Estimation of Aerodynamic and Canopy Resistances in a Mediterranean Greenhouse Based on Instantaneous Leaf Temperature Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Experiments
- Fan and pad evaporative cooling (F-PE) combined with natural and a forced air ventilation system in the two-spans greenhouse;
- A forced air ventilation (FV) system in one-span greenhouse compartment.
2.2. Crop Details
2.3. Measurements
2.4. Theoretical Approach
2.5. Penman–Monteith (P–M) Model Validation
2.6. Statistical Analysis
3. Results
3.1. Greenhouse Microclimate and Leaf Temperature
3.2. Model Coefficients and Aerodynamic and Canopy Resistance Estimation
3.3. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Exp.1 | First experimental period (March to June) |
Exp.2 | Second experimental period (October to December) |
Exp.3 | Third experimental period (March to June) |
F-PE | Greenhouse span with a fan and pad evaporative cooling combined with natural and a forced air ventilation system |
FV | Greenhouse span with a forced air ventilation system |
ra | Resistance from the vegetation upward which involves friction from air flowing over vegetative surfaces |
RGi | Internal greenhouse solar radiation |
RGo | Outside greenhouse solar radiation |
RHi | Internal greenhouse air relative humidity |
RHo | Outside greenhouse air relative humidity |
rs | Resistance of vapor flow through stomatal openings, the total leaf area and the soil surface |
Ta | Inside greenhouse air temperature |
Tc − Ta | Canopy-to-air temperature differences |
To | Outside greenhouse air temperature |
VPD | Air vapor pressure deficit |
W-FV | Greenhouse span with a forced ventilation system combined with whitewash |
References
- Katsoulas, N.; Kittas, C. Greenhouse Crop Transpiration Modelling, Evapotranspiration from Measurements to Agricultural and Environmental Applications; Giacomo, G., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-512-9. Available online: http://Www.Intechopen.Com/Books/Evapotranspiration-from-Measurements-to-Agricultural-and-Environmental-Applications/Greenhouse-Crop-Transpiration-Modelling (accessed on 15 September 2020).
- Boulard, T.; Roy, J.-G.; Pouillard, J.-B.; Fatnassi, H.; Grisey, A. Modelling of Micrometeorology, Canopy Transpiration and Photosynthesis in a Closed Greenhouse Using Computational Fluid Dynamics. Biosyst. Eng. 2017, 158, 110–133. [Google Scholar] [CrossRef]
- Bouhoun Ali, H.; Bournet, P.-E.; Cannavo, P.; Chantoiseau, E. Development of a CFD Crop Submodel for Simulating Microclimate and Transpiration of Ornamental Plants Grown in a Greenhouse under Water Restriction. Comput. Electron. Agric. 2018, 149, 26–40. [Google Scholar] [CrossRef]
