Cover Crop Contributions to Improve the Soil Nitrogen and Carbon Sequestration in Almond Orchards (SW Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Experimental Design
2.2. Field and Laboratory Measurements
2.3. Statistical Analysis
3. Results and Discussion
3.1. Biomass and Soil Covering Potential by Plant Covers
3.2. Potential Soil Covered by Cover Crops
3.3. Cover Crops and Soil Fertility
3.4. Soil Organic Carbon
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- MAPA. Encuesta sobre superficies y rendimientos de cultivos (ESYRCE). Resultados 2018. de Agricultura, S., y Alimentación, P., de Análisis, S.G., y Estadística, C., de España, G., Eds.; 2018; Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ (accessed on 3 March 2020).
- Martínez, R.A.; Durán, Z.V.H.; Francia, M.J.R. Soil erosion and runoff response to plant-cover strips on semiarid slopes (SE Spain). Land Degrad. Dev. 2006, 17, 1–11. [Google Scholar] [CrossRef]
- Palasciano, M.; Logoluso, V.; Lipari, E. Differences in drought tolerance in almond cultivars grown in Apulia region (Southeast Italy). Acta Hortic 2014, 1028, 319–324. [Google Scholar] [CrossRef]
- Moreno-García, M.; de Torres, M.A.R.-R.; Carbonell-Bojollo, R.M.; Ordóñez-Fernández, R. Management of pruning residues for soil protection in olive orchards. Land Degrad. Dev. 2018, 29, 2975–2984. [Google Scholar] [CrossRef]
- CAPDR. Caracterización Del Sector De La Almendra En Andalucía. de Agricultura y Alimentación, S.G., de Agricultura, C., y Desarrollo Rural, P., de Andalucía, J., Eds.; 2016, p. 34. Available online: http://www.juntadeandalucia.es/agriculturaypesca/observatorio/servlet/FrontController?action=RecordContent&table=12030&element=1654785. (accessed on 3 March 2020).
- Fuentes, M.; Govaerts, B.; De Leon, F.; Hidalgo, C.; Dendooven, L.; Sayre, K.; Etchevers, J. Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur. J. Agron. 2009, 30, 228–237. [Google Scholar] [CrossRef]
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of Long Term No-till and Conventional Tillage Practices on Soil Quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Linares, R.; de la Fuente, M.; Junquera, P.; Lissarrague, J.R.; Baeza, P. Effects of soil management in vineyard on soil physical and chemical characteristics. BIO Web Conf. 2014, 3, 01008. [Google Scholar] [CrossRef]
- Abid, M.; Lal, R. Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration. Soil Tillage Res. 2009, 103, 364–372. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Bertolla, C.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M.; Sifola, M.I.; Pellegrini, S.; Pagliai, M.; et al. Changes of soil properties and tree performance induced by soil management in a high-density olive orchard. Eur. J. Agron. 2012, 41, 18–27. [Google Scholar] [CrossRef]
- Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; et al. Impacts of climate change adaptation options on soil functions: A review of European case-studies. Land Degrad Dev. 2018, 29, 2378–2389. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Rodríguez, P.C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.E.; Benítez, E.; García, P.A.; Robles, A.B. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: Effects on soil quality. Appl. Soil Ecol. 2010, 44, 6–14. [Google Scholar] [CrossRef]
