Geostatistical Analysis of Soil C/N Deficiency and Its Effect on Agricultural Land Management of Major Crops in Eastern Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition
2.2. Geostatistical Analysis
2.3. Accuracy Assessment of Interpolated Results
2.4. Soil Carbon-to-Nitrogen Ratio (C/N) Deficiency Evaluation for Five Major Crops during 2017–2019
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant Nut. 2015, 15, 333–352. [Google Scholar] [CrossRef] [Green Version]
- Peter, P.C. Soil Organic Matter/Carbon Dynamics in Contrasting Tillage and Land Management Systems: A Case for Smallholder Farmers with Degraded and Marginal Soils. Commun. Soil Sci. Plant Anal. 2017, 48, 2013–2031. [Google Scholar] [CrossRef]
- Puttaso, P.; Namanusart, W.; Thumanu, K.; Kamolmanit, B.; Brauman, A.; Lawongsa, P. Assessing the Effect of Rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) Leaf Chemical Composition on Some Soil Properties of Differently Aged Rubber Tree Plantations. Agronomy 2020, 10, 1871. [Google Scholar] [CrossRef]
- Truong, T.H.H.; Marschner, P. Presence of wheat straw in soil influences nutrient availability and leaching in soil mulched with high or low C/N organic materials. Arch. Agron. Soil Sci. 2020, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Hou, G.; Liu, M.; Wei, T.X.; Sun, J. Degradation induces changes in the soil C: N: P stoichiometry of alpine steppe on the Tibetan Plateau. J. Mt. Sci. 2019, 16, 2348–2360. [Google Scholar] [CrossRef]
- Dlamini, P.; Chivenge, P.; Manson, A.; Chaplot, V. Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geoderma 2014, 235, 372–381. [Google Scholar] [CrossRef]
- Aher, G.; Cihacek, L.J.; Cooper, K. An evaluation of C and N on fresh and aged crop residue from mixed long-term no-till cropping systems. J. Plant. Nutr. 2017, 40, 177–186. [Google Scholar] [CrossRef]
- Bogunovic, I.; Viduka, A.; Magdic, I.; Telak, L.J.; Francos, M.; Pereira, P. Agricultural and Forest Land-Use Impact on Soil Properties in Zagreb Periurban Area (Croatia). Agronomy 2020, 10, 1331. [Google Scholar] [CrossRef]
- Meseldžija, M.; Rajković, M.; Dudić, M.; Vranešević, M.; Bezdan, A.; Jurišić, A.; Ljevnaić-Mašić, B. Economic Feasibility of Chemical Weed Control in Soybean Production in Serbia. Agronomy 2020, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Kisic, I.; Kassai, K.; Kende, Z.; Birkás, M. Long Term Effects of Ploughing and Conservation Tillage Methods on Earthworm Abundance and Crumb Ratio. Agronomy 2020, 10, 1552. [Google Scholar] [CrossRef]
- McAllister, C.H.; Beatty, P.H.; Good, A.G. Engineering nitrogen use efficient crop plants: The current status. Plant. Biotechnol. J. 2012, 10, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Leifeld, J. How sustainable is organic farming? Agric. Ecosyst. Environ. 2012, 150, 121–122. [Google Scholar] [CrossRef]
- Boone, L.; Roldán-Ruiz, I.; Muylle, H.; Dewulf, J. Environmental sustainability of conventional and organic farming: Accounting for ecosystem services in life cycle assessment. Sci. Total Environ. 2019, 695, 133841. [Google Scholar] [CrossRef] [PubMed]
- Eurostat, Organic Crop Area by Agricultural Production Methods and Crops (from 2012 Onwards). Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 28 November 2020).