- Kimura, K.; Yasutake, D.; Yamanami, A.; Kitano, M. Spatial examination of leaf-boundary-layer conductance using artificial leaves for assessment of light airflow within a plant canopy under different controlled greenhouse conditions. Agric. For. Meteorol. 2020, 280, 107773. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Baille, A. Influence of Crop Leaf Area Index on Greenhouse Cooling Requirements. In Proceedings of the International Conference on the Integration of the Renewable Energy Systems into the Buildings Structures, Patra, Greece, 7–10 July 2005. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Effects of Cooling Systems on Greenhouse Microclimate and Cucumber Growth under Mediterranean Climatic Conditions. Agronomy 2019, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Graamans, L.; van Den Dobbelsteen, A.; Meinen, E.; Stanghellini, C. Plant Factories; Crop Transpiration and Energy Balance. Agric. Syst. 2017, 153, 138–147. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Drainage Paper, 56; FAO: Rome, Italy, 1998; pp. 1–289. [Google Scholar]
- Alves, I.; Perrier, A.; Pereira, L.S. Aerodynamic and Surface Resistances of Complete Cover Crops: How Good Is the “Big Leaf”? Trans. Am. Soc. Agric. Eng. 1998, 41, 345–351. [Google Scholar] [CrossRef]
- Katsoulas, N.; Stanghellini, C. Modelling Crop Transpiration in Greenhouses: Different Models for Different Applications. Agronomy 2019, 7, 392. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Evaporation from Land Surfaces: Progress in Analysis and Prediction since 1948. In Advances in Evapotranspiration. In Proceedings of the National Conference on Advance in Evapotranspiration, Chicago, IL, USA, 16–17 December 1985. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A Recommendation on Standardized Surface Resistance for Hourly Calculation of Reference ETo by the FAO56 Penman-Monteith Method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Qiu, R.; Kang, S.; Du, T.; Tong, L.; Hao, X.; Chen, R.; Chen, J.; Li, F. Effect of Convection on the Penman–Monteith Model Estimates of Transpiration of Hot Pepper Grown in Solar Greenhouse. Sci. Hortic. 2013, 160, 163–171. [Google Scholar] [CrossRef]
- Wallach, R. Physical Characterisrtics of Soilless Media. In Soilless Culture: Theory and Practice, 1st ed.; Raviv, M., Lieth, J.H., Eds.; Elsevier: London, UK, 2008; pp. 117–155. [Google Scholar]
- Gong, X.; Liu, H.; Sun, J.; Gao, Y.; Zhang, X.; Jha, S.K.; Zhang, H.; Ma, X.; Wang, W. A Proposed Surface Resistance Model for the Penman-Monteith Formula to Estimate Evapotranspiration in a Solar Greenhouse. J. Arid Land 2017, 9, 530–546. [Google Scholar] [CrossRef]
- Tolk, J.A. Corn Aerodynamic and Canopy Surface Resistances and Their Role in Sprinkler Irrigation Efficiency. A Dissertation in Agronomy. Ph.D. Thesis, Graduate Faculty of Texas Tech University, Texas, TX, USA, 1992. [Google Scholar]
- Thom, A.S. Momentum, Mass and Heat Exchange of Plant Communities. In Vegetation and the Atmosphere; Monteith, J.L., Ed.; Academic Press: London, UK, 1975; pp. 57–109. [Google Scholar]