- De Leijster, V.; Santos, M.; Wassen, M.; Ramos-Font, M.; Robles, A.; Díaz, M.; Staal, M.; Verweij, P.A. Agroecological management improves ecosystem services in almond orchards within one year. Ecosyst. Serv. 2019, 38, 100948. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Cárceles, R.B.; García-Tejero, I.F.; Gálvez, R.B.; Cuadros, T.S. Benefits of organic olive rainfed systems to control soil erosion and runoff and improve soil health restoration. Agron. Sustain. Dev. 2020, 40, 41. [Google Scholar] [CrossRef]
- García-González, I.; Hontoria, F.C.; Gabriel, J.L.; Alonso, A.M.; Quemada, M. Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 2018, 322, 81–88. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops-A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Steenwerth, K.; Belina, K.M. Cover crops and cultivation: Impacts on soil N dynamics and Micro-biological function in a Mediterranean vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 370–380. [Google Scholar] [CrossRef]
- Rodríguez-Lizana, A.; de Torres, M.A.R.-R.; Carbonell-Bojollo, R.; Moreno-García, M.; Ordóñez-Fernández, R. Study of C, N, P and K release from residues of newly proposed cover crops in a Spanish olive grove. Agronomy 2020, 10, 1041. [Google Scholar] [CrossRef]
- de Torres, M.A.R.-R.; Carbonell-Bojollo, R.; Alcántara-Braña, C.; Rodríguez-Lizana, A.; Ordóñez-Fernández, R. Carbon sequestration potential of residues of different types of cover crops in olive groves under Mediterranean climate. Span. J. Agric. Res. 2012, 10, 649–661. [Google Scholar] [CrossRef]
- de Torres, M.A.R.-R.; Moreno-García, M.; Márquez-García, J.; Ordóñez-Fernández, R.; Carbonell-Bojollo, R. Carbon sequestration by grass, crucifer and legume groundcovers in olive orchards. J. Water Clim. Chang. 2018, 9, 748–763. [Google Scholar] [CrossRef] [Green Version]
- García-Franco, N.; Albaladejo, J.; Almagro, M.; Martínez, M.M. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil Tillage Res. 2015, 153, 66–75. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Eldridge, D.J.; Marques, M.J. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Biddoccu, M.; Ferraris, S.; Opsi, F.; Cavallo, E. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil Tillage Res. 2016, 155, 176–189. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Anglade, J.; Billen, G.; Garnier, J. Relationships for estimating N2 fixation in legumes: Incidence for N balance of legume, based cropping systems in Europe. Ecosphere 2015, 6, 1–24. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; de Torres, M.A.R.-R.; Márquez-García, J.; Moreno-García, M.; Carbonell-Bojollo, R. Legumes used as cover crops to reduce fertilisation problems improving soil nitrate in an organic orchard. Eur. J. Agron. 2018, 95, 1–13. [Google Scholar] [CrossRef]
- Ramírez-García, J.; Gabriel, J.L.; Alonso, A.M.; Quemada, M. Quantitative characterization of five cover crops species. J. Agric. Sci. 2015, 153, 1174–1185. [Google Scholar] [CrossRef] [Green Version]
- Quilez, O.A.; Serrano, C.N.; Lovera, M.M.; Romero, C.A. Guía De Cubiertas Vegetales En Almendro. de Andalucía, E., de Agricultura, C., y Desarrollo Rural, P., Eds.; Instituto de Investigación y Formación Agraria y Pesquera, 2015. Available online: https://www.juntadeandalucia.es/agriculturaypesca/ifapa/servifapa/registro-servifapa/78cbd014-6939-452d-b996-56478b48210f (accessed on 3 March 2020).