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, K.; Tunney, H.; Zhang, C. Using GIS and geostatistics to optimize soil phosphorus and magnesium sampling in temperate grassland. Soil. Sci. 2013, 178, 240–247. [Google Scholar] [CrossRef]
- Gašparović, I.; Gašparović, M. Determining Optimal Solar Power Plant Locations Based on Remote Sensing and GIS Methods: A Case Study from Croatia. Remote Sens. 2019, 11, 1481. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yu, D.; Wang, X.; Pan, Y.; Zhang, G.; Shi, X. Influence of the Selection of Interpolation Method on Revealing Soil Organic Carbon Variability in the Red Soil Region, China. Sustainability 2018, 10, 2290. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A.; Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging; SpringerBriefs in Agriculture; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Oliver, M.A.; Bishop, T.F.A.; Marchant, B.P. Precision Agriculture for Sustainability and Environmental Protection; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Benslama, A.; Khanchoul, K.; Benbrahim, F.; Boubehziz, S.; Chikhi, F.; Navarro-Pedreño, J. Monitoring the Variations of Soil Salinity in a Palm Grove in Southern Algeria. Sustainability 2020, 12, 6117. [Google Scholar] [CrossRef]
- Dai, F.; Zhou, Q.; Lv, Z.; Wang, X.; Liu, G. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Indic. 2014, 45, 184–194. [Google Scholar] [CrossRef]
- Chabala, L.M.; Mulolwa, A.; Lungu, O. Application of ordinary kriging in mapping soil organic carbon in Zambia. Pedosphere 2017, 27, 338–343. [Google Scholar] [CrossRef]
- Song, J.J.; Kwon, S.; Lee, G. Incorporation of parameter uncertainty into spatial interpolation using Bayesian trans-Gaussian kriging. Adv. Atmos. Sci. 2015, 32, 413–423. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M.; Plaščak, I. Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images. Remote Sens. 2020, 12, 1463. [Google Scholar] [CrossRef]
- Jurišić, M.; Plaščak, I.; Antonić, O.; Radočaj, D. Suitability Calculation for Red Spicy Pepper Cultivation (Capsicum annum L.) Using Hybrid GIS-Based Multicriteria Analysis. Agronomy 2020, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Radočaj, D.; Jurišić, M.; Zebec, V.; Plaščak, I. Delineation of Soil Texture Suitability Zones for Soybean Cultivation: A Case Study in Continental Croatia. Agronomy 2020, 10, 823. [Google Scholar] [CrossRef]
- Zhao, J.; Zhan, X.; Jiang, Y.; Xu, J. Variations in climatic suitability and planting regionalization for potato in northern China under climate change. PLoS ONE 2018, 13, e0203538. [Google Scholar] [CrossRef] [PubMed]
- Bogunovic, I.; Trevisani, S.; Seput, M.; Juzbasic, D.; Durdevic, B. Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. Catena 2017, 154, 50–62. [Google Scholar] [CrossRef]
- Croatian Bureau of Statistics, Statistical Yearbook of the Republic of Croatia. 2018. Available online: https://www.dzs.hr/Hrv_Eng/ljetopis/2018/sljh2018.pdf (accessed on 28 November 2020).
- Croatian Meteorological and Hydrological Service, Monthly Values and Extremes, Osijek. Available online: https://meteo.hr/klima_e.php?section=klima_podaci¶m=k1&Grad=osijek (accessed on 8 December 2020).
- Liu, N.; Li, Y.; Cong, P.; Wang, J.; Guo, W.; Pang, H.; Zhang, L. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain. Soil Tillage Res. 2021, 205, 104772. [Google Scholar] [CrossRef]
- Metwally, M.S.; Shaddad, S.M.; Liu, M.; Yao, R.-J.; Abdo, A.I.; Li, P.; Jiao, J.; Chen, X. Soil Properties Spatial Variability and Delineation of Site-Specific Management Zones Based on Soil Fertility Using Fuzzy Clustering in a Hilly Field in Jianyang, Sichuan, China. Sustainability 2019, 11, 7084. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.T.; Liang, B.C.; Liu, L.P.; Wang, X.Y.; McDonald, C.L. C: N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops. Crop. Pasture Sci. 2011, 62, 496–503. [Google Scholar] [CrossRef]
- Rosner, K.; Bodner, G.; Hage-Ahmed, K.; Steinkellner, S. Long-term Soil Tillage and Cover Cropping Affected Arbuscular Mycorrhizal Fungi, Nutrient Concentrations, and Yield in Sunflower. Agron. J. 2018, 110, 2664–2672. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Ruffo, M.L.; Bullock, D.G.; Bollero, G.A. Soybean yield as affected by biomass and nitrogen uptake of cereal rye in winter cover crop rotations. Agron. J. 2004, 96, 800–805. [Google Scholar] [CrossRef]
- Mendes, M.P.; Ribeiro, L. Nitrate probability mapping in the northern aquifer alluvial system of the river Tagus (Portugal) using Disjunctive Kriging. Sci. Total Environ. 2010, 408, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Panday, D.; Maharjan, B.; Chalise, D.; Shrestha, R.K.; Twanabasu, B. Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS. PLoS ONE 2018, 13, e0206350. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.; Sun, J.; Wei, T. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China. J. Arid Land 2020, 1–13. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Soil Survey Laboratory Information Manual. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052226.pdf (accessed on 8 December 2020).