- Fernandes, C.; Corá, J.; Araújo, J. Reference Evapotranspiration Estimation inside Greenhouses. Sci. Agric. 2003, 60, 591–594. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Modelling Transpiration of Soilless Greenhouse Cucumber and Its Relationship with Leaf Temperature in a Mediterranean Climate. Emir. J. Food Agric. 2017, 29, 911–920. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, J.J.; Ortuño, M.F.; Nicolás, E.; Navarro, A.; Torrecillas, A. Improving Water-Use Efficiency of Young Lemon Trees by Shading with Aluminised-Plastic Nets. Agric. Water Manag. 2006, 82, 387–398. [Google Scholar] [CrossRef]
- Hernandez, M.J.; Montes, F.; Ruiz, F.; Lopez, G.; Pita, P. The Effect of Vapour Pressure Deficit on Stomatal Conductance, Sap PH and Leaf-Specific Hydraulic Conductance in Eucalyptus Globulus Clones Grown under Two Watering Regimes. Ann. Bot. 2016, 117, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.-S.; Lei, H.; Hu, M.-C.; Visessri, S.; Hsieh, C.-I. Canopy Resistance and Estimation of Evapotranspiration above a Humid Cypress Forest. Adv. Meteorol. 2020. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Modelling the Transpiration of a Greenhouse Zucchini Crop Grown under a Mediterranean Climate Using the Penman-Monteith Equation and Its Simplified Version. Crop Pasture Sci. 2004, 55, 931–993. [Google Scholar] [CrossRef] [Green Version]
- Kittas, C.; Katsoulas, N.; Baille, A. Transpiration and Canopy Resistance of Greenhouse Soilless Roses: Measurements and Modeling. Acta Hortic. 1999, 507, 61–68. [Google Scholar] [CrossRef]
- Zolnier, S.; Lyra, G.; Gates, R.S. Evapotranspiration Estimates for Greenhouse Lettuce Using an Intermittent Nutrient Film Technique. Trans. Asabe 2004, 47, 271–282. [Google Scholar] [CrossRef]
- Yan, H.; Huang, S.; Zhang, C.; Gerrits, M.C.; Wang, G.; Zhang, J.; Zhao, B.; Acquah, S.J.; Wu, H.; Fu, H. Parameterization and Application of Stanghellini Model for Estimating Greenhouse Cucumber Transpiration. Water 2020, 12, 517. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Boulard, T.; Haxaire, R. Air Speed Profiles in a Naturally Ventilated Greenhouse with a Tomato Crop. Agric. For. Meteorol. 1999, 96, 181–188. [Google Scholar]
- Baille, M.; Baille, A.; Laury, J.C. A Simplified Model for Predicting Evapotranspiration Rate of Nine Ornamental Species vs Climate Factors and Leaf Area. Sci. Hortic. 1994, 59, 217–232. [Google Scholar] [CrossRef]
- Fernández, M.D.; Bonachela, S.; Orgaz, F. Measurement and Estimation of Plastic Greenhouse Reference Evapotranspiration in a Mediterranean Climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Dynamic Assessment of Whitewash Shading and Evaporative Cooling on the Greenhouse Microclimate and Cucumber Growth in a Mediterranean Climate. Ital. J. Agrometeorol. 2018, 2, 15–26. [Google Scholar]
- Katsoulas, N.; Kittas, C.; Dimokas, G.; Lykas, C. Effect of Irrigation Frequency on Rose Flower Production and Quality. Biosyst. Eng. 2006, 93, 237–244. [Google Scholar] [CrossRef]
- Beeson, R.C., Jr. Weighing Lysimeter Systems for Quantifying Water Use and Studies of Controlled Water Stress for Crops Grown in Low Bulk Density Substrates. Agric. Water Manag. 2011, 98, 967–976. [Google Scholar] [CrossRef]