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Pedraza, V.; Perea, F.; Saavedra, M.; Fuentes, M.; Alcántara, C. Vicia narbonensis-Avena strigosa mixture, a viable alternative in rainfed cropping systems under Mediterranean conditions. Span. J. Agric. Res. 2017, 15, e0905. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Bojollo, R.; González-Sánchez, E.J.; Veróz, G.O.; Ordoñez, R. Soil management systems and short-term CO2emissions in a claily soil in southern Spain. Sci. Total. Environ. 2016, 409, 2929–2935. [Google Scholar] [CrossRef] [PubMed]
- Durán, Z.V.H.; Rodríguez, P.C.R.; Cárceles, R.B.; Pérez, M.J.D.; Francia, M.J.R.; Cuadros, S.T.; García, T.I.F. Plant Strips as a Sustainable Strategy in Reducing Soil Erosion in Rainfed-Tree Crops. In Cover Crops: Cultivation, Management and Benefits; Reuter, J., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2016; pp. 73–2012. ISBN 978-1-63484-035-4. [Google Scholar]
- Palese, A.M.; Vignozzi, N.; Celano, G.; Agnelli, A.E.; Pagliai, M.; Xiloyannis, C. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil Tillage Res. 2014, 144, 96–109. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Castro, J.; Alonso-Prados, E.; Alonso-Prados, J.L.; García-Baudín, J.M.; Talavera, M.; Durán-Zuazo, V.H. Tillage and herbicide decrease soil biodiversity in olive orchards. Agron. Sustain. Dev. 2015, 35, 691–700. [Google Scholar] [CrossRef]
- Gómez, J.A.; Campos, M.; Guzmán, G.; Castillo-Llanque, F.; Vanwalleghem, T.; Lora, Á.; Giráldez, J.V. Soil erosion control, plant diversity, and arthropod communities under heterogeneous cover crops in an olive orchard. Environ. Sci. Pollut. Res. 2018, 25, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.E.; Altieri, M.A.; García, P.A.; Robles, A.B. Oat and Oat-Vetch as Rainfed Fodder-Cover Crops in Semiarid Environments: Effects of Fertilization and Harvest Time on Forage Yield and Quality. J. Sustain. Agric. 2011, 35, 726–744. [Google Scholar] [CrossRef]
- Ruffo, M.L.; Bollero, G.A. Modeling Rye and Hairy Vetch Residue Decomposition as a Function of Degree-Days and Decomposition-Days. Agron. J. 2003, 95, 900–907. [Google Scholar] [CrossRef]
- USDA. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, WA, USA, 2014. [Google Scholar]
- Agrela, F.; Gil, J.A.; Giráldez, J.V.; Ordóñez, R.; González, P. Obtention of reference value in the measurement of the cover fraction in conservation agriculture. In II World Congress on Conservation Agriculture Iguazu; Cury, B., Canalli, L.B., Eds.; Deutsche Gesellschaft fuer Technische Zusammerbei: Eschborn, Hessen, Germany, 2003; pp. 44–47. [Google Scholar]
- Bremner, J.; Keeney, D. Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 1965, 32, 485–495. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loccpert, R.M.; Sottanpour, P.N.; Tabatai, M.A.; Johnston, C.I.; Summer, M.E. Methods of Soils Analysis, Chemical Methods. In Soil Science Society of America Book, Series 5, Number 3; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from diverse cover crop mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Assefa, G.; Ledin, I. Effect of variety, soil type and fertilizer on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in pure stands and mixtures. Anim. Feed. Sci. Technol. 2001, 92, 95–111. [Google Scholar] [CrossRef]
- Tuna, C.; Orak, A. The role of intercropping on yield potential of common vetch (Vicia sativa L.) / oat (Avena sativa L.) cultivated in pure stand and mixtures. J. Agric. Biol. Sci. 2007, 2, 14–19. Available online: www.arpnjournals.com/jabs/research_papers/rp_2007/jabs_0307_44.pdf (accessed on 3 March 2020).
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; López-Felices, B.; del Moral-Torres, F. Barriers and Facilitators for Adopting Sustainable Soil. Agronomy 2020, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Travlos, I.; Gazoulis, I.; Kanatas, P.; Tsekoura, A.; Zannopoulos, S.; Papastylianou, P. Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Front. Agron. 2020, 2, 1. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Rodríguez, P.C.R.; Francia, M.J.R.; Martínez, R.A.; Arroyo, P.L.; Cárceles, R.B.; Navarro, M.M.C. Benefits of plant strips for sustainable mountain agriculture. Agron. Sustain. Dev. 2008, 28, 497–505. [Google Scholar] [CrossRef]
- Espejo-Pérez, A.J.; Rodríguez-Lizana, A.; Ordóñez, R.; Giráldez, J.V. Soil loss and runoff reduction in olive-tree dry-farming with cover crops. Soil Sci Soc. Am. J. 2013, 77, 2140–2148. [Google Scholar] [CrossRef] [Green Version]
- CTIC. Conservation Tillage Information Center, Tillage Type Definitions, IN, USA. 2020. Available online: https://www.ctic:resource_display/?id=322 (accessed on 27 April 2020).