- Thomsen, I.K.; Petersen, B.M.; Bruun, S.; Jensen, L.S.; Christensen, B.T. Estimating soil C loss potentials from the C to N ratio. Soil Biol. Biochem. 2008, 40, 849–852. [Google Scholar] [CrossRef]
- Marchetti, A.; Piccini, C.; Francaviglia, R.; Mabit, L. Spatial distribution of soil organic matter using geostatistics: A key indicator to assess soil degradation status in central Italy. Pedosphere 2012, 22, 230–242. [Google Scholar] [CrossRef]
- Sun, X.L.; Yang, Q.; Wang, H.L.; Wu, Y.J. Can regression determination, nugget-to-sill ratio and sampling spacing determine relative performance of regression kriging over ordinary kriging? Catena 2019, 181, 104092. [Google Scholar] [CrossRef]
- Varouchakis, E.A.; Hristopulos, D.T.; Karatzas, G.P. Improving kriging of groundwater level data using nonlinear normalizing transformations—A field application. Hydrol. Sci. J. 2012, 57, 1404–1419. [Google Scholar] [CrossRef] [Green Version]
- Schloeder, C.A.; Zimmerman, N.E.; Jacobs, M.J. Comparison of methods for interpolating soil properties using limited data. Soil Sci. Soc. Am. J. 2001, 65, 470–479. [Google Scholar] [CrossRef]
- Ding, J.; Yu, D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma 2014, 235, 316–322. [Google Scholar] [CrossRef]
- Fashi, F.H.; Sharifi, F.; Kamali, K. Modelling infiltration and geostatistical analysis of spatial variability of sorptivity and transmissivity in a flood spreading area. Span. J. Agric. Res. 2014, 12, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, D.S.; Poulton, P.R.; Bryant, C. The turnover of organic carbon in subsoils. Part 1. Natural and bomb radiocarbon in soil profiles from the Rothamsted long-term field experiments. Eur. J. Soil Sci. 2008, 59, 391–399. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Tesfahunegn, G.B.; Tamene, L.; Vlek, P.L. Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil Tillage Res. 2011, 117, 124–139. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Huang, J.; Mansaray, L.R.; Mijiti, R. Monitoring policy-driven crop area adjustments in northeast China using Landsat-8 imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101892. [Google Scholar] [CrossRef]
- Singha, C.; Swain, K.C.; Swain, S.K. Best Crop Rotation Selection with GIS-AHP Technique Using Soil Nutrient Variability. Agriculture 2020, 10, 213. [Google Scholar] [CrossRef]
- Radočaj, D.; Obhođaš, J.; Jurišić, M.; Gašparović, M. Global Open Data Remote Sensing Satellite Missions for Land Monitoring and Conservation: A Review. Land 2020, 9, 402. [Google Scholar] [CrossRef]
- Gašparović, M.; Zrinjski, M.; Barković, Đ.; Radočaj, D. An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 2020, 173, 105385. [Google Scholar] [CrossRef]