- Savvas, D.; Gianquinto, G.P.; Tüzel, Y.; Gruda, N. Soilless Culture. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Area; Plant Production and Protection Paper, 217; Baudoin, W., Nomo-Wondim, R., Lutaladio, N., Hobber, A., Castilla, N., Leonardi, C., De Pascale, S., Qaryouti, M., Duffy, R., Eds.; Food and Agricultural Organization of the United Nations (FAO): Rome, Italy, 2013; pp. 303–354. [Google Scholar]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy Temperature as a Crop Water Stress Indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar]
- Vermeulen, K.; Aerts, J.M.; Dekock, J.; Bleyaert, P.; Berckmans, D.; Steppe, K. Automated Leaf Temperature Monitoring of Glasshouse Tomato Plants by Using a Leaf Energy Balance Model. Comput. Electron. Agric. 2012, 87, 19–31. [Google Scholar] [CrossRef]
- Takakura, T.; Kubota, C.; Sase, S.; Hayashi, M.; Ishii, M.; Takayama, K.; Nishina, H.; Kurata, K.; Giacomelli, G.A. Measurement of Evapotranspiration Rate in a Single-Span Greenhouse Using the Energy-Balance Equation. Biosyst. Eng. 2009, 102, 298–304. [Google Scholar] [CrossRef]
- Jackson, R.D.; Kustas, W.P.; Choudhury, B.J. A Reexamination of the Crop Water Stress Index. Irrig. Sci. 1998, 9, 309–317. [Google Scholar] [CrossRef]
- Gontia, N.K.; Tiwari, K.N. Development of Crop Water Stress Index of Wheat Crop for Scheduling Irrigation Using Infrared Thermometry. Agric. Water Manag. 2008, 95, 1144–1152. [Google Scholar] [CrossRef]
- van Bavel, C.H.M.; Ehrler, W.L. Water Loss from a Sorghum Field and Stomatal Control. Agron. J. 1968, 60, 84–86. [Google Scholar] [CrossRef]
- Ehrler, W.L. Cotton Leaf Temperatures as Related to Soil Water Depletion and Meteorological Factors. Agron. J. 1973, 65, 404–409. [Google Scholar] [CrossRef]
- O’Toole, J.C.; Real, J.G. Estimation of Aerodynamic and Crop Resistances from Canopy Temperature. Agron. J. 1986, 78, 305–310. [Google Scholar] [CrossRef]
- Montero, J.I.; Antón, A.; Muûoz, P. Transpiration from Geranium Grown under High Temperatures and Low Humidities in Greenhouses. Agric. For. Meteorol. 2001, 107, 323–332. [Google Scholar] [CrossRef]
- O’Toole, J.C.; Hatfield, J.L. Effect of Wind on the Crop Water Stress Index Derived by Infrared Thermometry. Agron. J. 1983, 75, 811–817. [Google Scholar] [CrossRef]
- Gázquez, J.C.; López, J.C.; Pérez-Parra, J.J.; Baeza, E.J.; Saéz, M.; Parra, A. Greenhouse Cooling Strategies for Mediterranean Climate Areas. Acta Hortic. 2008, 801, 425–432. [Google Scholar] [CrossRef]
- Ido Seginer, I. Transpirational Cooling of a Greenhouse Crop with Partial Ground Cover. Agric. Forest Meteorol. 1994, 71, 265–281. [Google Scholar] [CrossRef]
- Acquah, S.; Yan, H.; Zhang, C.; Wang, G.; Zhao, B.; Wu, H.; Zhang, H. Application and Evaluation of Stanghellini Model in the Determination of Crop Evapotranspiration in a Naturally Ventilated Greenhouse. Int. J. Agric. Biol. Eng. 2018, 11, 95–103. [Google Scholar]
- Boulard, T.; Wang, S. Greenhouse Crop Transpiration Simulation from External Climate Conditions. Agric. For. Meteorol. 2000, 100, 25–34. [Google Scholar] [CrossRef]