- Rodríguez-Lizana, A.; de Torres, M.A.R.-R.; Carbonell-Bojollo, R.; Alcántara, C.; Ordóñez-Fernández, R. Brachypodium distachyon, Sinapis alba, and controlled spontaneous vegetation as groundcovers: Soil protection and modeling decomposition. Agric. Ecosyst. Environ. 2018, 265, 62–72. [Google Scholar] [CrossRef]
- Sastre, B.; Marquez, M.J.; García, D.A.; Bienes, R. Three years of management with cover crops protecting sloping olive groves soils, carbon and water effects on gypsiferous soil. Catena 2018, 171, 115–124. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Probert, M.E.; Robertson, F.A. Modelling decomposition of sugar cane surface residues with APSIM–Residue. Field Crop. Res. 2001, 70, 223–232. [Google Scholar] [CrossRef]
- Wang, Y.; Adnan, A.; Wang, X.; Shi, Y.; Yang, S.; Ding, Q.; Sun, G. Nutrient recycling, wheat straw decomposition, and the potential effect of straw shear strength on soil mechanical properties. Agronomy 2020, 10, 314. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Muñoz, B.; Hatch, D.J.; Bol, R.; García, R.R. Nutrient dynamics during decomposition of the residues from a sown legume or ruderal plant cover in an olive oil orchard. Agric. Ecosyst. Environ. 2014, 184, 115–123. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [Green Version]
- Callway, J.; Sullivan, G.; Zedler, J.B. Species-Rich Plantings Increase Biomass and Nitrogen Accumulation in a Wetland Restoration Experiment. Ecol. Appl. 2003, 13, 1626–1639. [Google Scholar] [CrossRef] [Green Version]
- Campillo, R.; Urquiaga, S.; Pino, I.; Montenegro, A. Estimación de la fijación biológica de nitrógeno en leguminosas forrajeras mediante la metodología del 15N. Agric. Técnica 2003, 63, 169–179. [Google Scholar] [CrossRef]
- Pastor, J.; Benítez, M.; Hernández, A.J. Cubiertas vegetales en olivar y viñedo: Balance de 10 años en relación al agua del suelo y su monitorización. In En: Tecnologías emergentes, [CD-ROM]; Agroingeniería: Albacete, Spain, 2007; pp. 1–16. [Google Scholar]
- Minasny, D.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; García, R.R.; Francaviglia, R.; Aguilera, E.; Smith, P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agric. Ecosyst. Environ. 2016, 235, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Olson, K.R.; Al-Kaisi, M.; Lal, R.; Lowery, B. Examining the Paired Comparison Method Approach for Determining Soil Organic Carbon Sequestration Rates. J. Soil Water Conserv. 2014, 69, 193A–197A. [Google Scholar] [CrossRef] [Green Version]
- Almagro, M.; García, F.N.; Martinez, M.M. The potential of reducing tillage frequency and incorporating plant residues as a strategy for climate change mitigation in semiarid Mediterranean agroecosystems. Agric. Ecosyst. Environ. 2017, 246, 210–220. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; Rodríguez-Lizana, A.; Carbonell, R.; González, P.; Perea, F. Dynamics of residue decomposition in the field in a dryland rotation under Mediterranean climate conditions in southern Spain. Nutr. Cycl. Agroecosystems 2007, 79, 243–253. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Khera, T.S.; Doran, J.W.; Bronson, K.F. Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biol. Fertil. Soils 2001, 34, 375–389. [Google Scholar] [CrossRef]