Crop | 2017 | 2018 | 2019 | |||
---|---|---|---|---|---|---|
Area Cultivated (ha) | Part of Total Agricultural Area (%) | Area Cultivated (ha) | Part of Total Agricultural Area (%) | Area Cultivated (ha) | Part of Total Agricultural Area (%) | |
Maize | 42,368 | 20.19 | 40,232 | 19.19 | 56,549 | 27.17 |
Wheat | 32,941 | 15.70 | 40,486 | 19.31 | 42,048 | 20.20 |
Sunflower | 22,347 | 10.65 | 23,818 | 11.36 | 20,179 | 9.69 |
Rapeseed | 20,981 | 10.00 | 21,039 | 10.03 | 14,137 | 6.79 |
Soybean | 16,642 | 7.93 | 15,117 | 7.21 | 13,199 | 6.34 |
Total | 135,279 | 64.46 | 140,692 | 67.09 | 146,112 | 70.19 |
Values | C 0–10 cm | N 0–10 cm | C 20–30 cm | N 20–30 cm | |
---|---|---|---|---|---|
Mean (g 100 g−1) | 2.58 | 0.24 | 1.98 | 0.16 | |
Minimum (g 100 g−1) | 0.97 | 0.09 | 0.74 | 0.04 | |
Maximum (g 100 g−1) | 5.88 | 0.66 | 5.42 | 0.48 | |
CV | 0.48 | 0.52 | 0.59 | 0.53 | |
Skewness | 0.95 | 1.50 | 1.34 | 1.87 | |
Kurtosis | 0.53 | 1.82 | 1.26 | 3.61 | |
Shapiro–Wilk | W | 0.81 | 0.47 | 0.85 | 0.42 |
p | 0.029 | >0.001 | >0.001 | >0.001 |
Soil Element | Model | Transformation Method | n | s | Spatial Dependence | r (m) | ||
---|---|---|---|---|---|---|---|---|
C | linear | none | 0.359 | 2.367 | 0.848 | 25348 | 95.7 | 53.5 |
logarithmic | 0.064 | 0.345 | 0.814 | 93.6 | 58.8 | |||
square root | none | 0.298 | 2.159 | 0.862 | 37471 | 96.0 | 42.8 | |
logarithmic | 0.025 | 0.342 | 0.927 | 96.8 | 55.1 | |||
Gaussian | none | 0.136 | 2.270 | 0.940 | 25348 | 97.1 | 58.7 | |
logarithmic | 0.041 | 0.330 | 0.876 | 95.0 | 59.5 | |||
spherical | none | 0.098 | 1.798 | 0.945 | 24768 | 99.2 | 54.3 | |
logarithmic | 0.022 | 0.280 | 0.921 | 98.5 | 59.1 | |||
N | linear | none | 0.037 | 0.188 | 0.803 | 42981 | 95.8 | 42.9 |
logarithmic | 0.147 | 0.672 | 0.781 | 80.5 | 65.5 | |||
square root | none | 0.035 | 0.135 | 0.741 | 55089 | 97.4 | 38.0 | |
logarithmic | 0.158 | 0.514 | 0.693 | 81.1 | 63.0 | |||
Gaussian | none | 0.009 | 0.190 | 0.953 | 42981 | 93.8 | 49.5 | |
logarithmic | 0.071 | 0.649 | 0.891 | 88.1 | 66.3 | |||
spherical | none | 0.003 | 0.100 | 0.970 | 36049 | 99.7 | 50.9 | |
logarithmic | 0.087 | 0.417 | 0.791 | 92.2 | 63.3 |
Soil Element | Model | Transformation Method | n | s | Spatial Dependence | r (m) | ||
---|---|---|---|---|---|---|---|---|
C | linear | none | 0.705 | 1.536 | 0.541 | 21,194 | 72.0 | 57.5 |
logarithmic | 0.220 | 0.297 | 0.259 | 54.5 | 56.2 | |||
square root | none | 0.319 | 1.458 | 0.781 | 20,017 | 89.0 | 57.0 | |
logarithmic | 0.196 | 0.286 | 0.315 | 64.5 | 58.7 | |||
Gaussian | none | 0.806 | 1.461 | 0.448 | 23,549 | 68.5 | 44.4 | |
logarithmic | 0.243 | 0.285 | 0.147 | 55.5 | 67.3 | |||