- Bakker, J.C. Leaf conductance of four glasshouse vegetable crop as affected by air humidity. Agric. For. Meteorol. 1991, 55, 23–36. [Google Scholar] [CrossRef]
- Katsoulas, N.; Baille, A.; Kittas, C. Effect of Misting on Transpiration and Conductances of a Greenhouse Rose Canopy. Agric. For. Meteorol. 2001, 106, 233–247. [Google Scholar] [CrossRef]
- Villarreal-Guerrero, F.; Kacira, M.; Fitz-Rodríguez, E. Simulated Performance of a Greenhouse Cooling Control Strategy with Natural Ventilation and Fog Cooling. Biosyst. Eng. 2012, 111, 217–228. [Google Scholar] [CrossRef]
- Shibuya, T.; Sugimoto, A.; Kitaya, Y.; Kiyota, M.; Nagasaka, Y.; Kawaguchi, S. Measurement of Leaf Vapor Conductance of Cucumber Transplants in the Greenhouse with Minimal Invasion. HortScience 2010, 45, 460–462. Available online: Https://Journals.Ashs.Org/Hortsci/View/Journals/Hortsci/45/3/Article-P460.Xml (accessed on 17 October 2020). [CrossRef] [Green Version]
Exp.1 | ||||||
---|---|---|---|---|---|---|
March | April | May | ||||
To | 20.9 (0.10) | 22.8 (0.09) | 28.0 (0.08) | |||
RHo | 57.4 (0.04) | 53.7 (0.02) | 55.8 (0.03) | |||
RGo | 585 (9.81) | 698 (7.21) | 768 (7.05) | |||
FV | F-PE | FV | F-PE | FV | F-PE | |
Ta | 27.3 (0.19) | 21.5 (0.12) | 29.2 (0.13) | 22.1 (0.09) | 31.9 (0.09) | 25.5 (0.07) |
RHi | 57.6 (0.49) | 58.2 (0.42) | 56.2 (0.34) | 58.5 (0.32) | 57.3 (0.31) | 59.1(0.27) |
VPDi | 2.1 (0.03) | 1.3 (0.01) | 2.0 (0.02) | 1.3 (0.01) | 2.3 (0.02) | 1.4 (0.01) |
Tc − Ta | −2.99 (0.04) | −1.27 (0.03) | −2.88 (0.05) | −1.81 (0.03) | −1.78 (0.06) | −1.30 (0.07) |
RGi | 407 (6.83) | 486 (5.02) | 534 (5.22) | |||
Exp.2 | ||||||
October | November | December | ||||
To | 27.7 (0.11) | 21.6 (0.16) | 21.3 (0.20) | |||
RHo | 56.3 (0.28) | 61.6 (0.61) | 71.3 (0.68) | |||
RGo | 531 (5.90) | 403 (5.50) | 341 (6.71) | |||
FV | F-PE | FV | F-PE | FV | F-PE | |
Ta | 24.6 (0.25) | 24.1 (0.13) | 23.8 (0.22) | 19.4 (0.15) | 23.0 (0.33) | 19.2 (0.25) |
RHi | 53.3 (0.57) | 62.8 (0.28) | 75.3 (0.43) | 73.3 (0.51) | 74.8 (0.75) | 74.9 (0.78) |
VPDi | 1.6 (0.20) | 1.3 (0.19) | 0.8 (0.60) | 0.6 (0.01) | 0.8 (0.32) | 0.6 (0.02) |
Tc − Ta | −3.47 (0.08) | −1.42 (0.07) | −4.10 (0.12) | −2.10 (0.15) | −3.90 (0.15) | −2.09 (0.16) |
RGi | 333 (3.70) | 253 (3.45) | 214 (4.20) | |||
Exp.3 | ||||||
March | April | May | ||||
To | 27.8 (0.11) | 28.4 (0.08) | 33.3 (0.08) | |||
RHo | 46.9 (0.34) | 50.8 (0.18) | 64.6 (0.52) | |||
RGo | 683 (9.51) | 667 (7.26) | 728 (4.47) | |||
W-FV | F-PE | W-FV | F-PE | W-FV | F-PE | |
Ta | 29.3 (0.12) | 28.1 (0.12) | 28.7 (0.08) | 27.3 (0.07) | 33.3 (0.09) | 31.4 (0.09) |
RHi | 54.5 (0.40) | 54.9 (0.37) | 61.3 (0.02) | 64.5 (0.24) | 63.5 (0.31) | 62.4 (0.28) |
VPDi | 2.02 (0.02) | 1.85 (0.02) | 1.65 (0.01) | 1.37 (0.01) | 2.02 (0.02) | 1.89 (0.02) |
Tc − Ta | −2.38 (0.05) | −1.27 (0.04) | −2.59 (0.02) | −2.20 (0.02) | −3.04 (0.04) | −2.52 (0.05) |
RGi | 363 (5.22) | 460 (6.62) | 352 (3.98) | 446 (5.05) | 385 (2.46) | 489 (4.93) |
Climatic Treatment | Intercept (a) | Slope (b) | Β | r2 |
---|---|---|---|---|