Depth | pH | pH | SOC | NO3− | P | K |
(cm) | (H2O) | (CaCl2) | (%) | (mg kg−1) | ||
0–5 | 8.63 | 7.80 | 0.92 | 47.78 | 11.55 | 309.10 |
5–10 | 8.64 | 7.82 | 0.88 | 37.54 | 8.83 | 246.35 |
10–20 | 8.66 | 7.84 | 0.71 | 26.09 | 6.22 | 174.47 |
20–40 | 8.63 | 7.86 | 0.65 | 22.89 | 5.22 | 119.63 |
40–60 | 8.70 | 7.88 | 0.50 | 20.44 | 5.87 | 88.93 |
Depth | CO3−2 | CEC | Sand | Silt | Clay | Textural class |
(cm) | (%) | (meq 100 g−1) | (%) | |||
0–5 | 18.02 | 14.13 | 41.57 | 40.32 | 18.12 | Loam |
5–10 | 17.07 | 14.43 | 43.18 | 38.86 | 17.96 | Loam |
10–20 | 17.04 | 15.33 | 43.65 | 36.94 | 19.42 | Loam |
20–40 | 17.42 | 14.43 | 43.02 | 37.14 | 19.84 | Loam |
40–60 | 18.10 | 14.60 | 44.60 | 37.08 | 18.33 | Loam |
Plant Cover | Seed Weight | SD | Theoretical PD | Emergence | Real PD | |
---|---|---|---|---|---|---|
(g per 1000 Seeds) | (kg ha−1) | (Seeds m−2) | (%) | (Plants m−2) | ||
Vetch | 42.1 | 200 | 475.06 | 95 | 451.31 | |
Barley | 38.70 | 200 | 516.80 | 85 | 439.28 | |
Mixture | Vetch (35%) | 42.1 | 70 | 166.27 | 90 | 149.64 |
Barley (65%) | 38.7 | 130 | 335.92 | 85 | 285.53 |
Season | Vicia villosa | Hordeum vulgare | Mixture | Control | Average |
---|---|---|---|---|---|
(kg ha−1 of Kernel) | |||||
2016/17 | 2868 | 2630 | 2808 | 2594 | 2725.1 |
2017/18 | 2761 | 2606 | 2666 | 2523 | 2639.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repullo-Ruibérriz de Torres, M.A.; Moreno-García, M.; Ordóñez-Fernández, R.; Rodríguez-Lizana, A.; Cárceles Rodríguez, B.; García-Tejero, I.F.; Durán Zuazo, V.H.; Carbonell-Bojollo, R.M. Cover Crop Contributions to Improve the Soil Nitrogen and Carbon Sequestration in Almond Orchards (SW Spain). Agronomy 2021, 11, 387. https://doi.org/10.3390/agronomy11020387
Repullo-Ruibérriz de Torres MA, Moreno-García M, Ordóñez-Fernández R, Rodríguez-Lizana A, Cárceles Rodríguez B, García-Tejero IF, Durán Zuazo VH, Carbonell-Bojollo RM. Cover Crop Contributions to Improve the Soil Nitrogen and Carbon Sequestration in Almond Orchards (SW Spain). Agronomy. 2021; 11(2):387. https://doi.org/10.3390/agronomy11020387
Chicago/Turabian StyleRepullo-Ruibérriz de Torres, Miguel A., Manuel Moreno-García, Rafaela Ordóñez-Fernández, Antonio Rodríguez-Lizana, Belén Cárceles Rodríguez, Iván Francisco García-Tejero, Víctor Hugo Durán Zuazo, and Rosa M. Carbonell-Bojollo. 2021. "Cover Crop Contributions to Improve the Soil Nitrogen and Carbon Sequestration in Almond Orchards (SW Spain)" Agronomy 11, no. 2: 387. https://doi.org/10.3390/agronomy11020387
APA StyleRepullo-Ruibérriz de Torres, M. A., Moreno-García, M., Ordóñez-Fernández, R., Rodríguez-Lizana, A., Cárceles Rodríguez, B., García-Tejero, I. F., Durán Zuazo, V. H., & Carbonell-Bojollo, R. M. (2021). Cover Crop Contributions to Improve the Soil Nitrogen and Carbon Sequestration in Almond Orchards (SW Spain). Agronomy, 11(2), 387. https://doi.org/10.3390/agronomy11020387