spherical | none | 0.623 | 1.471 | 0.576 | 22,390 | 81.4 | 43.1 | |
logarithmic | 0.218 | 0.320 | 0.319 | 68.5 | 64.7 | |||
N | linear | none | 0.004 | 0.086 | 0.953 | 25,904 | 95.6 | 40.7 |
logarithmic | 0.014 | 0.489 | 0.971 | 93.0 | 74.6 | |||
square root | none | 0.002 | 0.077 | 0.974 | 41,211 | 95.5 | 38.6 | |
logarithmic | 0.003 | 0.445 | 0.993 | 89.0 | 79.3 | |||
Gaussian | none | 0.001 | 0.083 | 0.988 | 31,791 | 68.9 | 61.5 | |
logarithmic | 0.001 | 0.444 | 0.998 | 99.3 | 80.1 | |||
spherical | none | 0.001 | 0.059 | 0.983 | 28,849 | 97.9 | 47.8 | |
logarithmic | 0.006 | 0.356 | 0.981 | 96.2 | 78.7 |
Soil Depth | Model | Transformation Method | Mean | Min | Max | CV |
---|---|---|---|---|---|---|
0–10 cm | linear | none | 10.80 | 4.69 | 20.26 | 0.31 |
logarithmic | 11.28 | 3.76 | 20.85 | 0.26 | ||
square root | none | 10.81 | 4.93 | 19.28 | 0.25 | |
logarithmic | 11.28 | 5.82 | 19.86 | 0.20 | ||
Gaussian | none | 11.45 | 3.92 | 31.70 | 0.48 | |
logarithmic | 12.77 | 3.88 | 37.35 | 0.46 | ||
spherical | none | 11.25 | 4.16 | 23.91 | 0.32 | |
logarithmic | 11.17 | 4.24 | 21.77 | 0.22 | ||
20–30 cm | linear | none | 12.05 | 4.47 | 22.20 | 0.24 |
logarithmic | 11.70 | 4.44 | 26.76 | 0.25 | ||
square root | none | 12.04 | 5.53 | 22.57 | 0.14 | |
logarithmic | 11.54 | 4.68 | 25.74 | 0.21 | ||
Gaussian | none | 12.88 | 3.97 | 31.94 | 0.39 | |
logarithmic | 11.86 | 3.15 | 31.02 | 0.36 | ||
spherical | none | 12.10 | 4.17 | 26.15 | 0.23 | |
logarithmic | 11.62 | 3.65 | 28.60 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurišić, M.; Radočaj, D.; Krčmar, S.; Plaščak, I.; Gašparović, M. Geostatistical Analysis of Soil C/N Deficiency and Its Effect on Agricultural Land Management of Major Crops in Eastern Croatia. Agronomy 2020, 10, 1996. https://doi.org/10.3390/agronomy10121996
Jurišić M, Radočaj D, Krčmar S, Plaščak I, Gašparović M. Geostatistical Analysis of Soil C/N Deficiency and Its Effect on Agricultural Land Management of Major Crops in Eastern Croatia. Agronomy. 2020; 10(12):1996. https://doi.org/10.3390/agronomy10121996
Chicago/Turabian StyleJurišić, Mladen, Dorijan Radočaj, Stjepan Krčmar, Ivan Plaščak, and Mateo Gašparović. 2020. "Geostatistical Analysis of Soil C/N Deficiency and Its Effect on Agricultural Land Management of Major Crops in Eastern Croatia" Agronomy 10, no. 12: 1996. https://doi.org/10.3390/agronomy10121996
APA StyleJurišić, M., Radočaj, D., Krčmar, S., Plaščak, I., & Gašparović, M. (2020). Geostatistical Analysis of Soil C/N Deficiency and Its Effect on Agricultural Land Management of Major Crops in Eastern Croatia. Agronomy, 10(12), 1996. https://doi.org/10.3390/agronomy10121996