | 4.28 A | 3.72 B |
2017 | 11.76 B | 2.55 B | 5.20 B | 3.07 A | |
Interaction (t × y) | s | ns | s | s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Załuszniewska, A.; Nogalska, A. The Effect of Meat and Bone Meal (MBM) on the Seed Yield and Quality of Winter Oilseed Rape. Agronomy 2020, 10, 1952. https://doi.org/10.3390/agronomy10121952
Załuszniewska A, Nogalska A. The Effect of Meat and Bone Meal (MBM) on the Seed Yield and Quality of Winter Oilseed Rape. Agronomy. 2020; 10(12):1952. https://doi.org/10.3390/agronomy10121952
Chicago/Turabian StyleZałuszniewska, Aleksandra, and Anna Nogalska. 2020. "The Effect of Meat and Bone Meal (MBM) on the Seed Yield and Quality of Winter Oilseed Rape" Agronomy 10, no. 12: 1952. https://doi.org/10.3390/agronomy10121952
APA StyleZałuszniewska, A., & Nogalska, A. (2020). The Effect of Meat and Bone Meal (MBM) on the Seed Yield and Quality of Winter Oilseed Rape. Agronomy, 10(12), 1952. https://doi.org/10.3390/agronomy10121952