Exp.1, FV | 0.40 (0.02) | −1.66 (0.01) | −0.87 | 0.75 |
Exp.1, F-PE | 2.44 (0.02) | −1.99 (0.01) | −0.80 | 0.65 |
Exp.2, FV | 1.30 (0.05) | −2.81 (0.05) | −0.62 | 0.39 |
Exp.2, F-PE | 2.82 (0.04) | −2.84 (0.06) | −0.54 | 0.29 |
Exp.3; W-FV | −1.13 (0.01) | −1.59 (0.01) | −0.90 | 0.82 |
Exp.3; F-PE | −0.17 (0.01) | −2.30 (0.01) | −0.86 | 0.75 |
Climatic Treatment | |||||
---|---|---|---|---|---|
RGI | Mar. | Apr. | May | ||
Exp.1, FV | 363 (4.65) | 23 (1.95) | 26 (2.71) | 24 (3.72) | 24 (1.46) |
Exp.1, F-PE | 61 (3.59) | 65 (4.69) | 69 (7.22) | 64 (2.66) | |
RGI | Oct. | Nov. | Dec. | ||
Exp.2, FV | 249 (3.92) | 64 (5.81) | 63 (6.33) | 50 (6.43) | 61 (3.69) |
Exp.2, F-PE | 86 (6.54) | 83 (7.41) | 78 (7.13) | 83 (4.20) | |
RGI | Mar. | Apr. | May | ||
Exp.3, W-FV | 327 (3.23) | 35 (5.19) | 45 (2.70) | 42 (4.15) | 43 (2.08) |
Exp.3, F-PE | 368 (4.11) | 25 (3.93) a | 48 (2.37) b | 54 (3.97) c | 47 (1.86) |
RGI | Mar. | Apr. | May | ||
Exp.1, FV | 363 (4.65) | 60 (3.73) | 60 (4.62) | 62 (6.81) | 60 (2.67) |
Exp.1, F-PE | 147 (6.25) | 152 (8.31) | 154 (11.30) | 150 (4.57) | |
RGI | Oct. | Nov. | Dec. | ||
Exp.2, FV | 249 (3.92) | 82 (7.38) | 75 (7.01) | 85 (8.81) | 80 (4.52) |
Exp.2, F-PE | 120 (7.86) ac | 125 (9.00) bc | 172 (15.62) cab | 132 (5.65) | |
RGI | Mar. | Apr. | May | ||
Exp.3, W-FV | 327 (3.23) | 127 (9.37) ab | 152 (4.91) bac | 133 (7.28) cb | 144 (3.75) |
Exp3, F-PE | 368 (4.11) | 92 (14.53) abc | 167 (8.24) ba | 179 (13.17) ca | 161 (6.39) |
Experimental Period 1 | |||||||
---|---|---|---|---|---|---|---|
Climatic Treatment | Trm | Tre | Slope (b) | r2 | n | ||
Exp.1, FV | 24 | 60 | 351 | 437 | 0.80 | 441 | |
Exp.2, FV | 61 | 80 | 354 | 381 | 0.78 | 441 | |
Exp.3, W-FV | 43 | 144 | 349 | 315 | 0.77 | 446 | |
Exp.1, F-PE | 64 | 150 | 223 | 260 | 0.77 | 489 | |
Exp.2, F-PE | 83 | 132 | 222 | 281 | 0.76 | 410 | |
Exp.3, F-PE | 47 | 161 | 222 | 238 | 0.76 | 411 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaou, G.; Neocleous, D.; Kitta, E.; Katsoulas, N. Estimation of Aerodynamic and Canopy Resistances in a Mediterranean Greenhouse Based on Instantaneous Leaf Temperature Measurements. Agronomy 2020, 10, 1985. https://doi.org/10.3390/agronomy10121985
Nikolaou G, Neocleous D, Kitta E, Katsoulas N. Estimation of Aerodynamic and Canopy Resistances in a Mediterranean Greenhouse Based on Instantaneous Leaf Temperature Measurements. Agronomy. 2020; 10(12):1985. https://doi.org/10.3390/agronomy10121985
Chicago/Turabian StyleNikolaou, Georgios, Damianos Neocleous, Evangelini Kitta, and Nikolaos Katsoulas. 2020. "Estimation of Aerodynamic and Canopy Resistances in a Mediterranean Greenhouse Based on Instantaneous Leaf Temperature Measurements" Agronomy 10, no. 12: 1985. https://doi.org/10.3390/agronomy10121985
APA StyleNikolaou, G., Neocleous, D., Kitta, E., & Katsoulas, N. (2020). Estimation of Aerodynamic and Canopy Resistances in a Mediterranean Greenhouse Based on Instantaneous Leaf Temperature Measurements. Agronomy, 10(12), 1985. https://doi.org/10.3390/agronomy10121985